Update benchmark runtimes according to timings from PERFACCT

This commit is contained in:
Max Lübke 2024-07-04 12:01:59 +02:00
parent 20c2917606
commit 462c3d4716
2 changed files with 51 additions and 51 deletions

Binary file not shown.

View File

@ -43,13 +43,13 @@ At a glance:
\centering
\begin{tabular}{|c|c|}
\hline
Grid & 200x200 \\ \hline
Size & 1x1~m$^2$ \\ \hline
Timestep & 1000~s \\ \hline
Iterations & 50 \\ \hline
$\alpha_x, \alpha_y$ & heter., aniso. \\\hline
Species \# & 7 \\ \hline
Init & homog. \\ \hline
Grid & 200x200 \\ \hline
Size & 1x1~m$^2$ \\ \hline
Timestep & 1000~s \\ \hline
Iterations & 50 \\ \hline
$\alpha_x, \alpha_y$ & heter., aniso. \\\hline
Species \# & 7 \\ \hline
Init & homog. \\ \hline
\end{tabular}
\caption{Summary of parameters for the barite\_200 benchmark}
\label{tab:b200}
@ -68,9 +68,9 @@ value of 0.1 molal \chem{BaCl_2}. All other boundaries are closed.
\begin{table*}[!h]
\centering
\begin{tabular}{|r|r|r|r|r|r|r|r|}\hline
& H & O & Charge & Ba & Cl & S\_6\_ & Sr \\\hline
\textbf{IC} & 110.0124 & 55.5086 & -1.2163e-09 & 4.4553e-07 & 2.0e-12 & 6.1516e-5 & 6.1472e-5 \\\hline
\textbf{BC} & 111.0124 & 55.5062 & -3.3370e-08 & 0.1 & 0.2 & 0 & 0 \\\hline
& H & O & Charge & Ba & Cl & S\_6\_ & Sr \\\hline
\textbf{IC} & 110.0124 & 55.5086 & -1.2163e-09 & 4.4553e-07 & 2.0e-12 & 6.1516e-5 & 6.1472e-5 \\\hline
\textbf{BC} & 111.0124 & 55.5062 & -3.3370e-08 & 0.1 & 0.2 & 0 & 0 \\\hline
\end{tabular}
\caption{Initial and boundary values of all transported variables in
the \texttt{barite\_200} benchmark.}
@ -87,8 +87,8 @@ for $\alpha_x$ and $\alpha_y$ respectively:
\begin{equation*}
\begin{cases}
\displaystyle \alpha_x & \displaystyle = 10^{-7} + 10^{-6} \frac{\mathcal{F}-\min{(\mathcal{F})}}{\max{(\mathcal{F})}}\\
\alpha_y & \displaystyle = 10^{-7} + 10^{-7} \frac{\mathcal{F}-\min{(\mathcal{F})}}{\max{(\mathcal{F})}}
\displaystyle \alpha_x & \displaystyle = 10^{-7} + 10^{-6} \frac{\mathcal{F}-\min{(\mathcal{F})}}{\max{(\mathcal{F})}} \\
\alpha_y & \displaystyle = 10^{-7} + 10^{-7} \frac{\mathcal{F}-\min{(\mathcal{F})}}{\max{(\mathcal{F})}}
\end{cases}
\end{equation*}
@ -111,7 +111,7 @@ benchmark.
\end{figure}
This benchmarks runs in $\sim$11~s on 8 CPUs on my desktop.
This benchmarks runs in $\sim$ 1.8~s on 18 CPUs on a System @ PERFACCT.
\clearpage
@ -128,13 +128,13 @@ At a glance:
\centering
\begin{tabular}{|c|c|}
\hline
Grid & 1000x1000 \\ \hline
Size & 10x10~m \\ \hline
Timestep & 100~s \\ \hline
Iterations & 50 \\ \hline
Grid & 1000x1000 \\ \hline
Size & 10x10~m \\ \hline
Timestep & 100~s \\ \hline
Iterations & 50 \\ \hline
$\alpha$ & homog. 1E-6 \\\hline
Species \# & 7 \\ \hline
Init & heter. \\ \hline
Species \# & 7 \\ \hline
Init & heter. \\ \hline
\end{tabular}
\caption{Summary of parameters for the \texttt{barite\_large} benchmark}
\label{tab:blarge}
@ -181,7 +181,7 @@ record. The non-rounded values are read from file
\texttt{barite\_200} benchmark\label{fig:blarge}}
\end{figure}
This benchmark runs in $\sim$30~s on my desktop using 8 CPUs.
This benchmark runs in $\sim$6.4~s on my desktop using 18 CPUs.
\clearpage
@ -197,7 +197,7 @@ glance:
\centering
\begin{tabular}{|c|c|}
\hline
Grid & 200x100 \\ \hline
Grid & 200x100 \\ \hline
Size & 0.02x0.01~m \\ \hline
Timestep & 3600~s (1~h) \\ \hline
Iterations & 20 \\ \hline
@ -216,28 +216,28 @@ boundaries are set to constant \textbf{BC} values. \textbf{Initial
\begin{table*}[!h]
\centering
\begin{tabular}{|l|r|r|}\hline
& \textbf{IC} & \textbf{BC} \\ \hline
