diff --git a/bench/surfex/SMILE_2021_11_01_TH.dat b/bench/surfex/SMILE_2021_11_01_TH.dat new file mode 100644 index 000000000..f9f3e8475 --- /dev/null +++ b/bench/surfex/SMILE_2021_11_01_TH.dat @@ -0,0 +1,3718 @@ +# SMILE Thermodynamic Database (EDH version) +# +# Project: SMILE Version 01-November-2021 +################################################################################################################################## +# +# This thermodynamic database has been developed by Helmholtz-Zentrum Dresden-Rossendorf and GRS Braunschweig for the BMWi founded projects: +# +# - SMILE: "Smart-Kd in der Langzeitsicherheitsanalyse - Anwendungen" (Contract Nos. 02E11668B) +# - WEIMAR: "Further Development of the Smart Kd-Concept for Long-Term Safety Assessment" (Contract Nos. 02 E 10518 + 02 E 11072A) +# - ESTRAL: "Realistic Integrataion of Sorption Processes in Transport Programs for long-term Safety Analysis" (Contract Nos. 02 E 10528 + 02 E 11072B) +# +# For the geochemical calculations within this projects two separate thermodynamic databases were created (dependent on the salinity of the groundwater solutions): +# +# (I) The EDH version for groundwater solutions with ionic strength lower than 0.5 mol L-1. This database +# based on the actual PSI/Nagra Chemical Thermodynamic Database Version 12/07 (PSI/Nagra TDB 12/07) formatted for +# PHREEQC /Thoenen et al. 2014/ considering the Davies approach /Davies, 1962/ to represent ion-ion interactions +# based on the Extended Debye-Hückel Theory (EDH) with updated values from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +# +# (II) The Pitzer version (PIT.dat) for high saline solutions using the Pitzer formalism. +# +# For the projects the site-specific minerals and matrix elements of the sedimentary rock above the repository site Gorleben +# and actinides and fission products relevant in the context of a nuclear waste repository are important and considered in the database. +# So far only parameters for T=298.15 K are provided. Relevant thermodynamic data which are not included or not actual in the PSI/Nagra TDB 12/07 +# were taken from either other databases, original literature or own batch experiments and were clearly commented in the database +# and listed here (not relevent date or not recommended data wer commented out, e.g. Graphite, Molybdenum, Niob, Palladium, Tin). +# +# In general the data can be divided into three groups: +# +# (1) Thermodynamic data for aqueous element species +# - Fe+2/Fe+3 were updated from NEA TDB Vol. 13a [Lemire et al., 2013] +# - Mg+2 (MgPO4-, MgHPO4, MgCl+ & MgH2PO4) complexes were added from the LLNL database +# - MgOH+ was updated from [Brown & Ekberg, 2016] +# - Mn+3, MnO4-2, MnO4- +# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U) +# +# (2) Solubility data for site-specific Minerals: +# - Fe+2/Fe+3-solid phases were updated from NEA TDB Vol. 13a [Lemire et al., 2013] +# - Albite, Anorthite, Chlorite, Illite and Montmorillonite were included from the ANDRA Database +# ThermoChimie [Giffaut et al., 2014]. Thereby, for Albite, only Albite-low was used, being stable below +# 700°C with an ordered Si-Al arrangement. +# - K-Feldspar (Orthoclase) were calculated from logK(T)-functions published in Stefánsson and Arnórsson (2000) for Microcline. +# - Muscovite were taken from Richter et al. (2016). +# - generic Gibbsite phase 'Gibbsite(gen)' from own fit to experimental Gorleben data +# - amorphous Gibbsite phase from Lindsay (1979) +# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U) +# +# (3) Thermodynamic sorption data for representative sorbates (pair of element and minerals): +# - Surface complexation data (SCM), e.g. protolysis constants (pK-values), stability constants (log K-values) +# and reaction equations were taken from the thermodynamic sorption database RES³T (Rossendorf Expert System +# for Surface and Sorption Thermodynamics; [Brendler et al. 2003], full bibliographic references are +# available at http://www.hzdr.de/res3t). +# - Missing SCM data are derived from batch experiments by GRS & HZDR. +# - primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/scarce SCM data sets +# additionally other SCM models are used +# - generic sites (»XOH) are prefered (with no differentiation between strong and weak sites) +# - Following Kulik (2006, 2002) the protolysis and stability constants were normalised to a reference surface +# site density of 2.31 nm-2 as recommended by Davis and Kent (1990). +# - All SCM-values were corrected to infinite dilution (ionic strength 0) using the Davies equation (Davies, 1962). +# - The solid surface binding sites are essential components and their abbreviations correspond to the international +# code after Whitney and Evans (2010), e. g. for quartz: =Qz-OH2+. +# +# +# References: +# +# Altmaier, M., Brendler, V, Bosbach, D., Kienzler, B., Marquardt, C. M., Neck, V., Richter, A., 2004. Sichtung, Zusammenstellung +# und Bewertung von Daten zur geochemischen Modellierung. Forschungszentrum Karlsruhe, Report FZK - INE 002/04, (2004), 520 pp. +# +# Brendler, V., Vahle, A., Arnold, T., Bernhard, G., Fanghänel, T., 2003. RES³T-Rossendorf expert system for surface and sorption +# thermodynamics. J. Cont. Hydrol., 61, 281-291. +# +# Brown, P.L., Ekberg, C., 2016, Hydrolysis of Metal Ions, Vol. 1, John Wiley & Sons, 952pp. +# +# Cornell, R.M., Schwertmann, U., 2003. The iron oxides - structure, properties, reactions, occurrences and uses. +# 2nd edition, Wiley-VCH, Weinheim, 185-220. +# +# Davies, C. W., 1962. Ion Association. Butterworths, Washington. +# +# Davis, J.A., Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry, in: Hochella, M.F., White, A.F. (Eds.), +# Mineral-Water Interface Geochemistry. Reviews in Mineralogy, Vol. 23. MSA, Washington, D.C., pp. 177-258. +# +# Giffaut, E., Grivé, M., Blanc, P., Viellard, P., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L., (2014). +# Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225-236. +# +# Guillaumont, R., Fanghaenel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H. (2003). +# Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. +# OECD Nuclear Energy Agency Data Bank, Eds., North Holland Elsevier Science Publishers B.V., Amsterdam, The Netherlands. +# +# Grenthe et al. (2020). Vol. 14. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, +# OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France. +# +# Kulik, D.A., 2002. Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes +# of radionuclides. Radiochim. Acta 90, 815-832. +# +# Kulik, D.A., 2006. Standard molar Gibbs energies and activity coefficients of surface complexes on mineral-water interfaces +# (thermodynamic insights), in: Lützenkirchen, J. (Eds.), Surface complexation modelling. Academic Press, Amsterdam, pp. 171-250. +# +# Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O. (2013). +# Vol. 13a. Chemical Thermodynamics of Iron, Part 1. OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, +# Issy-les-Moulineaux, France. +# +# Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley & Sons, New York. +# +# Richter, C., 2015. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica. +# Doctoral thesis, TU Dresden (available at: https://www.hzdr.de/db/Cms?pNid=2850). +# +# Richter, C., Müller, K., Drobot, B., Steudtner, R., Großmann, K., Stockmann, M., Brendler, V., 2016. Macroscopic and spectroscopic +# characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+. +# Geochim. Cosmochim. Acta, 189, 143-157. +# +# Stefánsson, A., Arnórsson, S., 2000. Feldspar saturation state in natural waters. Geochim. Cosmochim. Acta, 64, 2567-84. +# +# Thoenen T., Hummel W., Berner U., Curti E., 2014. The PSI/Nagra Chemical Thermodynamic Database 12/07, PSI Report 14-04. +# available for download at http://www.psi.ch/les/database +# +# Whitney, D. L., Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. Amer. Mineral. 95, 185-187. +# +# +# +######################################################################################################################## +# Original PSI/NAGRA TDB 12/07 +# +# PSI/Nagra Thermochemical Database Version 12/07 LAST MOD. 11-JUN-2015 +# PSINA_110615_DAV_s.dat +# +# The documentation for this database is available on http://www.psi.ch/les/database. +# +# Change history ----------------------------------------------------------------------------------- +# PSINA_120110_DAV_s.dat +# 12-JAN-2010 : Added Becquerelite and Compreignacite to PSINA_060110_DAV_s.dat +# PSINA_050710_DAV_s.dat +# 05-JULY-2010: Added CmSCN+2 to PSINA_120110_DAV_s.dat +# 05-JULY-2010: Added NpO2SCN to PSINA_120110_DAV_s.dat +# PSINA_050710_rev_DAV_s.dat +# 14-FEB-2011 : Sn: Changed incorrect formula (for conversion from mass to mole units) and +# incorrect elemental gfw in PSINA_050710_DAV.dat and PSINA_050710_DAV_s.dat +# 14-FEB-2011 : Added NpSiO(OH)3+2 to PSINA_050710_DAV_s.dat +# 14-FEB-2011 : Added USiO4(s) to PSINA_050710_DAV_s.dat +# 20-FEB-2011 : corrected log_k for UO2(am,hyd) (from -1.5 to 1.5) in PSINA_050710_DAV.dat +# and PSINA_050710_DAV_s.dat +# PSINA_290714_DAV_s.dat +# 29-JUL-2014 : Added I(+5) to the SOLUTION_MASTER_SPECIES +# corrected log_k for I2 (wrong sign) +# corrected log_k for IO3- (from -122.0400 to -101.0900) +# changed some comments +# PSINA_110615_DAV_s.dat +# 11-JUN-2015: Changed references to PSI reports and added comment concerning documentation, +# deleted warning concerning use of database at temperatures other than 25ûC +#--------------------------------------------------------------------------------------------------- +# +# ACTIVITY COEFFICIENTS: +# +# This version of the database uses the Davies equation for the calculation of activity coefficients. +# -gamma 0.00 0.00 for neutral species ensures that the activity coefficients +# are equal to one. +# +# TEMPERATURE: +# +# This version of the database only contains logK-data for 25ûC +# +# DOCUMENTATION: +# +# NAGRA NTB 91-17: Pearson F.J., Berner U. (1992): Nagra Thermochemical Data Base I. Core Data, +# Nagra NTB 91-17. +# available for download at http://www.nagra.ch/de/downloadcenter.htm +# NAGRA NTB 91-18: Pearson F.J., Berner U., Hummel W. (1992): Nagra Thermochemical Data Base +# II. Supplemental Data, Nagra NTB 91-18. +# available for download at http://www.nagra.ch/de/downloadcenter.htm +# NAGRA NTB 02-16: Hummel W., Berner U., Curti E., Pearson F.J., Thoenen T. (2002): Nagra/PSI +# Chemical Thermodynamic Database 01/01, Nagra NTB 02-16. +# available for download at http://www.nagra.ch/de/downloadcenter.htm +# PSI Report 14-04: Thoenen T., Hummel W., Berner U., Curti E. (2014): The PSI/Nagra Chemical +# Thermodynamic Database 12/07, PSI Report 14-04. +# available for download at http://www.psi.ch/les/database +# +#--------------------------------------------------------------------------------------------------- +# +SOLUTION_MASTER_SPECIES +# +# ATOMIC WEIGHTS +# Naturally occurring elements: IUPAC 1993 Table 1 rounded to 0.001 +# Radioelements: Mass number of longest-lived isotope +# +# +# +# elemen species alk gfw_formula element_gfw atomic Disposition Source of data +# number PMATCHC +# +H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17 +H(0) H2 0.0 H # Ma(S) NAGRA NTB 91-17 +H(1) H+ -1.0 H # Ma(P) NAGRA NTB 91-17 +E e- 0.0 0.0 0.0 # Ma(P) NAGRA NTB 91-17 +O H2O 0.0 O 15.999 # 8 Ele NAGRA NTB 91-17 +O(0) O2 0.0 