fix: roll back to functioning state

This commit is contained in:
straile 2024-11-04 15:40:41 +01:00
parent c4da86ef98
commit 110d5c810b
5 changed files with 30 additions and 12 deletions

View File

@ -16,7 +16,13 @@ def initiate_model(model_file_path):
model = tf.keras.models.load_model(model_file_path) model = tf.keras.models.load_model(model_file_path)
return model return model
def prediction_step(model, model_reactive, x, cluster_labels, batch_size): def prediction_step(model, model_reactive, x, cluster_labels, batch_size)
# Catch input size mismatches
model_input_shape = model.input_shape[1:]
if model_input_shape != x.shape[1:]:
print(f"Input data size {x.shape[1:]} does not match model input size {model_input_shape}",
flush=True)
# Predict separately if clustering is used # Predict separately if clustering is used
if cluster_labels: if cluster_labels:
cluster_labels = np.asarray(cluster_labels, dtype=bool) cluster_labels = np.asarray(cluster_labels, dtype=bool)

View File

@ -344,7 +344,8 @@ std::vector<double> Eigen_predict_clustered(const EigenModel& model, const Eigen
if (num_features != model.weight_matrices[0].cols() || if (num_features != model.weight_matrices[0].cols() ||
num_features != model_reactive.weight_matrices[0].cols()) { num_features != model_reactive.weight_matrices[0].cols()) {
throw std::runtime_error("Input data size " + std::to_string(num_features) + throw std::runtime_error("Input data size " + std::to_string(num_features) +
" does not match model input layer sizes"); " does not match model input layer sizes" + std::to_string(model.weight_matrices[0].cols()) +
" / " + std::to_string(model_reactive.weight_matrices[0].cols()));
} }
// Convert input data to Eigen matrix // Convert input data to Eigen matrix

View File

@ -161,6 +161,15 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
mpi_buffer.begin() + this->prop_count * (wp_i + 1)); mpi_buffer.begin() + this->prop_count * (wp_i + 1));
} }
if (this->ai_surrogate_enabled) {
// Map valid predictions from the ai surrogate in the workpackage
for (int i = 0; i < s_curr_wp.size; i++) {
if (this->ai_surrogate_validity_vector[wp_start_index + i] == 1) {
s_curr_wp.mapping[i] = CHEM_AISURR;
}
}
}
// std::cout << this->comm_rank << ":" << counter++ << std::endl; // std::cout << this->comm_rank << ":" << counter++ << std::endl;
if (dht_enabled || interp_enabled) { if (dht_enabled || interp_enabled) {
dht->prepareKeys(s_curr_wp.input, dt); dht->prepareKeys(s_curr_wp.input, dt);
@ -178,15 +187,6 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
interp->tryInterpolation(s_curr_wp); interp->tryInterpolation(s_curr_wp);
} }
if (this->ai_surrogate_enabled) {
// Map valid predictions from the ai surrogate in the workpackage
for (int i = 0; i < s_curr_wp.size; i++) {
if (this->ai_surrogate_validity_vector[wp_start_index + i] == 1) {
s_curr_wp.mapping[i] = CHEM_AISURR;
}
}
}
phreeqc_time_start = MPI_Wtime(); phreeqc_time_start = MPI_Wtime();

View File

@ -457,9 +457,14 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters &params,
if (params.use_ai_surrogate && !params.disable_training) { if (params.use_ai_surrogate && !params.disable_training) {
// Add values for which the predictions were invalid // Add values for which the predictions were invalid
// to training data buffer // to training data buffer
MSG("AI: Add invalid predictions to training data buffer"); MSG("AI: Add to training data buffer");
std::vector<std::vector<double>> invalid_x = std::vector<std::vector<double>> invalid_x =
R.parseEval("get_invalid_values(predictors_scaled, validity_vector)"); R.parseEval("get_invalid_values(predictors_scaled, validity_vector)");
if (!params.train_only_invalid) {
// Use all values if not specified otherwise
R.parseEval("validity_vector[] <- 0");
}
R.parseEval("target_scaled <- preprocess(state_C[ai_surrogate_species])"); R.parseEval("target_scaled <- preprocess(state_C[ai_surrogate_species])");
std::vector<std::vector<double>> invalid_y = std::vector<std::vector<double>> invalid_y =
@ -675,6 +680,8 @@ int main(int argc, char *argv[]) {
/* Use dht species for model input and output */ /* Use dht species for model input and output */
R["ai_surrogate_species"] = R["ai_surrogate_species"] =
init_list.getChemistryInit().dht_species.getNames(); init_list.getChemistryInit().dht_species.getNames();
// TODO REMOVE!!
R.parseEval("ai_surrogate_species <- ai_surrogate_species[ai_surrogate_species != \"Charge\"]"); R.parseEval("ai_surrogate_species <- ai_surrogate_species[ai_surrogate_species != \"Charge\"]");
const std::string ai_surrogate_input_script = const std::string ai_surrogate_input_script =
init_list.getChemistryInit().ai_surrogate_input_script; init_list.getChemistryInit().ai_surrogate_input_script;
@ -709,6 +716,9 @@ R.parseEval("ai_surrogate_species <- ai_surrogate_species[ai_surrogate_species !
if (Rcpp::as<bool>(R.parseEval("exists(\"disable_training\")"))) { if (Rcpp::as<bool>(R.parseEval("exists(\"disable_training\")"))) {
run_params.disable_training = R["disable_training"]; run_params.disable_training = R["disable_training"];
} }
if (Rcpp::as<bool>(R.parseEval("exists(\"train_only_invalid\")"))) {
run_params.train_only_invalid = R["train_only_invalid"];
}
if (Rcpp::as<bool>(R.parseEval("exists(\"save_model_path\")"))) { if (Rcpp::as<bool>(R.parseEval("exists(\"save_model_path\")"))) {
run_params.save_model_path = Rcpp::as<std::string>(R["save_model_path"]); run_params.save_model_path = Rcpp::as<std::string>(R["save_model_path"]);
MSG("AI: Model will be saved as \"" + run_params.save_model_path + "\""); MSG("AI: Model will be saved as \"" + run_params.save_model_path + "\"");

View File

@ -74,6 +74,7 @@ struct RuntimeParameters {
bool disable_training; // Can be set in the R input script bool disable_training; // Can be set in the R input script
bool use_k_means_clustering; // Can be set in the R input script bool use_k_means_clustering; // Can be set in the R input script
bool use_Keras_predictions; // Can be set in the R input script bool use_Keras_predictions; // Can be set in the R input script
bool train_only_invalid; // Can be set in the R input script
int batch_size; // Can be set in the R input script int batch_size; // Can be set in the R input script
int training_epochs; // Can be set in the R input script int training_epochs; // Can be set in the R input script
int training_data_size; // Can be set in the R input script int training_data_size; // Can be set in the R input script