fixing doc
This commit is contained in:
parent
608926ea02
commit
36f6d1df1c
24
Readme.md
24
Readme.md
@ -1,17 +1,17 @@
|
||||
# TUG Benchmark
|
||||
|
||||
**This Readme is under construction**
|
||||
**Refer to the =Description.pdf= in the =doc= folder**
|
||||
|
||||
This repository contains input data from POET simulations used in the NAAICE
|
||||
project and is simulated with the latest version of tug with heterogeneous
|
||||
alphas.
|
||||
This repository contains input data from POET simulations used in the
|
||||
NAAICE project and is simulated with the latest version of tug with
|
||||
heterogeneous alphas.
|
||||
|
||||
The alpha values are randomly generated from a uniform distribution between 1e-7
|
||||
and 1e-6 and stored in according .csv files.
|
||||
Benchmarks (grids, timestep, file paths, etc) are defined in the
|
||||
header file `eval/bench_defs.hpp.in`. The data used by the three
|
||||
benchmarks `barite_200`, `barite_large` and `surfex` are in the
|
||||
corresponding subdirectories of `eval`, as `tar.gz`. Remember to
|
||||
unpack them before running the executable!
|
||||
|
||||
You can find the three benchmarks in the `eval` directory. There is also a
|
||||
header file, which describes the benchmarks with its grid shape etc.
|
||||
|
||||
To write the resulting fields to a file, you can set the `BENCH_OUTPUT`
|
||||
variable, e.g. `BENCH_OUTPUT=1 ./bench`. The resulting fields are written to
|
||||
according .csv files.
|
||||
To write the results to file, set the `BENCH_OUTPUT` environmental
|
||||
variable, e.g. `BENCH_OUTPUT=1 ./bench`. The resulting fields are
|
||||
written to according .csv files *in the `build` directory*.
|
||||
|
||||
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
%% Time-stamp: "Last modified 2024-04-10 23:08:54 delucia"
|
||||
%% Time-stamp: "Last modified 2024-04-10 23:33:46 delucia"
|
||||
\documentclass[a4paper,10pt]{article}
|
||||
|
||||
\usepackage{listings}
|
||||
@ -360,8 +360,9 @@ Absolute Percentage Error (\textbf{MAPE}) and Relative RMSE
|
||||
\end{equation}
|
||||
|
||||
These relative measures account for discrepancies across all
|
||||
magnitudes of the $y$ and $\hat{y}$ variables and preserve the
|
||||
physical meaning of 0.
|
||||
magnitudes of the $y$ and $\hat{y}$ variables while preserving the
|
||||
physical meaning of 0. An implementation of all these metrics in R is
|
||||
given in the \texttt{Metrics.R} file in this same directory.
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
189
doc/Metrics.R
Normal file
189
doc/Metrics.R
Normal file
@ -0,0 +1,189 @@
|
||||
## R code to compute the different metrics for GeoML Benchmarks, GFZ
|
||||
## implementation
|
||||
##
|
||||
## M. De Lucia, delucia@gfz-potsdam.de
|
||||
##
|
||||
## Time-stamp: "Last modified 2024-04-10 23:40:08 delucia"
|
||||
|
||||
|
||||
## Hopefully self-evident naming of the functions
|
||||
|
||||
|
||||
## Convenience function for output of messages to stdout prepending
|
||||
## name of function which called it
|
||||
msg_ <- function(...) {