O # Ma(S) NAGRA NTB 91-17 +O(-2) H2O 0.0 O # Ma(P) NAGRA NTB 91-17 +Al Al+3 0.0 Al 26.982 # 13 Ele, Ma(P) NAGRA NTB 02-16 +Am Am+3 0.0 Am 243 # 95 Ele, Ma(P) PSI Report 14-04 +Am(3) Am+3 0.0 Am # PSI Report 14-04 +Am(5) AmO2+ 0.0 Am # PSI Report 14-04 +As HAsO4-2 0.0 As 74.922 # 33 Ele NAGRA NTB 91-17 +As(3) As(OH)3 0.0 As # Ma(S) NAGRA NTB 91-17 +As(5) HAsO4-2 1.0 As # Ma(P) NAGRA NTB 91-17 +B B(OH)3 0.0 B 10.812 # 5 Ma(P) NAGRA NTB 91-18 +Ba Ba+2 0.0 Ba 137.328 # 56 Ma(P) NAGRA NTB 91-17 +Br Br- 0.0 Br 79.904 # 35 Ma(P) NAGRA NTB 91-17 +C HCO3- 1.0 C 12.011 # 6 Ele NAGRA NTB 91-17 +C(+4) HCO3- 1.0 HCO3- # Ma(P) NAGRA NTB 91-17 +C(-4) CH4 0.0 CH4 # Ma(S) NAGRA NTB 91-17 +Alkalinity HCO3- 1.0 HCO3- 61.016 # NAGRA NTB 91-17 +Ca Ca+2 0.0 Ca 40.078 # 20 Ma(P) NAGRA NTB 91-17 +Cl Cl- 0.0 Cl 35.453 # 17 Ma(P) NAGRA NTB 91-17 +Cm Cm+3 0.0 Cm 247 # PSI Report 14-04 +Cs Cs+ 0.0 Cs 132.905 # 55 Ma(P) Master Species only +Eu Eu+3 0.0 Eu 151.966 # 63 Ele Replaced with Data from ANDRA TDB ThermoChimie +Eu(2) Eu+2 0.0 Eu # Ma(S) Replaced with Data from ANDRA TDB ThermoChimie +Eu(3) Eu+3 0.0 Eu # Ma(P) Replaced with Data from ANDRA TDB ThermoChimie +F F- 0.0 F 18.998 # 9 Ma(P) NAGRA NTB 91-17 +Fe Fe+2 0.0 Fe 55.845 # 26 Ele NAGRA NTB 91-18 +Fe(2) Fe+2 0.0 Fe # Ma(P) NAGRA NTB 91-18 +Fe(3) Fe+3 0.0 Fe # Ma(S) NAGRA NTB 91-18 +I I- 0.0 I 126.904 # 53 Ele NAGRA NTB 91-18 +I(-1) I- 0.0 I # Ma(P) NAGRA NTB 91-18 +I(0) I2 0.0 I # Ma(S) NAGRA NTB 91-18 +I(+5) IO3- 0.0 I # PSI Report 14-04 +K K+ 0.0 K 39.098 # 19 Ma(P) NAGRA NTB 91-17 +Li Li+ 0.0 Li 6.941 # 6 Ma(P) NAGRA NTB 91-17 +Mg Mg+2 0.0 Mg 24.305 # 12 Ma(P) NAGRA NTB 91-17 & LLNL +Mn Mn+2 0.0 Mn 54.938 # 25 Ma(P) NAGRA NTB 91-18 +Mn(2) Mn+2 0.0 Mn # +#Mn(3) Mn+3 0.0 Mn # +#Mn(4) Mn+4 0.0 Mn # +#Mn(6) MnO4-2 0.0 Mn # +#Mn(7) MnO4- 0.0 Mn # +Mo MoO4-2 0.0 Mo 95.941 # 42 Ma(P) NAGRA NTB 91-18 +N NO3- 0.0 N 14.007 # 7 Ele NAGRA NTB 91-17 +N(-5) HCN 0.0 HCN # PSI Report 14-04 +N(-3) NH4+ 0.0 NH4 # Ma(S) NAGRA NTB 91-17 +N(-1) SCN- 0.0 SCN- # PSI Report 14-04 +N(0) N2 0.0 N2 # Ma(S) NAGRA NTB 91-17 +N(5) NO3- 0.0 NO3 # Ma(P) NAGRA NTB 91-17 +Na Na+ 0.0 Na 22.99 # 11 Ma(P) NAGRA NTB 91-17 +Nb NbO3- 0.0 Nb 92.906 # 41 Ma(P) NAGRA NTB 91-18 +Nd Nd+3 0.0 Nd 144.24 # 60 Included from LLNL database +Nd(3) Nd+3 0.0 Nd Included from LLNL database +Ni Ni+2 0.0 Ni 58.693 # 28 Ele, Ma(P) PSI Report 14-04 +Np NpO2+2 0.0 Np 237 # 93 Ele PSI Report 14-04 +Np(3) Np+3 0.0 Np # Ma(S) PSI Report 14-04 +Np(4) Np+4 0.0 Np # Ma(S) PSI Report 14-04 +Np(5) NpO2+ 0.0 Np # Ma(S) PSI Report 14-04 +Np(6) NpO2+2 0.0 Np # Ma(P) PSI Report 14-04 +P HPO4-2 1.0 P 30.974 # 15 Ma(P) NAGRA NTB 91-17 +Pd Pd+2 0.0 Pd 106.421 # 46 Ele, Ma(P) NAGRA NTB 02-16 +Pu PuO2+2 0.0 Pu 242 # 94 Ele PSI Report 14-04 +Pu(3) Pu+3 0.0 Pu # Ma(S) PSI Report 14-04 +Pu(4) Pu+4 0.0 Pu # Ma(S) PSI Report 14-04 +Pu(5) PuO2+ 0.0 Pu # Ma(S) PSI Report 14-04 +Pu(6) PuO2+2 0.0 Pu # Ma(P) PSI Report 14-04 +Ra Ra+2 0.0 Ra 226 # 88 Ele, Ma(P) NAGRA NTB 02-16 +S SO4-2 0.0 S 32.067 # 16 Ele NAGRA NTB 91-17 +S(-2) HS- 1.0 HS # Ma(S) NAGRA NTB 02-16 +S(2) S2O3-2 0.0 S2O3 # Ma(S) NAGRA NTB 91-18 +S(4) SO3-2 0.0 SO3 # Ma(S) NAGRA NTB 91-18 +S(6) SO4-2 0.0 SO4 # Ma(P) NAGRA NTB 91-18 +Se SeO3-2 0.0 Se 78.963 # 34 Ele PSI Report 14-04 +Se(4) SeO3-2 0.0 Se # Ma(P) PSI Report 14-04 +Se(-2) H2Se 0.0 Se # Ma(S) PSI Report 14-04 +Se(6) HSeO4- 0.0 Se # Ma(S) PSI Report 14-04 +Si Si(OH)4 0.0 Si 28.086 # 14 Ele, Ma(P) PSI Report 14-04 +Tn Tn+2 0.0 Tn 118.711 # 50 Ele, Ma(P) NAGRA NTB 02-16 +Sn Sn(OH)4 0.0 Sn 118.711 # Ma(P) NAGRA NTB 02-16 +Sr Sr+2 0.0 Sr 87.621 # 38 Ma(P) NAGRA NTB 91-17 +Tc TcO4- 0.0 Tc 98 # 43 Ele PSI Report 14-04 +Tc(7) TcO4- 0.0 TcO4 # Ma(P) PSI Report 14-04 +Tc(4) TcO(OH)2 -1.0 TcO(OH)2 # Ma(S) PSI Report 14-04 +Th Th+4 0.0 Th 232.038 # 90 Ele, Ma(P) PSI Report 14-04 +U UO2+2 0.0 U 238.029 # 92 Ele PSI Report 14-04 +U(4) U+4 0.0 U # Ma(S) PSI Report 14-04 +U(5) UO2+ 0.0 U # Ma(S) PSI Report 14-04 +U(6) UO2+2 0.0 UO2 # Ma(P) PSI Report 14-04 +Zr Zr+4 0.0 Zr 91.224 # 40 Ele, Ma(P) PSI Report 14-04 + + +SOLUTION_SPECIES + +# PMATCH MASTER SPECIES +# -Vm values for relevant elements/species are implemented from phreeqc.dat: C, Ca, Cl, K, Mg, Na, S + +H+ = H+ + log_k 0.0 + -dw 9.31e-9 # phreeqc.dat, The dw parameters are defined in ref. 3. + +e- = e- + log_k 0.0 + -gamma 0.00 0.00 + +H2O = H2O + log_k 0.0 + -gamma 0.00 0.00 + +Al+3 = Al+3 + log_k 0.0 + +Am+3 = Am+3 + log_k 0.0 + +HAsO4-2 = HAsO4-2 + log_k 0.0 + +B(OH)3 = B(OH)3 + log_k 0.0 + -gamma 0.00 0.00 + +Ba+2 = Ba+2 + log_k 0.0 + +Br- = Br- + log_k 0.0 + +HCO3- = HCO3- + log_k 0.0 + -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 + # from phreeqc.dat: CO3-2 + H+ = HCO3- + -dw 1.18e-9 # phreeqc.dat + +Ca+2 = Ca+2 + log_k 0.0 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -dw 7.93e-10 # phreeqc.dat + +Cl- = Cl- + log_k 0.0 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -dw 2.03e-9 # phreeqc.dat + +Cm+3 = Cm+3 + log_k 0.0 + +Cs+ = Cs+ + log_k 0.0 + +Eu+3 = Eu+3 + log_k 0.0 + +F- = F- + log_k 0.0 + +Fe+2 = Fe+2 + log_k 0.0 + -dw 7.19e-10 # phreeqc.dat + +I- = I- + log_k 0.0 + +K+ = K+ + log_k 0.0 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 + -dw 1.96e-9 # phreeqc.dat + +Li+ = Li+ + log_k 0.0 + +Mg+2 = Mg+2 + log_k 0.0 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -dw 7.05e-10 # phreeqc.dat + +Mn+2 = Mn+2 + log_k 0.0 + +MoO4-2 = MoO4-2 + log_k 0.0 + +NO3- = NO3- + log_k 0.0 + +Na+ = Na+ + log_k 0.0 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -dw 1.33e-9 # phreeqc.dat + +NbO3- = NbO3- + log_k 0.0 + +Nd+3 = Nd+3 + log_k 0.0 + +Ni+2 = Ni+2 + log_k 0.0 + +NpO2+2 = NpO2+2 + log_k 0.0 + +HPO4-2 = HPO4-2 + log_k 0.0 + -dw 6.9e-10 # phreeqc.dat + +Pd+2 = Pd+2 + log_k 0.0 + +PuO2+2 = PuO2+2 + log_k 0.0 + +Ra+2 = Ra+2 + log_k 0.0 + +SO4-2 = SO4-2 + log_k 0.0 + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 + -dw 1.07e-9 # phreeqc.dat + +SeO3-2 = SeO3-2 + log_k 0.0 + +Si(OH)4 = Si(OH)4 + log_k 0.0 + -gamma 0.00 0.00 + +Tn+2 = Tn+2 + log_k 0.0 + +Sn(OH)4 = Sn(OH)4 + log_k 0.0 + -gamma 0.00 0.00 + +Sr+2 = Sr+2 + log_k 0.0 + -dw 7.94e-10 # phreeqc.dat + +TcO4- = TcO4- + log_k 0.0 + +Th+4 = Th+4 + log_k 0.0 + +UO2+2 = UO2+2 + log_k 0.0 + -dw 7.659e-10 # Kerisit & Liu (2010) + +Zr+4 = Zr+4 + log_k 0.0 + + +# PMATCH SECONDARY MASTER SPECIES + +# Se Redox +############## + + +1.000SeO3-2 +1.000H2O -1.000H+ -2.000e- = HSeO4- + log_k -26.3000 + + +1.000SeO3-2 +8.000H+ +6.000e- -3.000H2O = H2Se + log_k 57.4000 + -gamma 0.00 0.00 + + +1.000HCN +1.000SeO3-2 +5.000H+ +4.000e- -3.000H2O = SeCN- + log_k 57.3000 + +# Tc Redox +############## + + +1.000TcO4- +4.000H+ +3.000e- -1.000H2O = TcO(OH)2 + log_k 29.4000 + -gamma 0.00 0.00 + +# Eu Redox +############## + + +1.000Eu+3 +1.000e- = Eu+2 + log_k -5.9200 + +# U Redox +############## + + +1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4 + log_k 9.0380 + -dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010) + + +1.000UO2+2 +1.000e- = UO2+ + log_k 1.4840 + -dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010) + +# Np Redox +############## + + +1.000NpO2+2 +4.000H+ +3.000e- -2.000H2O = Np+3 + log_k 33.5000 + + +1.000NpO2+2 +4.000H+ +2.000e- -2.000H2O = Np+4 + log_k 29.8000 + + +1.000NpO2+2 +1.000e- = NpO2+ + log_k 19.5900 + +# Pu Redox +############## + + +1.000PuO2+2 +4.000H+ +3.000e- -2.000H2O = Pu+3 + log_k 50.9700 + + +1.000PuO2+2 +4.000H+ +2.000e- -2.000H2O = Pu+4 + log_k 33.2800 + + +1.000PuO2+2 +1.000e- = PuO2+ + log_k 15.8200 + +# Am Redox +############## + + +1.000Am+3 +2.000H2O -4.000H+ -2.000e- = AmO2+ + log_k -59.7000 + +# Rest Redox +############## + + +2.000H+ +2.000e- = H2 + log_k -3.1054 + -gamma 0.00 0.00 + -dw 5.13e-9 # phreeqc.dat + + +2.000H2O -4.000H+ -4.000e- = O2 + log_k -85.9841 + -gamma 0.00 0.00 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 # phreeqc.dat + + +1.000HAsO4-2 +4.000H+ +2.000e- -1.000H2O = As(OH)3 + log_k 28.4412 + -gamma 0.00 0.00 + + +1.000HCO3- +9.000H+ +8.000e- -3.000H2O = CH4 + log_k 27.8486 + -gamma 0.00 0.00 + -dw 1.85e-9 # phreeqc.dat + + +2.000NO3- +12.000H+ +10.000e- -6.000H2O = N2 + log_k 207.2627 + -gamma 0.00 0.00 + + +1.000NO3- +10.000H+ +8.000e- -3.000H2O = NH4+ + log_k 119.1344 + + +2.000SO4-2 +10.000H+ +8.000e- -5.000H2O = S2O3-2 + log_k 38.0140 +# bug: log_k entered manually + + +1.000SO4-2 +2.000H+ +2.000e- -1.000H2O = SO3-2 + log_k -3.3970 +# bug: log_k entered manually + + +1.000SO4-2 +9.000H+ +8.000e- -4.000H2O = HS- + log_k 33.6900 + -dw 1.73e-9 # phreeqc.dat + +# +1.000Fe+2 -1.000e- = Fe+3 +# log_k -13.0200 + + +2.000I- -2.000e- = I2 + log_k -20.9500 + -gamma 0.00 0.00 + + +0.500I2 +3.000H2O -6.000H+ -5.000e- = IO3- + log_k -101.0900 + ++13.000H+ +1.000CO3-2 +1.000NO3- +10.000e- -6.000H2O = HCN + log_k 117.3360 + -gamma 0.00 0.00 + + +1.000HCN +1.000HS- -2.000e- -2.000H+ = SCN- + log_k 5.9410 + +# Convenience +############# + + +1.000H2O -1.000H+ = OH- + log_k -13.9995 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + # from phreec.dat: H2O = OH- + H+ + -dw 5.27e-9 # phreeqc.dat + + +1.000H+ -1.000H2O +1.000HCO3- = CO2 + log_k 6.3519 + # -gamma 0.00 0.00 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + # from phreeqc.dat: CO3-2 + 2 H+ = CO2 + H2O + -dw 1.92e-9 # phreeqc.dat + + -1.000H+ +1.000HCO3- = CO3-2 + log_k -10.3289 + -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 + # from phreeqc.dat: CO3-2 = CO3-2 + -dw 8.119e-10 # Kerisit & Liu (2010) + + +1.000HPO4-2 +2.000H+ = H3PO4 + log_k 9.3520 + -gamma 0.00 0.00 + + +1.000HPO4-2 +1.000H+ = H2PO4- + log_k 7.2120 + -dw 8.46e-10 # phreeqc.dat + + +1.000HPO4-2 -1.000H+ = PO4-3 + log_k -12.3500 + -dw 6.12e-10 # phreeqc.dat + + +1.000Si(OH)4 -1.000H+ = SiO(OH)3- + log_k -9.8100 + + +1.000Si(OH)4 -2.000H+ = SiO2(OH)2-2 + log_k -23.1400 + + +1.000Al+3 +4.000H2O -4.000H+ = Al(OH)4- + log_k -22.8791 + + +1.000NH4+ -1.000H+ = NH3 + log_k -9.2370 + -gamma 0.00 0.00 + + +1.000HCN -1.000H+ = CN- + log_k -9.2100 + + +1.000HAsO4-2 -1.000H+ = AsO4-3 + log_k -11.6030 + + +1.000HAsO4-2 +2.000H+ = H3AsO4 + log_k 9.0270 + -gamma 0.00 0.00 +# bug: log_k entered manually + +# Se(VI) RECOMMENDED DATA Convenience +######################################## + + +1.000HSeO4- -1.000H+ = SeO4-2 + log_k -1.7500 + +# Se(IV) RECOMMENDED DATA Convenience +######################################## + + +1.000SeO3-2 +1.000H+ = HSeO3- + log_k 8.3600 + +# Se(-II) RECOMMENDED DATA Convenience +######################################## + + +1.000H2Se -1.000H+ = HSe- + log_k -3.8500 + + +1.000HSe- -1.000H+ = Se-2 + log_k -14.9100 + +# PMATCH PRODUCT SPECIES + +# General RECOMMENDED DATA +############################ + + +1.000I- +1.000I2 = I3- + log_k 2.8700 + + +1.000H+ +1.000IO3- = HIO3 + log_k 0.7880 + -gamma 0.00 0.00 + + +1.000Al+3 +1.000F- = AlF+2 + log_k 7.0800 + + +1.000Al+3 +2.000F- = AlF2+ + log_k 12.7300 + + +1.000Al+3 +3.000F- = AlF3 + log_k 16.7800 + -gamma 0.00 0.00 + + +1.000Al+3 +4.000F- = AlF4- + log_k 19.2900 + + +1.000Al+3 +5.000F- = AlF5-2 + log_k 20.3000 + + +1.000Al+3 +6.000F- = AlF6-3 + log_k 20.3000 + + +1.000Al+3 +1.000H2O -1.000H+ = AlOH+2 + log_k -4.9572 + + +1.000Al+3 +2.000H2O -2.000H+ = Al(OH)2+ + log_k -10.5940 + + +1.000Al+3 +3.000H2O -3.000H+ = Al(OH)3 + log_k -16.4324 + -gamma 0.00 0.00 + + +1.000Al+3 +1.000SO4-2 = AlSO4+ + log_k 3.9000 + + +1.000Al+3 +2.000SO4-2 = Al(SO4)2- + log_k 5.9000 + + +1.000As(OH)3 +1.000H2O -1.000H+ = As(OH)4- + log_k -9.2320 +# bug: log_k entered manually + + +1.000B(OH)3 +1.000H2O -1.000H+ = B(OH)4- + log_k -9.2352 + + +1.000Ba+2 -1.000H+ +1.000HCO3- = BaCO3 + log_k -7.6157 + -gamma 0.00 0.00 + + +1.000Ba+2 +1.000HCO3- = BaHCO3+ + log_k 0.9816 + + +1.000Ba+2 +1.000H2O -1.000H+ = BaOH+ + log_k -13.4700 + + +1.000Ba+2 +1.000SO4-2 = BaSO4 + log_k 2.7000 + -gamma 0.00 0.00 + + +1.000Ca+2 -1.000H+ +1.000HCO3- = CaCO3 + log_k -7.1047 + # -gamma 0.00 0.00 + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + # from phreeqc.dat: Ca+2 + CO3-2 = CaCO3 + -dw 4.46e-10 # phreeqc.dat, complexes: calc'd with the Pikal formula + + +1.000Ca+2 +1.000F- = CaF+ + log_k 0.9400 + + +1.000Ca+2 +1.000HCO3- = CaHCO3+ + log_k 1.1057 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + # from phreeqc.dat: Ca+2 + CO3-2 + H+ = CaHCO3+ + -dw 5.06e-10 # phreeqc.dat + + +1.000Ca+2 +1.000H2O -1.000H+ = CaOH+ + log_k -12.7800 + + +1.000Ca+2 +1.000SO4-2 = CaSO4 + log_k 2.3000 + # -gamma 0.00 0.00 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -dw 4.71e-10 # phreeqc.dat + +############################# +# Fe data were updated with data from NEA TDB Vol. 13a [Lemire et al., 2013] +# and commented out here (recommended data are implemented below) +############################# +# +# +2.000H2O -2.000H+ +1.000Fe+3 = Fe(OH)2+ +# log_k -5.6700 +# +# +3.000H2O -3.000H+ +1.000Fe+3 = Fe(OH)3 +# log_k -12.5600 +# -gamma 0.00 0.00 +# +# +4.000H2O -4.000H+ +1.000Fe+3 = Fe(OH)4- +# log_k -21.6000 +# +# +2.000SO4-2 +1.000Fe+3 = Fe(SO4)2- +# log_k 5.3800 +# +# +2.000H2O -2.000H+ +2.000Fe+3 = Fe2(OH)2+4 +# log_k -2.9500 +# +# +4.000H2O -4.000H+ +3.000Fe+3 = Fe3(OH)4+5 +# log_k -6.3000 +# +# +1.000Fe+2 +1.000Cl- = FeCl+ +# log_k 0.1400 +# +# +1.000Cl- +1.000Fe+3 = FeCl+2 +# log_k 1.4800 +# +# +2.000Cl- +1.000Fe+3 = FeCl2+ +# log_k 2.1300 +# +# +3.000Cl- +1.000Fe+3 = FeCl3 +# log_k 1.1300 +# -gamma 0.00 0.00 +# +# +1.000Fe+2 +1.000HCO3- -1.000H+ = FeCO3 +# log_k -5.9490 +# -gamma 0.00 0.00 +# +# +1.000Fe+2 +1.000F- = FeF+ +# log_k 1.0000 +# +# +1.000F- +1.000Fe+3 = FeF+2 +# log_k 6.2000 +# +# +2.000F- +1.000Fe+3 = FeF2+ +# log_k 10.8000 +# +# +3.000F- +1.000Fe+3 = FeF3 +# log_k 14.0000 +# -gamma 0.00 0.00 +# +# +1.000Fe+2 +1.000HCO3- = FeHCO3+ +# log_k 2.0000 +# +# +1.000Fe+2 +1.000H+ +1.000SO4-2 = FeHSO4+ +# log_k 3.0680 +# +# +1.000H+ +1.000SO4-2 +1.000Fe+3 = FeHSO4+2 +# log_k 4.4680 +# +# +1.000Fe+2 +1.000H2O -1.000H+ = FeOH+ +# log_k -9.5000 +# +# +1.000H2O -1.000H+ +1.000Fe+3 = FeOH+2 +# log_k -2.1900 +# +# +1.000SO4-2 +1.000Fe+3 = FeSO4+ +# log_k 4.0400 +# +# +1.000Fe+2 +1.000SO4-2 = FeSO4 +# log_k 2.2500 +# -gamma 0.00 0.00 + + +1.000HAsO4-2 +1.000H+ = H2AsO4- + log_k 6.7640 +# bug: log_k entered manually + + +1.000H+ +1.000F- = HF + log_k 3.1760 + -gamma 0.00 0.00 + + +1.000H+ +2.000F- = HF2- + log_k 3.6200 + + +1.000H+ +1.000SO3-2 = HSO3- + log_k 7.2200 +# bug: log_k entered manually + + +1.000H+ +1.000SO4-2 = HSO4- + log_k 1.9878 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -dw 1.33e-9 # phreeqc.dat + + +1.000K+ +1.000H2O -1.000H+ = KOH + log_k -14.4600 + -gamma 0.00 0.00 + + +1.000K+ +1.000SO4-2 = KSO4- + log_k 0.8500 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 + -dw 1.5e-9 # phreeqc.dat + + +1.000Li+ +1.000H2O -1.000H+ = LiOH + log_k -13.6400 + -gamma 0.00 0.00 + + +1.000Li+ +1.000SO4-2 = LiSO4- + log_k 0.6400 + + +1.000HS- -1.000H+ = S-2 + log_k -19.0000 + -dw 7.31e-9 # phreeqc.dat + + +1.000HS- +1.000H+ = H2S + log_k 6.9900 + -gamma 0.00 0.00 + -dw 2.1e-9 # phreeqc.dat + + +1.000Mg+2 -1.000H+ +1.000HCO3- = MgCO3 + log_k -7.3492 + -gamma 0.00 0.00 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + # from phreeqc.dat: Mg+2 + CO3-2 = MgCO3 + -dw 4.21e-10 # phreeqc.dat + + +1.000Mg+2 +1.000Cl- = MgCl+ + log_k -0.1350 + + +1.000Mg+2 +1.000F- = MgF+ + log_k 1.8200 + + +1.000Mg+2 +1.000HCO3- = MgHCO3+ + log_k 1.0682 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + # from phreeqc.dat: Mg+2 + H+ + CO3-2 = MgHCO3+ + -dw 4.78e-10 # phreeqc.dat + + +1.000Mg+2 +1.000HPO4-2 -1.000H+ = MgPO4- + log_k -5.7330 + + +1.000Mg+2 +1.000HPO4-2 = MgHPO4 + log_k 2.9100 + + +1.000Mg+2 +1.000HPO4-2 +1.000H+ = MgH2PO4+ + log_k 1.6600 + + +1.000Mg+2 +1.000H2O -1.000H+ = MgOH+ + log_k -11.7500 + + +1.000Mg+2 +1.000SO4-2 = MgSO4 + log_k 2.3700 + # -gamma 0.00 0.00 + -Vm 2.4 -0.97 6.1 -2.74 # est'd + -dw 4.45e-10 # phreeqc.dat + + +1.000Mn+2 +1.000Cl- = MnCl+ + log_k 0.6100 + + +1.000Mn+2 +2.000Cl- = MnCl2 + log_k 0.2500 + -gamma 0.00 0.00 + + +1.000Mn+2 +3.000Cl- = MnCl3- + log_k -0.3100 + + +1.000Mn+2 +1.000HCO3- -1.000H+ = MnCO3 + log_k -5.4290 + -gamma 0.00 0.00 + + +1.000Mn+2 +1.000F- = MnF+ + log_k 0.8400 + + +1.000Mn+2 +1.000HCO3- = MnHCO3+ + log_k 1.9500 + + +1.000Mn+2 +1.000H2O -1.000H+ = MnOH+ + log_k -10.5900 + + +1.000Mn+2 +1.000SO4-2 = MnSO4 + log_k 2.2500 + -gamma 0.00 0.00 + + +1.000Na+ -1.000H+ +1.000HCO3- = NaCO3- + log_k -9.0590 + -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 + # But in phreeqc.dat: Na+ + CO3-2 = NaCO3- + -dw 1.2e-9 # phreeqc.dat + + +1.000Na+ +1.000F- = NaF + log_k -0.2400 + -gamma 0.00 0.00 + + +1.000Na+ +1.000HCO3- = NaHCO3 + log_k -0.2500 + # -gamma 0.00 0.00 + -Vm 0.431 # ref. 1 + # from phreeqc.dat: Na+ + HCO3- = NaHCO3 + -dw 6.73e-10 # phreeqc.dat + + +1.000Na+ +1.000H2O -1.000H+ = NaOH + log_k -14.1800 + -gamma 0.00 0.00 + -dw 1.33e-9 # phreeqc.dat + + +1.000Na+ +1.000SO4-2 = NaSO4- + log_k 0.7000 + -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 + + +1.000NbO3- +2.000H+ +1.000H2O = Nb(OH)4+ + log_k 6.8955 + + +1.000NbO3- +1.000H+ +2.000H2O = Nb(OH)5 + log_k 7.3440 + -gamma 0.00 0.00 + + +1.000Sr+2 -1.000H+ +1.000HCO3- = SrCO3 + log_k -7.5238 + -gamma 0.00 0.00 + + +1.000Sr+2 +1.000HCO3- = SrHCO3+ + log_k 1.1846 + + +1.000Sr+2 +1.000H2O -1.000H+ = SrOH+ + log_k -13.2900 + + +1.000Sr+2 +1.000SO4-2 = SrSO4 + log_k 2.2900 + -gamma 0.00 0.00 + +# Si(IV) RECOMMENDED DATA +############################ + + +1.000Ca+2 +1.000SiO(OH)3- = CaSiO(OH)3+ + log_k 1.2000 + + +1.000Ca+2 +1.000SiO2(OH)2-2 = CaSiO2(OH)2 + log_k 4.6000 + -gamma 0.00 0.00 + + +1.000Mg+2 +1.000SiO(OH)3- = MgSiO(OH)3+ + log_k 1.5000 + + +1.000Mg+2 +1.000SiO2(OH)2-2 = MgSiO2(OH)2 + log_k 5.7000 + -gamma 0.00 0.00 + + +1.000Al+3 +1.000SiO(OH)3- = AlSiO(OH)3+2 + log_k 7.4000 + + +1.000Fe+3 +1.000SiO(OH)3- = FeSiO(OH)3+2 + log_k 9.7000 + + +4.000Si(OH)4 -4.000H+ -4.000H2O = Si4O8(OH)4-4 + log_k -36.3000 + +# Si(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000Al(OH)4- +1.000SiO2(OH)2-2 -1.000H2O = AlSiO3(OH)4-3 + log_k 0.5300 + +# Ni(II) RECOMMENDED DATA +############################ + + +1.000Ni+2 +1.000H2O -1.000H+ = NiOH+ + log_k -9.5400 + + +1.000Ni+2 +3.000H2O -3.000H+ = Ni(OH)3- + log_k -29.2000 + + +2.000Ni+2 +1.000H2O -1.000H+ = Ni2OH+3 + log_k -10.6000 + + +4.000Ni+2 +4.000H2O -4.000H+ = Ni4(OH)4+4 + log_k -27.5200 + + +1.000Ni+2 +1.000F- = NiF+ + log_k 1.4300 + + +1.000Ni+2 +1.000Cl- = NiCl+ + log_k 0.0800 + + +1.000Ni+2 +1.000SO4-2 = NiSO4 + log_k 2.3500 + -gamma 0.00 0.00 + + +1.000Ni+2 +1.000NO3- = NiNO3+ + log_k 0.5000 + + +1.000Ni+2 +1.000HPO4-2 = NiHPO4 + log_k 3.0500 + -gamma 0.00 0.00 + + +1.000Ni+2 +1.000CO3-2 = NiCO3 + log_k 4.2000 + -gamma 0.00 0.00 + + +1.000Ni+2 +1.000HS- = NiHS+ + log_k 5.5000 + + +1.000Ni+2 +2.000HS- = Ni(HS)2 + log_k 11.1000 + -gamma 0.00 0.00 + + +1.000Ni+2 +1.000HAsO4-2 = NiHAsO4 + log_k 2.9000 + -gamma 0.00 0.00 + + +1.000Ni+2 +4.000CN- = Ni(CN)4-2 + log_k 30.2000 + + +1.000Ni+2 +5.000CN- = Ni(CN)5-3 + log_k 28.5000 + + +1.000Ni+2 +1.000SCN- = NiSCN+ + log_k 1.8100 + + +1.000Ni+2 +2.000SCN- = Ni(SCN)2 + log_k 2.6900 + -gamma 0.00 0.00 + + +1.000Ni+2 +3.000SCN- = Ni(SCN)3- + log_k 3.0200 + +# Ni(II) SUPPLEMENTAL DATA +# ========================== + + +1.000Ni+2 +2.000H2O -2.000H+ = Ni(OH)2 + log_k -18.0000 + -gamma 0.00 0.00 + + +1.000Ni+2 +1.000NH3 = NiNH3+2 + log_k 2.7000 + + +1.000Ni+2 +2.000NH3 = Ni(NH3)2+2 + log_k 4.9000 + + +1.000Ni+2 +3.000NH3 = Ni(NH3)3+2 + log_k 6.5000 + + +1.000Ni+2 +4.000NH3 = Ni(NH3)4+2 + log_k 7.6000 + + +1.000Ni+2 +5.000NH3 = Ni(NH3)5+2 + log_k 8.3000 + + +1.000Ni+2 +6.000NH3 = Ni(NH3)6+2 + log_k 8.2000 + + +1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2 + log_k 6.0000 + + +1.000Ni+2 +1.000HCO3- = NiHCO3+ + log_k 1.0000 + + +1.000Ni+2 +1.000SiO(OH)3- = NiSiO(OH)3+ + log_k 6.3000 + +# Se(0|-II) RECOMMENDED DATA +############################ + + +2.000Se-2 -2.000e- = Se2-2 + log_k 25.3200 + + +3.000Se-2 -4.000e- = Se3-2 + log_k 49.9700 + + +4.000Se-2 -6.000e- = Se4-2 + log_k 73.0200 + +# Se(0) RECOMMENDED DATA +############################ + + +1.000Ni+2 +1.000SeCN- = NiSeCN+ + log_k 1.7700 + + +1.000Ni+2 +2.000SeCN- = Ni(SeCN)2 + log_k 2.2400 + -gamma 0.00 0.00 + +# Se(IV) RECOMMENDED DATA +############################ + + +1.000HSeO3- +1.000H+ = H2SeO3 + log_k 2.6400 + -gamma 0.00 0.00 + + +1.000Fe+3 +1.000SeO3-2 = FeSeO3+ + log_k 11.1500 + +# Se(VI) RECOMMENDED DATA +############################ + + +1.000Ni+2 +1.000SeO4-2 = NiSeO4 + log_k 2.6700 + -gamma 0.00 0.00 + + +1.000Mn+2 +1.000SeO4-2 = MnSeO4 + log_k 2.4300 + -gamma 0.00 0.00 + + +1.000UO2+2 +1.000SeO4-2 = UO2SeO4 + log_k 2.7400 + -gamma 0.00 0.00 + + +1.000Ca+2 +1.000SeO4-2 = CaSeO4 + log_k 2.0000 + -gamma 0.00 0.00 + +# Se(VI) SUPPLEMENTAL DATA +# ========================== + + +1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2 + log_k 3.1000 + + +1.000Mg+2 +1.000SeO4-2 = MgSeO4 + log_k 2.2000 + -gamma 0.00 0.00 + +# Zr(IV) RECOMMENDED DATA +############################ + + +1.000Zr+4 +1.000H2O -1.000H+ = ZrOH+3 + log_k 0.3200 + + +1.000Zr+4 +4.000H2O -4.000H+ = Zr(OH)4 + log_k -2.1900 + -gamma 0.00 0.00 + + +1.000Zr+4 +2.000F- = ZrF2+2 + log_k 18.5500 + + +1.000Zr+4 +3.000F- = ZrF3+ + log_k 24.7200 + + +1.000Zr+4 +4.000F- = ZrF4 + log_k 30.1100 + -gamma 0.00 0.00 + + +1.000Zr+4 +1.000SO4-2 = ZrSO4+2 + log_k 7.0400 + + +1.000Zr+4 +6.000F- = ZrF6-2 + log_k 38.1100 + + +1.000Zr+4 +1.000F- = ZrF+3 + log_k 10.1200 + + +1.000Zr+4 +5.000F- = ZrF5- + log_k 34.6000 + + +1.000Zr+4 +1.000Cl- = ZrCl+3 + log_k 1.5900 + + +1.000Zr+4 +2.000Cl- = ZrCl2+2 + log_k 2.1700 + + +1.000Zr+4 +2.000SO4-2 = Zr(SO4)2 + log_k 11.5400 + -gamma 0.00 0.00 + + +1.000Zr+4 +3.000SO4-2 = Zr(SO4)3-2 + log_k 14.3000 + + +1.000Zr+4 +1.000NO3- = ZrNO3+3 + log_k 1.5900 + + +1.000Zr+4 +2.000NO3- = Zr(NO3)2+2 + log_k 2.6400 + + +1.000Zr+4 +4.000CO3-2 = Zr(CO3)4-4 + log_k 42.9000 + + +1.000Zr+4 +2.000H2O -2.000H+ = Zr(OH)2+2 + log_k 0.9800 + + +1.000Zr+4 +6.000H2O -6.000H+ = Zr(OH)6-2 + log_k -29.0000 + + +3.000Zr+4 +4.000H2O -4.000H+ = Zr3(OH)4+8 + log_k 0.4000 + + +3.000Zr+4 +9.000H2O -9.000H+ = Zr3(OH)9+3 + log_k 12.1900 + + +4.000Zr+4 +15.000H2O -15.000H+ = Zr4(OH)15+ + log_k 12.5800 + + +4.000Zr+4 +16.000H2O -16.000H+ = Zr4(OH)16 + log_k 8.3900 + -gamma 0.00 0.00 + + +4.000Zr+4 +8.000H2O -8.000H+ = Zr4(OH)8+8 + log_k 6.5200 + + +2.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca2Zr(OH)6+2 + log_k -22.6000 + + +3.