H & 1.11e+02 & 120.0 \\ \hline
O & 5.55e+01 & 55.1 \\ \hline
Charge & -2.0e-13 & 8.0e-17 \\ \hline
C & 2.0e-16 & 2.0e-15 \\ \hline
CH4 & 2.0e-03 & 0.2 \\ \hline
Ca & 2.0e-01 & 0.03 \\ \hline
Cl & 3.0e-01 & 0.5 \\ \hline
Fe2 & 1.4e-04 & 0.0002 \\ \hline
Fe3 & 1.3e-09 & 2.0e-08 \\ \hline
H0 & 6.0e-12 & 2.0e-11 \\ \hline
K & 2.0e-03 & 1.0e-05 \\ \hline
Mg & 1.0e-02 & 0.2 \\ \hline
Na & 2.0e-01 & 0.3 \\ \hline
HS2 & 5.9e-10 & 0 \\ \hline
S2 & 8.3e-15 & 8.3e-12 \\ \hline
S4 & 2.1e-14 & 5.1e-14 \\ \hline
S6 & 1.6e-02 & 0.026 \\ \hline
Sr & 4.5e-04 & 0.045 \\ \hline
U4 & 2.5e-09 & 2.5e-08 \\ \hline
U5 & 1.6e-10 & 1.6e-10 \\ \hline
U6 & 2.3e-07 & 1.0e-05 \\ \hline
& \textbf{IC} & \textbf{BC} \\ \hline
H & 1.11e+02 & 120.0 \\ \hline
O & 5.55e+01 & 55.1 \\ \hline
Charge & -2.0e-13 & 8.0e-17 \\ \hline
C & 2.0e-16 & 2.0e-15 \\ \hline
CH4 & 2.0e-03 & 0.2 \\ \hline
Ca & 2.0e-01 & 0.03 \\ \hline
Cl & 3.0e-01 & 0.5 \\ \hline
Fe2 & 1.4e-04 & 0.0002 \\ \hline
Fe3 & 1.3e-09 & 2.0e-08 \\ \hline
H0 & 6.0e-12 & 2.0e-11 \\ \hline
K & 2.0e-03 & 1.0e-05 \\ \hline
Mg & 1.0e-02 & 0.2 \\ \hline
Na & 2.0e-01 & 0.3 \\ \hline
HS2 & 5.9e-10 & 0 \\ \hline
S2 & 8.3e-15 & 8.3e-12 \\ \hline
S4 & 2.1e-14 & 5.1e-14 \\ \hline
S6 & 1.6e-02 & 0.026 \\ \hline
Sr & 4.5e-04 & 0.045 \\ \hline
U4 & 2.5e-09 & 2.5e-08 \\ \hline
U5 & 1.6e-10 & 1.6e-10 \\ \hline
U6 & 2.3e-07 & 1.0e-05 \\ \hline
\end{tabular}
\caption{\texttt{surfex} benchmark, homogeneous initial conditions
\textbf{IC} and boundary values \textbf{BC}}
@ -260,7 +260,7 @@ boundaries are set to constant \textbf{BC} values. \textbf{Initial
benchmark\label{fig:bsurf}}
\end{figure}
This benchmark runs in $\sim$7~s on my desktop using 8 CPUs.
This benchmark runs in $\sim$1.1~s on my desktop using 18 CPUs.
\clearpage
@ -314,7 +314,7 @@ equivalent):
\begin{equation}
\label{eq:GMAQ}
\text{Geometric Mean of Absolute Quotients} = \left(\prod
\left|\frac{\hat{y}_{i}}{y_i}\right|\right)^{\frac {1}{N}}
\left|\frac{\hat{y}_{i}}{y_i}\right|\right)^{\frac {1}{N}}
\end{equation}
The geometric mean of the quotients would be 1 if the two variables
@ -325,7 +325,7 @@ of the terms:
\begin{equation}
\label{eq:5}
\exp \left[{\frac {1}{N}}\sum\log a_{i}\right]= \left(\prod
a_{i}\right)^{\frac {1}{N}}
a_{i}\right)^{\frac {1}{N}}
\end{equation}
So the \chem{MAE_{log}} is the logarithm of the actual geometric mean
@ -337,9 +337,9 @@ error $\alpha_i$ as:
\label{eq:relalpha}
\alpha_i =
\begin{cases}
\displaystyle \frac{ y_i-\hat{y_i}}{y_i} & \text{if~} \hspace{0.1cm} y_i,\hat{y}_i \neq 0 \\
1 & \text{if~} \hspace{0.1cm} y_i=0 \text{\hspace{0.1cm} and \hspace{0.1cm}} \hat{y}_i \neq 0 \\
0 & \text{if~} \hspace{0.1cm} y_i=0 \text{\hspace{0.1cm} and \hspace{0.1cm}} \hat{y}_i = 0 \\
\displaystyle \frac{ y_i-\hat{y_i}}{y_i} & \text{if~} \hspace{0.1cm} y_i,\hat{y}_i \neq 0 \\
1 & \text{if~} \hspace{0.1cm} y_i=0 \text{\hspace{0.1cm} and \hspace{0.1cm}} \hat{y}_i \neq 0 \\
0 & \text{if~} \hspace{0.1cm} y_i=0 \text{\hspace{0.1cm} and \hspace{0.1cm}} \hat{y}_i = 0 \\
\end{cases}
\end{equation}
@ -351,12 +351,12 @@ Absolute Percentage Error (\textbf{MAPE}) and Relative RMSE
\begin{equation}
\label{eq:MAPE}
\text{MAPE} = \frac{100\%}{N}\sum \left| \alpha_i \right|
\text{MAPE} = \frac{100\%}{N}\sum \left| \alpha_i \right|
\end{equation}
\begin{equation}
\label{eq:RRMSE}
\text{RRMSE} = \sqrt{\frac{1}{N}\sum \left( \alpha_i\right)^2}
\text{RRMSE} = \sqrt{\frac{1}{N}\sum \left( \alpha_i\right)^2}
\end{equation}
These relative measures account for discrepancies across all