|
||||
## check if we are called from another function or interactively
|
||||
fname <- sys.call(-1)
|
||||
if (is.null(fname)) {
|
||||
cat(paste(..., "\n"))
|
||||
} else {
|
||||
prefix <- paste0("::", as.list(fname)[[1]], "::")
|
||||
cat(paste(prefix, ..., "\n"))
|
||||
}
|
||||
invisible()
|
||||
}
|
||||
|
||||
MAElog <- function(actual, pred) {
|
||||
pred[is.na(pred)] <- 0
|
||||
ind <- which(actual == 0 | pred <= 0)
|
||||
if (length(ind) > 0) {
|
||||
msg_("Removed ", length(ind))
|
||||
mean(abs(log(pred[-ind]/actual[-ind])), na.rm=TRUE)
|
||||
} else {
|
||||
mean(abs(log(pred/actual)), na.rm=TRUE)
|
||||
}
|
||||
}
|
||||
|
||||
RMSElog <- function(actual, pred, eps=FALSE) {
|
||||
pred[is.na(pred)] <- 0
|
||||
if (length(ind <- which(actual==0 | pred<=0)) > 0) {
|
||||
msg_("Removed ", length(ind))
|
||||
sqrt(mean(log(pred[-ind]/actual[-ind])^2, na.rm=TRUE))
|
||||
} else {
|
||||
sqrt(mean(log(pred/actual)^2, na.rm=TRUE))
|
||||
}
|
||||
}
|
||||
|
||||
GMAQabs <- function(actual, pred) {
|
||||
pred[is.na(pred)] <- 0
|
||||
ind <- which(actual==0 | pred<=0)
|
||||
if (length(ind) > 0) {
|
||||
msg_("Removed ", length(ind))
|
||||
abs(1-exp(mean(log(abs(pred[-ind]/actual[-ind])), na.rm=TRUE)))
|
||||
} else {
|
||||
abs(1-exp(mean(log(abs(pred/actual)), na.rm=TRUE)))
|
||||
}
|
||||
}
|
||||
|
||||
## Workhorse function computing the "alphas" (cfr workflows/metrics)
|
||||
## for relative error measures. We first compute the alphas, then take
|
||||
## care of the +Inf, -Inf, NaN cases scanning the input vectors and
|
||||
## substituting 0 and 1. NAs in the predictions are preserved
|
||||
Alphas <- function(actual, pred) {
|
||||
alphas <- 1-pred/actual
|
||||
alphas[actual==0 & pred==0] <- 0
|
||||
alphas[actual==0 & pred > 0] <- 1
|
||||
alphas[actual==0 & pred < 0] <- -1
|
||||
alphas
|
||||
}
|
||||
|
||||
MAPE <- function(actual, pred) {
|
||||
100*mean(abs(Alphas(actual, pred)), na.rm=TRUE)
|
||||
}
|
||||
|
||||
RRMSE <- function(actual, pred) {
|
||||
sqrt(mean(Alphas(actual, pred)^2, na.rm=TRUE))
|
||||
}
|
||||
|
||||
RMSLE <- function(actual, pred) {
|
||||
sqrt(mean((log((1+pred)/(1+actual))^2), na.rm=TRUE))
|
||||
}
|
||||
|
||||
MAE <- function(actual, pred) {
|
||||
mean(abs(actual-pred), na.rm=TRUE)
|
||||
}
|
||||
|
||||
RMSE <- function(actual, pred) {
|
||||
sqrt(mean((actual-pred)^2, na.rm=TRUE))
|
||||
}
|
||||
|
||||
MSE <- function(actual, pred) {
|
||||
mean((actual-pred)^2, na.rm=TRUE)
|
||||
}
|
||||
|
||||
## Function is called "R2" but it actually computes "1-R2" (note that
|
||||
## "1-rss/tss" is missing)
|
||||
R2 <- function(actual, pred) {
|
||||
rss <- sum((actual - pred)^2, na.rm=TRUE)
|
||||
tss <- sum((pred - mean(pred, na.rm=TRUE))^2, na.rm=TRUE)
|
||||
rss/tss
|
||||
}
|
||||
|
||||
Range <- function(x) {
|
||||
diff(range(x, na.rm=TRUE))
|
||||
}
|
||||
|
||||
## 2024-03-08: fixed Range of actual instead of pred, thanks @Mary
|
||||
Normsupnorm<- function(actual, pred) {
|
||||
max(abs(actual - pred), na.rm=TRUE)/Range(actual)