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca3Zr(OH)6+4 + log_k -23.2000 + +# Zr(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = CaZr(OH)6 + log_k -24.6000 + -gamma 0.00 0.00 + +# Tc(IV) RECOMMENDED DATA +############################ + + +1.000TcO(OH)2 +2.000H+ -2.000H2O = TcO+2 + log_k 4.0000 + + +1.000TcO(OH)2 +1.000H+ -1.000H2O = TcO(OH)+ + log_k 2.5000 + + +1.000TcO(OH)2 +1.000H2O -1.000H+ = TcO(OH)3- + log_k -10.9000 + + +1.000TcO(OH)2 +1.000CO3-2 +2.000H+ -1.000H2O = TcCO3(OH)2 + log_k 19.3000 + -gamma 0.00 0.00 + + +1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3- + log_k 11.0000 + +# Pd(II) RECOMMENDED DATA +############################ + + +1.000Pd+2 +1.000Cl- = PdCl+ + log_k 5.1000 + + +1.000Pd+2 +2.000Cl- = PdCl2 + log_k 8.3000 + -gamma 0.00 0.00 + + +1.000Pd+2 +3.000Cl- = PdCl3- + log_k 10.9000 + + +1.000Pd+2 +4.000Cl- = PdCl4-2 + log_k 11.7000 + + +1.000Pd+2 +1.000NH3 = PdNH3+2 + log_k 9.6000 + + +1.000Pd+2 +2.000NH3 = Pd(NH3)2+2 + log_k 18.5000 + + +1.000Pd+2 +3.000NH3 = Pd(NH3)3+2 + log_k 26.0000 + + +1.000Pd+2 +4.000NH3 = Pd(NH3)4+2 + log_k 32.8000 + + +1.000Pd+2 -2.000H+ +2.000H2O = Pd(OH)2 + log_k -4.0000 + -gamma 0.00 0.00 + + +1.000Pd+2 -3.000H+ +3.000H2O = Pd(OH)3- + log_k -15.5000 + + +1.000Pd+2 +3.000Cl- +1.000H2O -1.000H+ = PdCl3OH-2 + log_k 2.5000 + + +1.000Pd+2 +2.000Cl- +2.000H2O -2.000H+ = PdCl2(OH)2-2 + log_k -7.0000 + +# Tn(II) RECOMMENDED DATA +######################################################## + + +1.000Tn+2 +1.000H2O -1.000H+ = TnOH+ + log_k -3.8000 + + +1.000Tn+2 +3.000H2O -3.000H+ = Tn(OH)3- + log_k -17.5000 + + +3.000Tn+2 +4.000H2O -4.000H+ = Tn3(OH)4+2 + log_k -5.6000 + + +1.000Tn+2 +1.000Cl- = TnCl+ + log_k 1.7000 + + +1.000Tn+2 +3.000Cl- = TnCl3- + log_k 2.1000 + + +1.000Tn+2 +1.000F- = TnF+ + log_k 5.0000 + + +1.000Tn+2 +2.000H2O -2.000H+ = Tn(OH)2 + log_k -7.7000 + -gamma 0.00 0.00 + + +1.000Tn+2 +1.000SO4-2 = TnSO4 + log_k 2.6000 + -gamma 0.00 0.00 + + +1.000Tn+2 +1.000H2O +1.000Cl- -1.000H+ = TnOHCl + log_k -3.1000 + -gamma 0.00 0.00 + + +1.000Tn+2 +2.000Cl- = TnCl2 + log_k 2.3600 + -gamma 0.00 0.00 + +# Sn(IV) RECOMMENDED DATA +############################ + + +1.000Sn(OH)4 +1.000H2O -1.000H+ = Sn(OH)5- + log_k -8.0000 + + +1.000Sn(OH)4 +2.000H2O -2.000H+ = Sn(OH)6-2 + log_k -18.4000 + +# Ra(II) RECOMMENDED DATA +############################ + + +1.000Ra+2 +1.000OH- = RaOH+ + log_k 0.5000 + + +1.000Ra+2 +1.000Cl- = RaCl+ + log_k -0.1000 + + +1.000Ra+2 +1.000CO3-2 = RaCO3 + log_k 2.5000 + -gamma 0.00 0.00 + + +1.000Ra+2 +1.000SO4-2 = RaSO4 + log_k 2.7500 + -gamma 0.00 0.00 + +# Eu(III) RECOMMENDED DATA +############################ + + +1.000Eu+3 +1.000H2O -1.000H+ = EuOH+2 + log_k -7.6400 + + +1.000Eu+3 +2.000H2O -2.000H+ = Eu(OH)2+ + log_k -15.1000 + + +1.000Eu+3 +3.000H2O -3.000H+ = Eu(OH)3 + log_k -23.7000 + -gamma 0.00 0.00 + + +1.000Eu+3 +4.000H2O -4.000H+ = Eu(OH)4- + log_k -36.2000 + + +1.000Eu+3 +1.000CO3-2 = EuCO3+ + log_k 8.1000 + + +1.000Eu+3 +2.000CO3-2 = Eu(CO3)2- + log_k 12.1000 + + +1.000Eu+3 +1.000SO4-2 = EuSO4+ + log_k 3.9500 + + +1.000Eu+3 +2.000SO4-2 = Eu(SO4)2- + log_k 5.7000 + + +1.000Eu+3 +1.000F- = EuF+2 + log_k 3.8000 + + +1.000Eu+3 +2.000F- = EuF2+ + log_k 6.5000 + + +1.000Eu+3 +1.000Cl- = EuCl+2 + log_k 1.1000 + + +1.000Eu+3 +2.000Cl- = EuCl2+ + log_k 1.5000 + + +1.000Eu+3 +1.000SiO(OH)3- = EuSiO(OH)3+2 + log_k 8.1000 + +# Th(IV) RECOMMENDED DATA +############################ + + +1.000Th+4 +1.000H2O -1.000H+ = ThOH+3 + log_k -2.5000 + + +1.000Th+4 +4.000H2O -4.000H+ = Th(OH)4 + log_k -17.4000 + -gamma 0.00 0.00 + + +1.000Th+4 +1.000F- = ThF+3 + log_k 8.8700 + + +1.000Th+4 +2.000F- = ThF2+2 + log_k 15.6300 + + +1.000Th+4 +3.000F- = ThF3+ + log_k 20.6700 + + +1.000Th+4 +4.000F- = ThF4 + log_k 25.5800 + -gamma 0.00 0.00 + + +1.000Th+4 +5.000CO3-2 = Th(CO3)5-6 + log_k 31.0000 + + +1.000Th+4 +2.000SO4-2 = Th(SO4)2 + log_k 9.6900 + -gamma 0.00 0.00 + + +1.000Th+4 +3.000SO4-2 = Th(SO4)3-2 + log_k 10.7480 + + +1.000Th+4 +2.000H2O -2.000H+ = Th(OH)2+2 + log_k -6.2000 + + +2.000Th+4 +2.000H2O -2.000H+ = Th2(OH)2+6 + log_k -5.9000 + + +2.000Th+4 +3.000H2O -3.000H+ = Th2(OH)3+5 + log_k -6.8000 + + +4.000Th+4 +8.000H2O -8.000H+ = Th4(OH)8+8 + log_k -20.4000 + + +4.000Th+4 +12.000H2O -12.000H+ = Th4(OH)12+4 + log_k -26.6000 + + +6.000Th+4 +14.000H2O -14.000H+ = Th6(OH)14+10 + log_k -36.8000 + + +6.000Th+4 +15.000H2O -15.000H+ = Th6(OH)15+9 + log_k -36.8000 + + +1.000Th+4 +1.000Cl- = ThCl+3 + log_k 1.7000 + + +1.000Th+4 +1.000IO3- = ThIO3+3 + log_k 4.1400 + + +1.000Th+4 +2.000IO3- = Th(IO3)2+2 + log_k 6.9700 + + +1.000Th+4 +3.000IO3- = Th(IO3)3+ + log_k 9.8700 + + +1.000Th+4 +1.000SO4-2 = ThSO4+2 + log_k 6.1700 + + +1.000Th+4 +1.000NO3- = ThNO3+3 + log_k 1.3000 + + +1.000Th+4 +2.000NO3- = Th(NO3)2+2 + log_k 2.3000 + + +1.000Th+4 +1.000H3PO4 -1.000H+ = ThH2PO4+3 + log_k 3.4500 + + +1.000Th+4 +1.000H3PO4 = ThH3PO4+4 + log_k 1.8900 + + +1.000Th+4 +2.000H3PO4 -2.000H+ = Th(H2PO4)2+2 + log_k 6.2000 + + +1.000Th+4 +2.000H3PO4 -1.000H+ = Th(H3PO4)(H2PO4)+3 + log_k 5.4200 + + +1.000Th+4 +1.000OH- +4.000CO3-2 = ThOH(CO3)4-5 + log_k 35.6000 + + +1.000Th+4 +2.000OH- +2.000CO3-2 = Th(OH)2(CO3)2-2 + log_k 36.8000 + + +1.000Th+4 +4.000OH- +1.000CO3-2 = Th(OH)4CO3-2 + log_k 40.4000 + + +1.000Th+4 +1.000SCN- = ThSCN+3 + log_k 2.0000 + + +1.000Th+4 +2.000SCN- = Th(SCN)2+2 + log_k 3.4000 + + +4.000Ca+2 +1.000Th+4 +8.000H2O -8.000H+ = Ca4Th(OH)8+4 + log_k -62.4000 + +# Th(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000Th+4 +6.000F- = ThF6-2 + log_k 29.2300 + + +1.000Th+4 +2.000OH- +1.000CO3-2 = Th(OH)2CO3 + log_k 30.5000 + -gamma 0.00 0.00 + + +1.000Th+4 +3.000OH- +1.000CO3-2 = Th(OH)3CO3- + log_k 38.3000 + + +1.000Th+4 +3.000Si(OH)4 +3.000H2O -6.000H+ = Th(OH)3(SiO(OH)3)3-2 + log_k -27.8000 + +# U(IV) RECOMMENDED DATA +############################ + + +1.000U+4 +1.000H2O -1.000H+ = UOH+3 + log_k -0.5400 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +4.000H2O -4.000H+ = U(OH)4 + log_k -10.0000 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +1.000F- = UF+3 + log_k 9.4200 + + +1.000U+4 +2.000F- = UF2+2 + log_k 16.5600 + + +1.000U+4 +3.000F- = UF3+ + log_k 21.8900 + + +1.000U+4 +4.000F- = UF4 + log_k 26.3400 + -gamma 0.00 0.00 + + +1.000U+4 +5.000F- = UF5- + log_k 27.7300 + + +1.000U+4 +6.000F- = UF6-2 + log_k 29.8000 + + +1.000U+4 +1.000Cl- = UCl+3 + log_k 1.7200 + + +1.000U+4 +1.000SO4-2 = USO4+2 + log_k 6.5800 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +2.000SO4-2 = U(SO4)2 + log_k 10.5100 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +1.000NO3- = UNO3+3 + log_k 1.4700 + + +1.000U+4 +2.000NO3- = U(NO3)2+2 + log_k 2.3000 + + +1.000U+4 +4.000CO3-2 = U(CO3)4-4 + log_k 35.2200 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +5.000CO3-2 = U(CO3)5-6 + log_k 34.000 +# Original value 34.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +1.000I- = UI+3 + log_k 1.2500 + + +1.000U+4 +1.000SCN- = USCN+3 + log_k 2.9700 + + +1.000U+4 +2.000SCN- = U(SCN)2+2 + log_k 4.2600 + +# U(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000U+4 +2.000H2O -2.000H+ = U(OH)2+2 + log_k -1.9000 +# Original value -1.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +3.000H2O -3.000H+ = U(OH)3+ + log_k -5.2000 +# Original value -4.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + + +1.000U+4 +1.000CO3-2 +3.000H2O -3.000H+ = UCO3(OH)3- + log_k 4.0000 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + +# U(V) RECOMMENDED DATA +############################ + + +1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5 + log_k 6.9500 + -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) + +# U(VI) RECOMMENDED DATA +############################ + + +1.000UO2+2 +1.000H2O -1.000H+ = UO2OH+ + log_k -5.2500 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +2.000H2O -2.000H+ = UO2(OH)2 + log_k -12.1500 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +3.000H2O -3.000H+ = UO2(OH)3- + log_k -20.25 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +4.000H2O -4.000H+ = UO2(OH)4-2 + log_k -32.4 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +2.000UO2+2 +1.000H2O -1.000H+ = (UO2)2OH+3 + log_k -2.7000 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +2.000UO2+2 +2.000H2O -2.000H+ = (UO2)2(OH)2+2 + log_k -5.6200 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +3.000UO2+2 +4.000H2O -4.000H+ = (UO2)3(OH)4+2 + log_k -11.9000 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +3.000UO2+2 +5.000H2O -5.000H+ = (UO2)3(OH)5+ + log_k -15.5500 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +3.000UO2+2 +7.000H2O -7.000H+ = (UO2)3(OH)7- + log_k -32.2000 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +4.000UO2+2 +7.000H2O -7.000H+ = (UO2)4(OH)7+ + log_k -21.9000 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000F- = UO2F+ + log_k 5.1600 + + +1.000UO2+2 +2.000F- = UO2F2 + log_k 8.8300 + -gamma 0.00 0.00 + + +1.000UO2+2 +3.000F- = UO2F3- + log_k 10.9000 + + +1.000UO2+2 +4.000F- = UO2F4-2 + log_k 11.8400 + + +1.000UO2+2 +1.000Cl- = UO2Cl+ + log_k 0.1700 + + +1.000UO2+2 +2.000Cl- = UO2Cl2 + log_k -1.1000 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000SO4-2 = UO2SO4 + log_k 3.1500 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2 + log_k 4.1400 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000NO3- = UO2NO3+ + log_k 0.3000 + + +1.000UO2+2 +1.000PO4-3 = UO2PO4- + log_k 11.01 +# Original value 13.23 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000UO2+2 +1.000HPO4-2 = UO2HPO4 + log_k 7.2400 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000H3PO4 -1.000H+ = UO2H2PO4+ + log_k 1.1200 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000H3PO4 = UO2H3PO4+2 + log_k 0.7600 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +2.000H3PO4 -2.000H+ = UO2(H2PO4)2 + log_k 0.6400 + -gamma 0.00 0.00 + -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 + + +1.000UO2+2 +1.000CO3-2 = UO2CO3 + log_k 9.9400 + -gamma 0.00 0.00 + -dw 6.67e-10 # Kerisit & Liu (2010) + + +1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2 + log_k 16.6100 + -dw 5.52e-10 # Kerisit & Liu (2010) + + +1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4 + log_k 21.8400 + -dw 5.566e-10 # Kerisit & Liu (2010) + + +3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6 + log_k 54.00 + -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) + + +2.000UO2+2 +3.000H2O -3.000H+ +1.000CO3-2 = (UO2)2CO3(OH)3- + log_k -0.855 + -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) + + +1.000UO2+2 +2.000H3PO4 -1.000H+ = UO2H2PO4H3PO4+ + log_k 1.6500 + -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) + + +3.000UO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (UO2)3O(OH)2HCO3+ + log_k 0.655 + -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) + + +11.000UO2+2 + 6.000CO3-2 + 12H2O - 12H+ = (UO2)11(CO3)6(OH)12-2 + log_k 36.42 + ++1.000UO2+2 +1.000IO3- = UO2IO3+ + log_k 2.0000 + + +1.000UO2+2 +2.000IO3- = UO2(IO3)2 + log_k 3.5900 + -gamma 0.00 0.00 + + +1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4 + log_k 3.0200 + -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) + + +1.000UO2+2 +1.000HAsO4-2 = UO2HAsO4 + log_k 7.1600 + -gamma 0.00 0.00 + + +1.000UO2+2 +1.000H3AsO4 -1.000H+ = UO2H2AsO4+ + log_k 1.3400 + + +1.000UO2+2 +2.000H3AsO4 -2.000H+ = UO2(H2AsO4)2 + log_k 0.2900 + -gamma 0.00 0.00 + + +1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F- + log_k 13.7500 + + +1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2 + log_k 15.5700 + + +1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3 + log_k 16.3800 + ++1.000UO2+2 +1.000Si(OH)4 = UO2SiO(OH)3+ + H+ + log_k -1.88 +# Original value 7.8 (= -1.84) was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000UO2+2 +1.000SCN- = UO2SCN+ + log_k 1.4000 + + +1.000UO2+2 +2.000SCN- = UO2(SCN)2 + log_k 1.2400 + -gamma 0.00 0.00 + + +1.000UO2+2 +3.000SCN- = UO2(SCN)3- + log_k 