diff --git a/bench/barite/README.org b/bench/barite/README.org index bce368b0f..f417d1b32 100644 --- a/bench/barite/README.org +++ b/bench/barite/README.org @@ -18,21 +18,21 @@ mpirun -np 4 ./poet barite.R barite_results * Chemical system -The benchmark accounts for reaction kinetics for celestite dissolution -and barite precipitation. The system is initially at equilibrium with -celestite; following diffusion of $BaCl_2$ celestite dissolution -occurs Dissolution of celestite and the successive release of -$SO_4^{2-}$ into solution causes barite to precipitate: +The benchmark depicts a porous system where pure water is initially at +equilibrium with the *celestite* (strontium sulfate; brute formula: +SrSO_4). A solution containing only dissolved Ba^{2+} and Cl^- +diffuses into the system causing celestite dissolution. The resulting +increased concentration of dissolved sulfate SO_4^{2-} induces +precipitation of *barite* (barium sulfate; brute formula: +BaSO_4^{2-}). The overall reaction can be written: -#+begin_src tex -$ \mathrm{Ba}^{2+}_{\mathrm{(aq)}} + \mathrm{SrSO}_{4, \mathrm{(s)}} \rightarrow \mathrm{BaSO}_{4,\mathrm{(s)}} + \mathrm{Sr}^{2+}_{\mathrm{(s)}} $ -#+end_src +Ba^{2+} + SrSO_4 \rightarrow BaSO_4 + Sr^{2+} -Reaction rates are calculated using a general kinetics rate law for -both dissolution and precipitation based on transition state -theory: +Both celestite dissolution and barite precipitation are calculated +using a general kinetics rate law based on transition state theory: -$ \frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m} (1-\mathrm{SR}_{m})$ +\frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m} +(1-\mathrm{SR}_{m}) where $\mathrm{d}m\,(\mathrm{mol/s})$ is the rate of a mineral phase