|
||||
}
|
||||
|
||||
|
||||
|
||||
## This function computes all the measures at once in the (hopefully)
|
||||
## expected right order. You need to loop this function over all
|
||||
## variables.
|
||||
Metrics <- function(actual, pred) {
|
||||
## MAE MSE RMSE 1-R2 NMAE NRMSE Normsupnorm MAElog RMSElog RMSLE GMAQabs MAPE RRMSE NNEG Range
|
||||
alphas <- Alphas(actual, pred)
|
||||
ran_pred <- Range(pred)
|
||||
ran_actu <- Range(actual) ## 2024-03-08: same fix as in Normsupnorm
|
||||
ret <- c(
|
||||
MAE = MAE(actual, pred),
|
||||
MSE = MSE(actual, pred),
|
||||
RMSE = RMSE(actual, pred),
|
||||
'1-R2' = R2(actual, pred),
|
||||
NMAE = MAE(actual, pred)/ran_actu,
|
||||
NRMSE = RMSE(actual, pred)/ran_actu,
|
||||
Normsupnorm = Normsupnorm(actual, pred),
|
||||
MAElog = MAElog(actual,pred),
|
||||
RMSElog = RMSElog(actual,pred),
|
||||
RMSLE = RMSLE(actual, pred),
|
||||
GMAQabs = GMAQabs(actual, pred),
|
||||
MAPE = MAPE(actual, pred),
|
||||
RRMSE = RRMSE(actual, pred),
|
||||
NNEG = NNEG(pred),
|
||||
Range = ran_pred
|
||||
)
|
||||
ret
|
||||
}
|
||||
|
||||
## Function applying Metrics() on all columns of two data.frames
|
||||
## having the same name
|
||||
DoAllMetrics <- function(vals, preds) {
|
||||
## Match column names (=variables) in both data.frames
|
||||
vars <- intersect(colnames(vals), colnames(preds))
|
||||
|
||||
msg_("Going to compute metrics for: ", paste(vars, collapse=', '))
|
||||
## Some lambda calculus combined with R ugliness
|
||||
as.data.frame(t(sapply(vars, function(x) Metrics(actual = vals[[x]], pred = preds[[x]]))))
|
||||
}
|
||||
|
||||
|
||||
### Store the computed metrics into a .csv file. First format all
|
||||
### columns with "formatC" specifying 7 digits, and then use function
|
||||
### "data.table::fwrite" with option "scipen=1" to try and use the
|
||||
### scientific/exponential notation as much as possible. The empty
|
||||
### spaces resulting from padding are removed too.
|
||||
WriteMetrics <- function(tab, fileout) {
|
||||
require(data.table)
|
||||
tocsv <- data.frame(Output=rownames(tab), gsub(" ", "", sapply(tab, formatC, digits = 7)), check.names = FALSE)
|
||||
data.table::fwrite(tocsv, file=fileout, scipen=1)
|
||||
}
|
||||
|
||||
##################################################################
|
||||
### ###
|
||||
### Usage Example ###
|
||||
### ###
|
||||
##################################################################
|
||||
|
||||
### We start by sourcing these functions
|
||||
## source("./Metrics.R")
|
||||
|
||||
### NOTE: I use the extension package data.table to read and write the
|
||||
### .csv files.
|
||||
|
||||
## require(data.table)
|
||||
|
||||
### NOTE2: we expect named columns in the .csv - with header!
|
||||
|
||||
### Example to compute all metrics at once for from a file - check colnames!
|
||||
## Trues <- data.table::fread("./Trues.csv", header=TRUE, data.table = FALSE)
|
||||
|
||||
### Load the simulation results dataset
|
||||
## Preds <- data.table::fread("./MyPreds.csv", header=TRUE, data.table = FALSE)
|
||||
|
||||
## res <- DoAllMetrics(Val, Preds)
|
||||
|
||||
### Write out the metrics
|
||||
## WriteMetrcs(res, file="MyMetrics.csv")
|
||||
Loading…
x
Reference in New Issue
Block a user