2.1000 + +# U(VI) SUPPLEMENTAL DATA +# ========================== + + +1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2 + log_k 26.2 +# Original value 26.11 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 5.06e-10 # Kerisit & Liu (2010) + ++2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3 + log_k 27.1 +# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3 + + +1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2 + log_k 27.0 +# Original value 27.18 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 5.06e-10 # Kerisit & Liu (2010) + + +2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3 + log_k 30.8 +# Original value 29.22 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 4.6e-10 # Kerisit & Liu (2010) + + +1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2 + log_k 25.9 +# Original value 26.86 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 4.83e-10 # Kerisit & Liu (2010) + + +2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3 + log_k 29.7 +# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + -dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3 + + +1.000SeO4-2 +1.000UO2+2 = UO2SeO4 + log_k 2.93 +# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +2.000SeO4-2 +1.000UO2+2 = UO2(SeO4)2-2 + log_k 4.03 +# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2 + log_k 26.6800 + + +2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3 + log_k 29.7500 + -gamma 0.00 0.00 + +# Np(III) RECOMMENDED DATA +############################ + + +1.000Np+3 +1.000H2O -1.000H+ = NpOH+2 + log_k -6.8000 + +# Np(III) SUPPLEMENTAL DATA +# ========================== + ++1.000Np+3 +2.000H2O -2.000H+ = Np(OH)2+ + log_k -14.7000 + + +1.000Np+3 +3.000H2O -3.000H+ = Np(OH)3 + log_k -25.8000 + -gamma 0.00 0.00 + + +1.000Np+3 +1.000F- = NpF+2 + log_k 3.4000 + + +1.000Np+3 +2.000F- = NpF2+ + log_k 5.8000 + + +1.000Np+3 +1.000Cl- = NpCl+2 + log_k 0.2400 + + +1.000Np+3 +2.000Cl- = NpCl2+ + log_k -0.7400 + + +1.000Np+3 +1.000SO4-2 = NpSO4+ + log_k 3.3000 + + +1.000Np+3 +2.000SO4-2 = Np(SO4)2- + log_k 3.7000 + + +1.000Np+3 +1.000CO3-2 = NpCO3+ + log_k 8.0000 + + +1.000Np+3 +2.000CO3-2 = Np(CO3)2- + log_k 12.9000 + + +1.000Np+3 +3.000CO3-2 = Np(CO3)3-3 + log_k 15.0000 + + +1.000Np+3 +1.000SiO(OH)3- = NpSiO(OH)3+2 + log_k 8.1000 + +# Np(IV) RECOMMENDED DATA +############################ + + +1.000Np+4 +1.000H2O -1.000H+ = NpOH+3 + log_k 0.5500 + + +1.000Np+4 +4.000H2O -4.000H+ = Np(OH)4 + log_k -8.3000 + -gamma 0.00 0.00 + + +1.000Np+4 +1.000F- = NpF+3 + log_k 8.9600 + + +1.000Np+4 +2.000F- = NpF2+2 + log_k 15.7000 + + +1.000Np+4 +1.000Cl- = NpCl+3 + log_k 1.5000 + + +1.000Np+4 +1.000SO4-2 = NpSO4+2 + log_k 6.8500 + + +1.000Np+4 +2.000SO4-2 = Np(SO4)2 + log_k 11.0500 + -gamma 0.00 0.00 + + +1.000Np+4 +1.000NO3- = NpNO3+3 + log_k 1.9000 + + +1.000Np+4 +4.000CO3-2 = Np(CO3)4-4 + log_k 38.9000 + + +1.000Np+4 +5.000CO3-2 = Np(CO3)5-6 + log_k 37.8000 + + +1.000Np+4 +2.000H2O -2.000H+ = Np(OH)2+2 + log_k 0.3500 + + +1.000Np+4 +1.000I- = NpI+3 + log_k 1.5000 + + +1.000Np+4 +1.000SCN- = NpSCN+3 + log_k 3.0000 + + +1.000Np+4 +2.000SCN- = Np(SCN)2+2 + log_k 4.1000 + + +1.000Np+4 +3.000SCN- = Np(SCN)3+ + log_k 4.8000 + +# Np(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000Np+4 +3.000H2O -3.000H+ = Np(OH)3+ + log_k -2.8000 + + +1.000Np+4 +1.000CO3-2 +3.000H2O -3.000H+ = NpCO3(OH)3- + log_k 2.0000 + + +1.000Np+4 +1.000SiO(OH)3- = NpSiO(OH)3+3 + log_k 11.2000 + +# Np(V) RECOMMENDED DATA +############################ + + +1.000NpO2+ +1.000H2O -1.000H+ = NpO2(OH) + log_k -11.3000 + -gamma 0.00 0.00 + + +1.000NpO2+ +2.000H2O -2.000H+ = NpO2(OH)2- + log_k -23.6000 + + +1.000NpO2+ +1.000F- = NpO2F + log_k 1.2000 + -gamma 0.00 0.00 + + +1.000NpO2+ +1.000SO4-2 = NpO2SO4- + log_k 1.3 +# Original value 0.44 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000NpO2+ +1.000HPO4-2 = NpO2HPO4- + log_k 2.9500 + + +1.000NpO2+ +1.000CO3-2 = NpO2CO3- + log_k 4.9600 + + +1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3 + log_k 6.5300 + + +1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5 + log_k 5.5000 + + +1.000NpO2+ +2.000CO3-2 +1.000H2O -1.000H+ = NpO2(CO3)2OH-4 + log_k -5.3000 + + +1.000NpO2+ +1.000IO3- = NpO2IO3 + log_k 0.5000 + -gamma 0.00 0.00 + +# Np(V) SUPPLEMENTAL DATA +# ========================== + + +1.000NpO2+ +1.000SiO(OH)3- = NpO2SiO(OH)3 + log_k 7.0000 + -gamma 0.00 0.00 + + +1.000NpO2+ +1.000SCN- = NpO2SCN + log_k 0.0800 + -gamma 0.00 0.00 + ++1.000NpO2+ +1.000Ca+2 +2.000H2O = Ca(NpO2(OH)2)+ +2.000H+ + log_k -20.6 +# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + ++1.000NpO2+ +3.000Ca+2 +5.000H2O = Ca3(NpO2(OH)5)+2 +5.000H+ + log_k -54.8 +# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +# Np(VI) RECOMMENDED DATA +############################ + + +1.000NpO2+2 +1.000H2O -1.000H+ = NpO2OH+ + log_k -5.1000 + + +2.000NpO2+2 +2.000H2O -2.000H+ = (NpO2)2(OH)2+2 + log_k -6.2700 + + +3.000NpO2+2 +5.000H2O -5.000H+ = (NpO2)3(OH)5+ + log_k -17.1200 + + +1.000NpO2+2 +1.000F- = NpO2F+ + log_k 4.5700 + + +1.000NpO2+2 +2.000F- = NpO2F2 + log_k 7.6000 + -gamma 0.00 0.00 + + +1.000NpO2+2 +1.000Cl- = NpO2Cl+ + log_k 0.4000 + + +1.000NpO2+2 +1.000SO4-2 = NpO2SO4 + log_k 3.2800 + -gamma 0.00 0.00 + + +1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2 + log_k 4.7000 + + +1.000NpO2+2 +1.000CO3-2 = NpO2CO3 + log_k 9.3200 + -gamma 0.00 0.00 + + +1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2 + log_k 16.5200 + + +1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4 + log_k 19.3700 + + +3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6 + log_k 49.8400 + + +2.000NpO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (NpO2)2CO3(OH)3- + log_k -2.8700 + + +1.000NpO2+2 +1.000HPO4-2 = NpO2HPO4 + log_k 6.2000 + -gamma 0.00 0.00 + + +1.000NpO2+2 +1.000H2PO4- = NpO2H2PO4+ + log_k 3.3200 + + +1.000NpO2+2 +2.000HPO4-2 = NpO2(HPO4)2-2 + log_k 9.5000 + + +1.000NpO2+2 +1.000IO3- = NpO2IO3+ + log_k 1.2000 + +# Np(VI) SUPPLEMENTAL DATA +# ========================== + + +1.000NpO2+2 +3.000H2O -3.000H+ = NpO2(OH)3- + log_k -20.0000 + + +1.000NpO2+2 +4.000H2O -4.000H+ = NpO2(OH)4-2 + log_k -32.0000 + + +1.000NpO2+2 +1.000SiO(OH)3- = NpO2SiO(OH)3+ + log_k 7.2000 + + +1.000NpO2+2 +1.000SiO2(OH)2-2 = NpO2SiO2(OH)2 + log_k 16.5000 + -gamma 0.00 0.00 + +# Pu(III) RECOMMENDED DATA +############################ + + +1.000Pu+3 +1.000H2O -1.000H+ = PuOH+2 + log_k -6.9000 + + +1.000Pu+3 +1.000SO4-2 = PuSO4+ + log_k 3.9000 + + +1.000Pu+3 +2.000SO4-2 = Pu(SO4)2- + log_k 5.7000 + + +1.000Pu+3 +1.000SCN- = PuSCN+2 + log_k 1.3000 + +# Pu(III) SUPPLEMENTAL DATA +# ========================== + + +1.000Pu+3 +2.000H2O -2.000H+ = Pu(OH)2+ + log_k -14.8000 + + +1.000Pu+3 +3.000H2O -3.000H+ = Pu(OH)3 + log_k -25.9000 + -gamma 0.00 0.00 + + +1.000Pu+3 +1.000F- = PuF+2 + log_k 3.4000 + + +1.000Pu+3 +2.000F- = PuF2+ + log_k 5.8000 + + +1.000Pu+3 +1.000Cl- = PuCl+2 + log_k 1.2000 + + +1.000Pu+3 +1.000CO3-2 = PuCO3+ + log_k 8.0000 + + +1.000Pu+3 +2.000CO3-2 = Pu(CO3)2- + log_k 12.9000 + + +1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3 + log_k 15.0000 + + +1.000Pu+3 +1.000SiO(OH)3- = PuSiO(OH)3+2 + log_k 8.1000 + +# Pu(IV) RECOMMENDED DATA +############################ + + +1.000Pu+4 +1.000H2O -1.000H+ = PuOH+3 + log_k 0.0000 + + +1.000Pu+4 +4.000H2O -4.000H+ = Pu(OH)4 + log_k -9.3000 + -gamma 0.00 0.00 + + +1.000Pu+4 +1.000F- = PuF+3 + log_k 8.8400 + + +1.000Pu+4 +2.000F- = PuF2+2 + log_k 15.7000 + + +1.000Pu+4 +1.000Cl- = PuCl+3 + log_k 1.8000 + + +1.000Pu+4 +1.000SO4-2 = PuSO4+2 + log_k 6.8900 + + +1.000Pu+4 +2.000SO4-2 = Pu(SO4)2 + log_k 11.1400 + -gamma 0.00 0.00 + + +1.000Pu+4 +1.000NO3- = PuNO3+3 + log_k 1.9500 + + +1.000Pu+4 +1.000H3PO4 = PuH3PO4+4 + log_k 2.4000 + + +1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4 + log_k 37.0000 + + +1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6 + log_k 35.6500 + + +1.000Pu+4 +2.000H2O -2.000H+ = Pu(OH)2+2 + log_k -1.2000 + + +1.000Pu+4 +3.000H2O -3.000H+ = Pu(OH)3+ + log_k -3.1000 + + +# Pu(IV) SUPPLEMENTAL DATA +# ========================== + + +1.000Pu+4 +1.000SiO(OH)3- = PuSiO(OH)3+3 + log_k 11.8000 + + +4.000Ca+2 +1.000Pu+4 +8.000H2O -8.000H+ = Ca4Pu(OH)8+4 + log_k -55.7000 + + +1.000Pu+4 +1.000CO3-2 +3.000H2O -3.000H+ = PuCO3(OH)3- + log_k 6.0000 + +# Pu(V) RECOMMENDED DATA +############################ + + +1.000PuO2+ +1.000H2O -1.000H+ = PuO2OH + log_k -9.7300 + -gamma 0.00 0.00 + + +1.000PuO2+ +1.000CO3-2 = PuO2CO3- + log_k 5.1200 + + +1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5 + log_k 5.0300 + +# Pu(VI) RECOMMENDED DATA +############################ + + +1.000PuO2+2 +1.000H2O -1.000H+ = PuO2OH+ + log_k -5.5000 + + +1.000PuO2+2 +2.000H2O -2.000H+ = PuO2(OH)2 + log_k -13.2000 + -gamma 0.00 0.00 + + +2.000PuO2+2 +2.000H2O -2.000H+ = (PuO2)2(OH)2+2 + log_k -7.5000 + + +1.000PuO2+2 +1.000F- = PuO2F+ + log_k 4.5600 + + +1.000PuO2+2 +2.000F- = PuO2F2 + log_k 7.2500 + -gamma 0.00 0.00 + + +1.000PuO2+2 +1.000Cl- = PuO2Cl+ + log_k 0.2300 + + +1.000PuO2+2 +2.000Cl- = PuO2Cl2 + log_k -1.1500 + -gamma 0.00 0.00 + + +1.000PuO2+2 +1.000SO4-2 = PuO2SO4 + log_k 3.3800 + -gamma 0.00 0.00 + + +1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2 + log_k 4.4000 + + +1.000PuO2+2 +1.000CO3-2 = PuO2CO3 + log_k 9.5000 + -gamma 0.00 0.00 + + +1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2 + log_k 14.7000 + + +1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4 + log_k 18.0000 + +# Pu(VI) SUPPLEMENTAL DATA +# ========================== + + +1.000PuO2+2 +1.000SiO(OH)3- = PuO2SiO(OH)3+ + log_k 6.0000 + + +1.000PuO2+2 +1.000SiO2(OH)2-2 = PuO2SiO2(OH)2 + log_k 12.6000 + -gamma 0.00 0.00 + +# RECOMMENDED DATA +# U(VI) +# Np(VI) Mixed +# Pu(VI) +############################ + + +2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2NpO2(CO3)6-6 + log_k 53.5900 + + +2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = (UO2)2PuO2(CO3)6-6 + log_k 52.7000 + +# Am(III) RECOMMENDED DATA +############################ + + +1.000Am+3 +1.000H2O -1.000H+ = AmOH+2 + log_k -7.2000 + + +1.000Am+3 +2.000H2O -2.000H+ = Am(OH)2+ + log_k -15.1000 + + +1.000Am+3 +3.000H2O -3.000H+ = Am(OH)3 + log_k -26.2000 + -gamma 0.00 0.00 + + +1.000Am+3 +1.000F- = AmF+2 + log_k 3.4000 + + +1.000Am+3 +2.000F- = AmF2+ + log_k 5.8000 + + +1.000Am+3 +1.000Cl- = AmCl+2 + log_k 0.2400 + + +1.000Am+3 +2.000Cl- = AmCl2+ + log_k -0.81 +# Original value -0.74 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +1.000SO4-2 = AmSO4+ + log_k 3.5000 +# Original value 3.3 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +2.000SO4-2 = Am(SO4)2- + log_k 5.000 +# Original value 3.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +1.000NO3- = AmNO3+2 + log_k 1.2800 +# Original value 1.33 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +2.000NO3- = Am(NO3)2+ + log_k 0.8800 +# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +1.000H2PO4- = AmH2PO4+2 + log_k 2.4600 +# Original value 3.00 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +1.000CO3-2 = AmCO3+ + log_k 8.0000 + + +1.000Am+3 +2.000CO3-2 = Am(CO3)2- + log_k 12.9000 + + +1.000Am+3 +3.000CO3-2 = Am(CO3)3-3 + log_k 15.0000 + + +1.000Am+3 +1.000SiO(OH)3- = AmSiO(OH)3+2 + log_k 8.1300 +# Original value 8.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +1.000Am+3 +1.000HCO3- = AmHCO3+2 + log_k 3.1000 + + +1.000Am+3 +1.000SCN- = AmSCN+2 + log_k 1.3000 + +# Am(III) SUPPLEMENTAL DATA +# ========================== + + +1.000Ca+2 +1.000Am+3 +3.000H2O -3.000H+ = CaAm(OH)3+2 + log_k -26.3000 + + +2.000Ca+2 +1.000Am+3 +4.000H2O -4.000H+ = Ca2Am(OH)4+3 + log_k -37.2000 + + +3.000Ca+2 +1.000Am+3 +6.000H2O -6.000H+ = Ca3Am(OH)6+3 + log_k -60.7000 + +# Am(V) RECOMMENDED DATA +############################ + + +1.000AmO2+ +1.000H2O -1.000H+ = AmO2OH + log_k -11.3000 + -gamma 0.00 0.00 + + +1.000AmO2+ +2.000H2O -2.000H+ = AmO2(OH)2- + log_k -23.6000 + + +1.000AmO2+ +1.000CO3-2 = AmO2CO3- + log_k 5.1000 + + +1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3 + log_k 6.7000 + + +1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5 + log_k 5.1000 + +# Cm(III) RECOMMENDED DATA +############################ + + +1.000Cm+3 +1.000H2O -1.000H+ = CmOH+2 + log_k -7.2000 + + +1.000Cm+3 +2.000H2O -2.000H+ = Cm(OH)2+ + log_k -15.1000 + + +1.000Cm+3 +3.000H2O -3.000H+ = Cm(OH)3 + log_k -26.2000 + -gamma 0.00 0.00 + + +1.000Cm+3 +1.000F- = CmF+2 + log_k 3.4000 + + +1.000Cm+3 +2.000F- = CmF2+ + log_k 5.8000 + + +1.000Cm+3 +1.000Cl- = CmCl+2 + log_k 0.2400 + + +1.000Cm+3 +2.000Cl- = CmCl2+ + log_k -0.7400 + + +1.000Cm+3 +1.000SO4-2 = CmSO4+ + log_k 3.3000 + + +1.000Cm+3 +2.000SO4-2 = Cm(SO4)2- + log_k 3.7000 + + +1.000Cm+3 +1.000NO3- = CmNO3+2 + log_k 1.3300 + + +1.000Cm+3 +1.000H2PO4- = CmH2PO4+2 + log_k 3.0000 + + +1.000Cm+3 +1.000CO3-2 = CmCO3+ + log_k 8.0000 + + +1.000Cm+3 +2.000CO3-2 = Cm(CO3)2- + log_k 12.9000 + + +1.000Cm+3 +3.000CO3-2 = Cm(CO3)3-3 + log_k 15.0000 + + +1.000Cm+3 +1.000HCO3- = CmHCO3+2 + log_k 3.1000 + + +1.000Cm+3 +1.000SiO(OH)3- = CmSiO(OH)3+2 + log_k 8.1000 + + +1.000Cm+3 +1.000SCN- = CmSCN+2 + log_k 1.3000 + +# Cm(III) SUPPLEMENTAL DATA +# ========================== + + +1.000Ca+2 +1.000Cm+3 +3.000H2O -3.000H+ = CaCm(OH)3+2 + log_k -26.3000 + + +2.000Ca+2 +1.000Cm+3 +4.000H2O -4.000H+ = Ca2Cm(OH)4+3 + log_k -37.2000 + + +3.000Ca+2 +1.000Cm+3 +6.000H2O -6.000H+ = Ca3Cm(OH)6+3 + log_k -60.7000 + +################################################################################################################### + +# New implemented aqueous species - Updated values + +################################################################################################################### + +### Iron from NEA TDB, Vol. 13a ################################################################################## + + ++1.000Fe+2 = 1.000Fe+3 + e- + log_k -13.051 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe+2 + H+ = Fe+3 + 0.5H2(g) with logK -13.051 + +### Oxide/Hydroxide ############ + ++1.000Fe+2 + 1.000H2O = FeOH+ + H+ + log_k -9.1 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 + 1.000H2O = FeOH+2 + H+ + log_k -2.1500 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 + 2.000H2O = Fe(OH)2+ + 2H+ + log_k -4.8 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++2.000Fe+3 + 2.000H2O = Fe2(OH)2+4 + 2H+ + log_k -2.82 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +### Carbonate ############ + ++1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3 + log_k 24.0 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +1.000CO3-2 + H2O = Fe(OH)CO3 + H+ + log_k 10.7 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+2 +2.000HCO3- = Fe(CO3)2-2 + 2H+ + log_k -13.62 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013], converted from + # FeCO3(cr) + CO2(g) + H2O(l) = Fe(CO3)2-2 + 2H+ with logK -21.794 + +### Chloride ############ + ++1.000Fe+3 +1.000Cl- = FeCl+2 + log_k 1.52 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +2.000Cl- = FeCl2+ + log_k 2.2 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +3.000Cl- = FeCl3 + log_k 1.02 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +4.000Cl- = FeCl4- + log_k -0.98 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +### Fluoride ############ + ++1.000Fe+2 +1.000F- = FeF+ + log_k 1.7 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +### Sulfate ############ + ++1.000Fe+2 +1.000SO4-2 = FeSO4 + log_k 2.44 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +1.000SO4-2 = FeSO4+ + log_k 4.25 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + ++1.000Fe+3 +2.000SO4-2 = Fe(SO4)2- + log_k 6.22 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +###################################################################################################################### + +PHASES + +# PMATCH MINERALS + +# Minerals RECOMMENDED DATA + +##### Original PSI/NAGRA TDB 12/07 ################################################################################# + +Anhydrite +CaSO4 = +1.000Ca+2 +1.000SO4-2 + log_k -4.3575 + +Aragonite +CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- + log_k 1.9928 + +As(cr) +As = +1.000HAsO4-2 +7.000H+ +5.000e- -4.000H2O + log_k -40.9892 + +Barite +BaSO4 = +1.000Ba+2 +1.000SO4-2 + log_k -9.9704 + +Brucite +Mg(OH)2 = +1.000Mg+2 +2.000H2O -2.000H+ + log_k 16.8400 + +Calcite +CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- + log_k 1.8490 + +MgCalcite_NT14 # for PW in OPA section at Mt. Russelin (borehole NT-14) +CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- + log_k 2.01672 # calculated by Marco to account for Mg incorporation in pure mineral + +Celestite +SrSO4 = +1.000Sr+2 +1.000SO4-2 + log_k -6.6319 + +Dolomite(dis) +CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3- + log_k 4.1180 + +Dolomite(ord) +CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3- + log_k 3.5680 + +#Fe(cr) +#Fe = +1.000Fe+2 +2.000e- +# log_k 13.8226 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Fluorite +CaF2 = +1.000Ca+2 +2.000F- + log_k -10.5997 + +#Goethite +#FeOOH = +2.000H2O -3.000H+ +1.000Fe+3 +# log_k -1.0000 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Graphite +C = +1.000HCO3- +5.000H+ +4.000e- -3.000H2O + log_k -21.8192 + +Gypsum +CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O + log_k -4.5809 + +Hausmannite +MnMn2O4 = +3.000Mn+2 +4.000H2O -8.000H+ -2.000e- + log_k 61.0300 + +Manganite +MnOOH = +1.000Mn+2 +2.000H2O -3.000H+ -1.000e- + log_k 25.3400 + +#Melanterite +#FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O +# log_k -2.2093 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Mo(cr) +Mo = +1.000MoO4-2 +8.000H+ +6.000e- -4.000H2O + log_k 19.6670 +# bug: log_k entered manually + +Tugarinovite +MoO2 = +1.000MoO4-2 +4.000H+ +2.000e- -2.000H2O + log_k 29.9560 +# bug: log_k entered manually + +Molybdite +MoO3 = +1.000MoO4-2 +2.000H+ -1.000H2O + log_k 12.0550 +# bug: log_k entered manually + +Nb2O5(cr) +Nb2O5 = +2.000NbO3- +2.000H+ -1.000H2O + log_k 24.3410 +# bug: log_k entered manually + +NbO2(cr) +NbO2 = +1.000NbO3- +2.000H+ +1.000e- -1.000H2O + log_k 7.9780 +# bug: log_k entered manually + +Portlandite +Ca(OH)2 = +1.000Ca+2 +2.000H2O -2.000H+ + log_k 22.8000 + +Pyrochroite +Mn(OH)2 = +1.000Mn+2 +2.000H2O -2.000H+ + log_k 15.2000 + +Pyrolusite +MnO2 = +1.000Mn+2 +2.000H2O -4.000H+ -2.000e- + log_k 41.3800 + +Rhodochrosite +MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+ + log_k -0.8011 + +Rhodochrosite(syn) +MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+ + log_k -0.0611 + +#Siderite +#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+ +# log_k -0.5612 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +#FeCO3(pr) +#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+ +# log_k -0.1211 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Strontianite +SrCO3 = +1.000Sr+2 -1.000H+ +1.000HCO3- + log_k 1.0583 + +Witherite +BaCO3 = +1.000Ba+2 -1.000H+ +1.000HCO3- + log_k 1.7672 + +#Hematite +#Fe2O3 = +3.000H2O -6.000H+ +2.000Fe+3 +# log_k 1.1200 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Pyrite +FeS2 = +1.000Fe+2 +2.000HS- -2.000H+ -2.000e- + log_k -18.5000 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +#Troilite +#FeS = +1.000Fe+2 +1.000HS- -1.000H+ +# log_k -5.3100 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +Magnesite +MgCO3 = +1.000Mg+2 -1.000H+ +1.000HCO3- + log_k 2.0410 + +S(rhomb) +S = +1.000HS- -1.000H+ -2.000e- + log_k -2.1440 + +#Fe(OH)3(am) +#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3 +# log_k 5.0000 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +#Fe(OH)3(mic) +#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3 +# log_k 3.0000 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +#Magnetite +#FeFe2O4 = +1.000Fe+2 +4.000H2O -8.000H+ +2.000Fe+3 +# log_k 10.0200 +# commented out, as we added Fe+3 data from NEA TDB Vol. 13a + +#Gibbsite +#Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ +# log_k 7.7559 +# commented out, as we added data for a generic and amorphous gibbsite + + +# Si(IV) RECOMMENDED DATA +############################ + +Quartz +SiO2 = +1.000Si(OH)4 -2.000H2O + log_k -3.7460 + +SiO2(am) +SiO2 = +1.000Si(OH)4 -2.000H2O + log_k -2.7140 + +Kaolinite +Al2Si2O5(OH)4 = +2.000Al+3 +2.000Si(OH)4 +1.000H2O -6.000H+ + log_k 7.4350 + +# Ni(II) RECOMMENDED DATA +############################ + +NiCO3(cr) +NiCO3 = +1.000Ni+2 +1.000CO3-2 + log_k -11.0000 + +Ni(OH)2(cr,beta) +Ni(OH)2 = +1.000Ni+2 +2.000H2O -2.000H+ + log_k 11.0200 + +NiO(cr) +NiO = +1.000Ni+2 +1.000H2O -2.000H+ + log_k 12.4800 + +NiCO3:5.5H2O(s) +NiCO3:5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O + log_k -7.5300 + +Ni3(AsO4)2:8H2O(s) +Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O + log_k -28.1000 + +# Se(-II) SUPPLEMENTAL DATA +# ========================== + +MnSe(s) +MnSe = +1.000Mn+2 +1.000Se-2 + log_k -16.0000 + +# Se(IV) RECOMMENDED DATA +############################ + +Se(cr) +Se = +1.000SeO3-2 +6.000H+ +4.000e- -3.000H2O + log_k -61.1500 + +NiSeO3:2H2O(cr) +NiSeO3:2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O + log_k -5.8000 + +MnSeO3:2H2O(cr) +MnSeO3:2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O + log_k -7.6000 + +MgSeO3:6H2O(cr) +MgSeO3:6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O + log_k -5.8200 + +CaSeO3:H2O(cr) +CaSeO3:H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O + log_k -6.4000 + +SrSeO3(cr) +SrSeO3 = +1.000Sr+2 +1.000SeO3-2 + log_k -6.3000 + +BaSeO3(cr) +BaSeO3 = +1.000Ba+2 +1.000SeO3-2 + log_k -6.5000 + +# Se(VI) RECOMMENDED DATA +############################ + +BaSeO4(cr) +BaSeO4 = +1.000Ba+2 +1.000SeO4-2 + log_k -7.5600 + +# Zr(IV) RECOMMENDED DATA +############################ + +Baddeleyite +ZrO2 = +1.000Zr+4 +2.000H2O -4.000H+ + log_k -7.0000 + +Zr(OH)4(am,fr) +Zr(OH)4 = +1.000Zr+4 +4.000H2O -4.000H+ + log_k -3.2400 + +# Zr(IV) SUPPLEMENTAL DATA +# ========================== + +Zr(HPO4)2:H2O(cr) +Zr(HPO4)2:H2O = +1.000Zr+4 +2.000H3PO4 +1.000H2O -4.000H+ + log_k -22.8000 + + +# Tc(IV) RECOMMENDED DATA +############################ + +TcO2:1.6H2O(s) +TcO2:1.6H2O = +1.000TcO(OH)2 +0.600H2O + log_k -8.4000 + +# Pd(II) RECOMMENDED DATA +############################ + +Pd(cr) +Pd = +1.000Pd+2 +2.000e- + log_k -30.8000 + +Pd(OH)2(s) +Pd(OH)2 = +1.000Pd+2 -2.000H+ +2.000H2O + log_k -3.3000 + +# Tn(II) RECOMMENDED DATA +############################ + +Tn(cr) +Tn = +1.00Tn+2 +2.000e- + log_k 4.6300 + +TnO(s) +TnO = +1.000Tn+2 +1.000H2O -2.000H+ + log_k 2.5000 + +TnS(pr) +TnS = +1.000Tn+2 +1.000HS- -1.000H+ + log_k -14.7000 + +# Sn(IV) RECOMMENDED DATA +############################ + +Cassiterite +SnO2 = +1.000Sn(OH)4 -2.000H2O + log_k -8.0000 + +SnO2(am) +SnO2 = +1.000Sn(OH)4 -2.000H2O + log_k -7.3000 + +CaSn(OH)6(s) +CaSn(OH)6 = +1.000Sn(OH)4 +2.000H2O +1.000Ca+2 -2.000H+ + log_k 8.7000 + +# Ra(II) RECOMMENDED DATA +############################ + +RaCO3(cr) +RaCO3 = +1.000Ra+2 +1.000CO3-2 + log_k -8.3000 + +RaSO4(cr) +RaSO4 = +1.000Ra+2 +1.000SO4-2 + log_k -10.2600 + +# Eu(III) RECOMMENDED DATA +############################ + +Eu(OH)3(cr) +Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+ + log_k 14.9000 + +Eu(OH)3(am) +Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+ + log_k 17.6000 + +Eu2(CO3)3(cr) +Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2 + log_k -35.0000 + + +EuOHCO3(cr) +EuOHCO3 = +1.000Eu+3 +1.000OH- +1.000CO3-2 + log_k -21.7000 + +EuF3(cr) +EuF3 = +1.000Eu+3 +3.000F- + log_k -17.4000 + +# Th(IV) RECOMMENDED DATA +############################ + +ThO2(am,hyd,fr) +ThO2 = +1.000Th+4 +2.000H2O -4.000H+ + log_k 9.3000 + +ThO2(am,hyd,ag) +ThO2 = +1.000Th+4 +2.000H2O -4.000H+ + log_k 8.5000 + +ThF4(cr,hyd) +ThF4 = +1.000Th+4 +4.000F- + log_k -31.8000 + +Na6Th(CO3)5:12H2O(cr) +Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O + log_k -42.2000 + +# Th(IV) SUPPLEMENTAL DATA +# ========================== + +Th3(PO4)4(s) +Th3(PO4)4 = +3.000Th+4 +4.000PO4-3 + log_k -112.0000 + +# U(IV) RECOMMENDED DATA +############################ + +UF4:2.5H2O(cr) +UF4:2.5H2O = +1.000U+4 +4.000F- +2.500H2O + log_k -30.1200 + +U(OH)2SO4(cr) +U(OH)2SO4 = +1.000U+4 +1.000SO4-2 +2.000H2O -2.000H+ + log_k -3.1700 + +UO2(am,hyd) +UO2 = +1.000U+4 +2.000H2O -4.000H+ + log_k 1.5000 + +# U(IV) SUPPLEMENTAL DATA +# ========================== + +USiO4(s) # Coffinit +USiO4 = +1.000U+4 +1.000Si(OH)4 -4.000H+ + log_k -1.5000 + +# U(VI) RECOMMENDED DATA - With Update from THEREDA database +#################################################################### + +### U(VI)-Oxides ############ + +Metaschoepite +UO3:2H2O = +1.000UO2+2 +3.000H2O -2.000H+ + log_k 5.35 +# Original value 5.96 was updated from THEREDA database [primary reference [ALT/YAL2017]) + +Becquerelite +CaU6O19:11H2O = +1.000Ca+2 +6.000UO2+2 +18.000H2O -14.000H+ + log_k 40.5000 + +Clarkeite +Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 +4.000H2O -6.000H+ + log_k 24.4 +# This value was added from THEREDA database [primary reference [ALT/YAL2017]) + +K2U2O7:1.5H2O(cr) +K2U2O7:1.5H2O = +2.000K+ +2.000UO2+2 +4.500H2O -6.000H+ + log_k 24.0 +# This value was added from THEREDA database [primary reference [CEV/YAL2018]) + +K-Compreignacite +K2U6O19:11H2O = +2.000K+ +6.000UO2+2 +18.000H2O -14.000H+ + log_k 37.8 +# Original value 37.10 was updated from THEREDA database [primary reference [CEV/YAL2018]) + +Na-Compreignacite +Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 + 17.000H2O - 14.000H+ + log_k 39.4 +# This value was added from THEREDA database (primary reference [GOR/FEI2008]) + +CaU2O7:3H2O(cr) +CaU2O7:3H2O + 6.000H+ = 1.000Ca+2 +2.000UO2+2 +6.000H2O + log_k 23.4 +# This value was added from THEREDA database (primary reference [ALT/NEC2006]) + + +### U(VI)-Carbonates ########### + +Cejkaite +Na4UO2(CO3)3 = 4.000Na+ + 3.000CO3-2 + 1.000UO2+2 + log_k -27.18 +# This value was added from THEREDA database (primary reference [GUI/FAN2003]) + +Rutherfordine +UO2CO3 = +1.000UO2+2 +1.000CO3-2 + log_k -14.7600 + + +### U(VI)-Silicates ############ + +Boltwoodite +KUO2(SiO3OH):H2O = +1.000K+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+ + log_k 4.12 +# This value was added from THEREDA database (primary reference [SHV/MAZ2011]) + +Na-Boltwoodite +NaUO2(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+ + log_k 6.07 +# This value was added from THEREDA database (primary reference [SHV/MAZ2011]) + +Soddyite +(UO2)2SiO4:2H2O = +2.000UO2+2 +1.000Si(OH)4 +2.000H2O -4.000H+ + log_k 5.75 +# Original value 6.2 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + +Uranophane +Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 +2.000Si(OH)4 +5.000H2O -6.000H+ + log_k 10.82 +# This value was added from THEREDA database (primary reference [SHV/MAZ2011]) + +Weeksite +K2(UO2)2(Si2O5)3:4H2O = +2.000K+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O + log_k 16.91 +# This value was added from THEREDA database (primary reference [HEM1982]) + +Na-Weeksite +Na2(UO2)2(Si2O5)3:4H2O = +2.000Na+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O + log_k 1.5 + +Sklodowskite +Mg(UO2)2(SiO3OH)2:6H2O = +1.000Mg+2 +2.000UO2+2 +2.000Si(OH)4 -6.000H+ +6.000H2O + log_k 14.48 +# This value was added from THEREDA database (primary reference [HEM1982]) + +Haiweeite +Ca(UO2)2(Si2O5)3:5H2O = +1.000Ca+2 +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -4.000H2O + log_k -5.52 +# This value was added from THEREDA database (primary reference [HEM1982]) + +### U(VI)-Sulphates ############# + +UO2SO4:2.5H2O(cr) +UO2SO4:2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O + log_k -1.589 +# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + +UO2SO4:3.0H2O(cr) +UO2SO4:3.0H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O + log_k -1.50 +# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + +UO2SO4:3.5H2O(cr) +UO2SO4:3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O + log_k -1.585 +# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + +Zippeite +K3(UO2)4(SO4)2O3OH:3.3H2O = +3.000K+ + 4.000UO2+2 + 2.000SO4-2 + 7.300H2O -7H+ + log_k 4.14 +# This value was added from THEREDA database (primary reference [SHA/SZY2016]) + + +### U(VI)-Phosphate ########### + +Autunite +Ca(UO2)2(PO4)2:3H2O = 1.000Ca+2 +2.000UO2+2 +2.000PO4-3 +3.000H2O + log_k -48.36 +# This value was added from THEREDA database (primary reference [GOR/SHV2009]) + +Saaleite +Mg(UO2)2(PO4)2 = 1.000Mg+2 +2.000UO2+2 +2.000PO4-3 + log_k -46.32 +# This value was added from THEREDA database (primary reference [MUT/HIR1968]) + +Chernikovite +UO2HPO4:4H2O = +1.000UO2+2 +1.000H3PO4 +4.000H2O -2.000H+ + log_k -2.5000 + +(UO2)3(PO4)2:4H2O(cr) +(UO2)3(PO4)2:4H2O = +3.000UO2+2 +2.000H3PO4 +4.000H2O -6.000H+ + log_k -5.9600 + +(UO2)3(PO4)2:6H2O(cr) +(UO2)3(PO4)2:6H2O = +3.000UO2+2 +2.000PO4-3 +6.000H2O + log_k -49.91 +# This value was added from THEREDA database (primary reference [GUI/FAN2003]) + +UO2(H2PO4)2:3H2O(cr) +UO2(H2PO4)2:3H2O = +1.000UO2+2 +2.000H3PO4 +3.000H2O -2.000H+ + log_k -1.7 +# This value was added from THEREDA database (primary reference [GRE/FUG1992]) + + + +# Np(IV) RECOMMENDED DATA +############################ + +NpO2(am,hyd) +NpO2 = +1.000Np+4 +2.000H2O -4.000H+ + log_k -0.7000 + +# Np(V) RECOMMENDED DATA +############################ + +NpO2OH(am,fr) +NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+ + log_k 5.3000 + +NaNpO2CO3:3.5H2O(cr) +NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O + log_k -11.0000 + +Na3NpO2(CO3)2(cr) +Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2 + log_k -14.2200 + +KNpO2CO3(s) +KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2 + log_k -13.1500 + +K3NpO2(CO3)2(s) +K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2 + log_k -15.4600 + +NpO2OH(am,ag) +NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+ + log_k 4.7000 + +# Np(VI) RECOMMENDED DATA +############################ + +NpO2CO3(s) +NpO2CO3 = +1.000NpO2+2 +1.000CO3-2 + log_k -14.6000 + +NpO3:H2O(cr) +NpO3:H2O = +1.000NpO2+2 +2.000H2O -2.000H+ + log_k 5.4700 + +K4NpO2(CO3)3(s) +K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2 + log_k -26.4000 + +(NH4)4NpO2(CO3)3(s) +(NH4)4NpO2(CO3)3 = +4.000NH4+ +1.000NpO2+2 +3.000CO3-2 + log_k -26.8100 + +# Pu(III) RECOMMENDED DATA +############################ + +Pu(OH)3(cr) +Pu(OH)3 = +1.000Pu+3 +3.000H2O -3.000H+ + log_k 15.8000 + +PuPO4(s,hyd) +PuPO4 = +1.000Pu+3 +1.000PO4-3 + log_k -24.6000 + +# Pu(IV) RECOMMENDED DATA +############################ + +Pu(HPO4)2(am,hyd) +Pu(HPO4)2 = +1.000Pu+4 +2.000HPO4-2 + log_k -30.4500 + +PuO2(hyd,ag) +PuO2 = +1.000Pu+4 +2.000H2O -4.000H+ + log_k -2.3300 + +# Pu(V) RECOMMENDED DATA +############################ + +PuO2OH(am) +PuO2OH = +1.000PuO2+ +1.000H2O -1.000H+ + log_k 5.0000 + +# Pu(VI) RECOMMENDED DATA +############################ + +PuO2(OH)2:H2O(cr) +PuO2(OH)2:H2O = +1.000PuO2+2 +3.000H2O -2.000H+ + log_k 5.5000 + +PuO2CO3(s) +PuO2CO3 = +1.000PuO2+2 +1.000CO3-2 + log_k -14.6500 + +# Am(III) RECOMMENDED DATA +############################ + +Am(OH)3(cr) +Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+ + log_k 15.6000 + +Am(OH)3(am) +Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+ + log_k 16.9000 + +Am(CO3)1.5(am,hyd) +Am(CO3)1.5 = +1.000Am+3 +1.500CO3-2 + log_k -16.7000 + +AmOHCO3:0.5H2O(cr) +AmOHCO3:0.5H2O = +1.000Am+3 +1.000OH- +1.000CO3-2 +0.500H2O + log_k -22.4000 + +AmOHCO3(am,hyd) +AmOHCO3 = +1.000Am+3 +1.000OH- +1.000CO3-2 + log_k -20.2000 + +NaAm(CO3)2:5H2O(cr) +NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O + log_k -21.0000 + +Am2(CO3)3(am) +Am2(CO3)3 = +2.000Am+3 +3.000CO3-2 + log_k -33.4 +# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + +AmPO4(am,hyd) +AmPO4 = +1.000Am+3 +1.000PO4-3 + log_k -24.79 +# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) + + +# Am(V) RECOMMENDED DATA +############################ + +AmO2OH(am) +AmO2OH = +1.000AmO2+ +1.000H2O -1.000H+ + log_k 5.3000 + +NaAmO2CO3(s) +NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2 + log_k -10.9000 + +# Cm(III) SUPPLEMENTAL DATA +# ========================== + +Cm(OH)3(am,coll) +Cm(OH)3 = +1.000Cm+3 +3.000H2O -3.000H+ + log_k 17.2000 + + +################################################################################################################### + +# New implemented solid phases - Updated values + +################################################################################################################### + +### IRON - NEA TDB Vol. 13a ########################################################################################### + +Fe(cr) +Fe = +1.000Fe+2 + 2.000e- + log_k 15.893 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe(cr) + 2.0H+ = Fe+2 + 1.0H2(g) with logK 15.893 + +### Fe-Oxide/Hydroxide ######## + +Hematite +Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH- + log_k -84.11 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -42.05 + +Maghemite +Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH- + log_k -81.2 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -40.59 + +#Magnetite +#Fe3O4 + 4.000H2O = 1.000Fe+2 +2.000Fe+3 + 8.000OH- # Equation not clear +# log_k -101.67 +# # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there given only Gibbs-Energy + +Goethite +FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH- + log_k -41.83 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +Lepidocrosite +FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH- + log_k -40.13 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +Ferrihydrite +Fe(OH)3 = 1.000Fe+3 + 3.000OH- + log_k -38.97 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +### Fe-Carbonate ######## + +Siderite +FeCO3 = 1.000Fe+2 + 1.000HCO3- - 1.000H+ + log_k -0.349 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; calculated from Gibbs-Energy + +### Fe-Chloride ######### + +#FeCl2:H2O(cr) +#FeCl2:H2O = +1.000FeCl2(cr) + 1.000H2O +# log_k 4.38 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +#FeCl2:2H2O(cr) +#FeCl2:2H2O + 2.000H2O = +1.000FeCl2:4H2O +# log_k 4.131 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +#FeCl2:4H2O(cr) +#FeCl2:4H2O = +1.000FeCl2(cr) + 4.000H2O +# log_k -5.921 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +### Fe-Sulfate ######### + +FeS(cr) +FeS + 2.000H+ = +1.000Fe+2 +1.000H2S + log_k 3.8 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +Melanterite +FeSO4:7H2O = 1.000Fe+2 +1.000SO4-2 +7.000H2O + log_k -2.279 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013] + +FeSO4:4H2O(cr) +FeSO4:4H2O = 1.000Fe+2 +1.000SO4-2 +4.000H2O + log_k -1.654 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation + +FeSO4:H2O(cr) +FeSO4:H2O = 1.000Fe+2 +1.000SO4-2 +1.000H2O + log_k -0.9908 + # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation + + +#### ANDRA Database ThermoChimie_PHREEQC_eDH_v9b0.dat ############################################################ + +Albite +NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000Si(OH)4 -4.000H2O + log_k 2.74 # + # delta_h -82.813 kJ/mol # + # Enthalpy of formation: -3936.19 kJ/mol 00ARN/STE + # Type: Albite-low + # Data from ANDRA Data Base ThermoChimie + +Anorthite +CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000Si(OH)4 + log_k 25.31 # + # delta_h -314.358 kJ/mol # + # Enthalpy of formation: -4227.83 kJ/mol 00ARN/STE + # Data from ANDRA Data Base ThermoChimie + +Chlorite +(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633Si(OH)4 +7.468H2O + log_k 61.23 # + #delta_h -632.836 kJ/mol # + # Enthalpy of formation: -8240.69 kJ/mol 06GAI + # Type: Chlorite-Cca-2 + # Data from ANDRA Data Base ThermoChimie + + +Illite +K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150Si(OH)4 -0.600H2O + log_k 10.07 # + #delta_h -252.345 kJ/mol # + # Enthalpy of formation: -5805.328 kJ/mol 07VIE + # Type: Illite-FeIII + # Data from ANDRA Data Base ThermoChimie + +Montmorillonite +Na0.33Mg0.33Fe0.67Al1.0Si4O10(OH)2 = +0.330Mg+2 +0.330Na+ +0.670Fe+3 +1.000Al+3 -6.000H+ +4.000Si(OH)4 -4.000H2O + log_k 2.89 + #delta_h -137.779 kJ/mol + # Enthalpy of formation: -5368.33 kJ/mol 07VIE + # Type: Fe-Montmorillonite-Na + # Data from ANDRA Data Base ThermoChimie + + +##### Other Literature ###################################################################################### + +Gibbsite(gen) +Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ + log_k 10.35 +# Data for a generic Gibbsite phase from fit to experimental Gorleben data + +Gibbsite(am) +Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ + log_k 9.6661 +# Data from Lindsay (1979) + +K-feldspar # Orthoclase +KAlSi3O8 + 4H+ + 4H2O = Al+3 + 3Si(OH)4 + K+ + log_k -0.12 +# log_k calculated by logK(T)-functions (Stefánsson and Arnórsson, 2000) using T=298,15K +# microcline, the triclinic form of K-feldspar, was used as an analogue +# published in Richter et al. (2016) + +Muscovite +KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000Si(OH)4 + log_k 14.15 # ± 0.74 (the error representing 2sigma) # +# only calculations based on formation data are possible and the respective solubility constants were averaged +# published in Richter et al. (2016) + + +####################################################################################################### + + +# PMATCH GASES + +CH4(g) +CH4 = +1.000CH4 + log_k -2.8565 + +CO2(g) +CO2 = +1.000H+ -1.000H2O +1.000HCO3- + log_k -7.8198 + +H2(g) +H2 = +1.000H2 + log_k -3.1056 + +N2(g) +N2 = +1.000N2 + log_k -3.1864 + +O2(g) +O2 = +1.000O2 + log_k -2.8944 + +H2S(g) +H2S = +1.000HS- +1.000H+ + log_k -8.0100 + +H2Se(g) +H2Se = +1.000H2Se + log_k -1.1000 + + +##################################################################################################################### + +# Implemented Exchange Species relevant for the Opalinus Clay + +##################################################################################################################### + +# Genereal Information: +# +# Exchange Daten for all clay minerals (X), Montmorillonite (Y), Illite (Z) +# Allocation CEC -> 25 % Montmorillonite, 75 % Illite (clay minerals: Illite, Illite/Smectite mixed layers = 50 % Illite and 50 % Montmorillonite (Smectite)) + +EXCHANGE_MASTER_SPECIES + X X- # all clay minerals + Z Z- # Illite + Y Y- # Montmorillonite + +EXCHANGE_SPECIES + X- = X- + log_k 0.0 + + X- + H+ = HX # GD-Exp. Wersin et al. (2009), p. 53 + log_k = 0.0 + + X- + Na+ = NaX + log_k = 0.0 + + X- + K+ = KX + log_k = 1.4 # value from Pearson et al. (2011), PC-C Modellierung + + 2X- + Ca+2 = CaX2 + # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung + log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. + + 2X- + Mg+2 = MgX2 + # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung + log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. + + 2X- + Sr+2 = SrX2 + # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung + log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. + + 2X- + Fe+2 = FeX2 + # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung + log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. + +### Illite ### + + Z- = Z- + log_k 0.0 + + Z- + H+ = HZ # GD-Exp. Wersin et al. (2009), p. 53 + log_k = 0.0 + + Z- + Na+ = NaZ + log_k = 0.0 + + Z- + K+ = KZ + log_k = 0.92 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Illite) + + 2Z- + Ca+2 = CaZ2 + log_k = 0.24 # s.o. + + 2Z- + Mg+2 = MgZ2 + log_k = 0.58 # s.o. + + 2Z- + Sr+2 = SrZ2 + log_k = 0.24 # s.o. + + 2Z- + Fe+2 = FeZ2 + log_k = 0.7 # value from Pearson et al. (2011), PC-C modelling + + 2Z- + UO2+2 = UO2Z2 + log_k = 0.65 # value from M.Stockmann (HZDR); Illite: Kc=4.5 from /BB05/ (PSI-Report) + +### Montmorillonite ### + + Y- = Y- + log_k = 0.0 + Y- + Na+ = NaY + log_k = 0.0 + Y- + H+ = HY # GD-Exp. Wersin et al. (2009), p. 53 + log_k = 0.0 + Y- + K+ = KY + log_k = 1.1 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Smektite) + 2Y- + Mg+2 = MgY2 + log_k = 0.36 # s.o. + 2Y- + Ca+2 = CaY2 + log_k = 0.42 # s.o. + 2Y- + Sr+2 = SrY2 + log_k = 0.37 # s.o. + 2Y- + Fe+2 = FeY2 + log_k = 0.8 # value from Baeyens & Bradbury (2017), TR 17-13, Kc = 6.3, Tab. F1 and Soltermann (2014) + 2Y- + UO2+2 = UO2Y2 + log_k = 0.15 # value from M.Stockmann (HZDR); Montmorillonite: Kc=1.4 from /BB05a/ + + +###################################################################################################################### + +# Implemented surface species relevant in the context of the WEIMAR project (far-field of a nuclear waste repository) + +###################################################################################################################### + +# General information: +# +# This data compilation focuses on surface complexation parameters (reaction equations, pK- and logK-values) for +# representative sorbates (pair of element and minerals). All values are taken from the +# sorption database RES³T [Brendler et al. 2003] or were fitted from representative published experimental values. +# As SCM Type primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/low SCM data sets +# additionally other SCM models are used. Generic sites (»XOH) are prefered, with no differentiation between weak +# and strong sites. All pK- and logK-values were normalized to the reference binding site 2.31 sites/nm² and corrected +# to ionic strenght IS=0 using the Davies equation. Full bibliographic references are available in RES³T (www.hzdr.de/res3t). +# +# +# Additions made by Theresa: +# SCM-Daten für Tonminerale (Montmorrillonit = Smektit, Illit, Kaolinit, Chlorit) ergänzt basierend auf Joseph et al. (2013) = JOS13. +# DDL-Modell bevorzugt mit strong (sOH) und weak (wOH) binding sites für Illit und Montmorillonit. +# + +SURFACE_MASTER_SPECIES + + Ill_w Ill_wOH # Ill = Mineral group: 3-layer-clay minerals (illite) + Ill_s Ill_sOH # _w = weak binding sites, _s = strong binding sites + + Kln_a Kln_aOH # Kln = Mineral group: 2-layer clay minerals (kaolinite) + Kln_si Kln_siOH # _a = aluminol sites, _si = silanol sites + + Mll_w Mll_wOH # Mll = Mineral group: 3-layer clay minerals (smectite = montmorillonite) + Mll_s Mll_sOH # _w = weak binding sites, _s = strong binding sites + + Chl ChlOH # Chl = Mineral group: 4-layer clay minerals (chlorite) + +SURFACE_SPECIES + +### Kaolinite ################################################################################################## + +### Aluminol sites ### + + Kln_aOH = Kln_aOH + log_K 0.0 + Kln_aOH + H+ = Kln_aOH2+ + log_K 8.33 # mean of /TS96/ and /CW88/ + Kln_aOH = Kln_aO- + H+ + #log_K -9.09 # mean of /TS96/ and /CW88/ + log_K -9.73 # /JOS13/ + + Kln_aOH + UO2+2 = Kln_aOHUO2+2 +# log_k 9.2 # /PAY92/ (in TS96) + log_k 9.5 # normiert auf 1.155 sites/nm2 + Kln_aOH + UO2+2 = Kln_aOUO2+ + H+ +# log_k 2.18 # /PAY92/ (in TS96) + log_k 2.48 # normiert auf 1.155 sites/nm2 + Kln_aOH + UO2+2 + H2O = Kln_aOUO2(OH) + 2H+ +# log_k -4.74 # /PAY92/ (in TS96) + log_k -4.44 # normiert auf 1.155 sites/nm2 + +### Silanol sites ### + + Kln_siOH = Kln_siOH + log_K 0.0 + + Kln_siOH = Kln_siO- + H+ + log_K -6.9 # /JOS13/ + + Kln_siOH + UO2+2 = Kln_siOHUO2+2 + log_k 6.03 # /JOS13/ + Kln_siOH + UO2+2 = Kln_siOUO2+ + H+ + log_k 1.26 # /JOS13/ + Kln_siOH + UO2+2 + H2O = Kln_siOUO2(OH) + 2H+ + log_k -5.54 # /JOS13/, korrigiert von MS (HZDR) + +### Illite ################################################################################################### + +### weak-binding sites ### + + Ill_wOH = Ill_wOH + log_K 0.0 + Ill_wOH + H+ = Ill_wOH2+ + #log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ + log_K = 4.59 # /JOS13/ + Ill_wOH = Ill_wO- + H+ + #log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ + log_K = -7.11 # /JOS13/ + + # U(VI) + Ill_wOH + UO2+2 = Ill_wOUO2+ + H+ + #log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model + log_k = -0.81 # /JOS13/ + Ill_wOH + UO2+2 + H2O = Ill_wOUO2(OH) + 2H+ + #log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model + log_k = -6.21 # /JOS13/ + +### strong-binding sites ### + + Ill_sOH = Ill_sOH + log_K 0.0 + Ill_sOH + H+ = Ill_sOH2+ + #log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ + log_K = 4.9 # /JOS13/ + Ill_sOH = Ill_sO- + H+ + #log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ + log_K = -6.8 # /JOS13/ + + # U(VI) + Ill_sOH + UO2+2 = Ill_sOUO2+ + H+ + #log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model + log_k = 2. # /JOS13/ + Ill_sOH + UO2+2 + H2O = Ill_sOUO2(OH) + 2H+ + #log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model + log_k = -4.2 # /JOS13/ + Ill_sOH + UO2+2 + 2H2O = Ill_sOUO2(OH)2-1 + 3H+ + log_k = -10.9 # /JOS13/ + Ill_sOH + UO2+2 + 3H2O = Ill_sOUO2(OH)3-2 + 4H+ + log_k = -18.1 # /JOS13/ + + # U(IV) + # Ill_sOH + U+4 + H2O = Ill_sOUOH+2 + 2H+ + # log_k = 7.1 # TR 17-11, Tab. A-3 + # Ill_sOH + U+4 + 2H2O = Ill_sOU(OH)2+1 + 3H+ + # log_k = 3.6 # TR 17-11, Tab. A-3 + # Ill_sOH + U+4 + 4H2O = Ill_sOU(OH)4 + 5H+ + # log_k = -1.6 # TR 17-11, Tab. A-3 + +### Montmorillonite ################################################################################################ + +### weak-binding sites ### + + Mll_wOH = Mll_wOH + log_K 0.0 + Mll_wOH + H+ = Mll_wOH2+ + log_K = 3.98 # /JOS13/ + Mll_wOH = Mll_wO- + H+ + log_K = -8.42 # /JOS13/ + + # U(VI) + Mll_wOH + UO2+2 = Mll_wOUO2+ + H+ + log_k = 0.18 # /JOS13/ + Mll_wOH + UO2+2 + H2O = Mll_wOUO2(OH) + 2H+ + log_k = -6.22 # /JOS13/ + +### strong-binding sites ### + + Mll_sOH = Mll_sOH + log_K 0.0 + Mll_sOH + H+ = Mll_sOH2+ + log_K = 4.34 # /JOS13/ + Mll_sOH = Mll_sO- + H+ + log_K = -8.06 # /JOS13/ + + # U(VI) + Mll_sOH + UO2+2 = Mll_sOUO2+ + H+ + log_k = 2.94 # /JOS13/ + Mll_sOH + UO2+2 + H2O = Mll_sOUO2(OH) + 2H+ + log_k = -3.56 # /JOS13/ + Mll_sOH + UO2+2 + 2H2O = Mll_sOUO2(OH)2-1 + 3H+ + log_k = -11.16 # /JOS13/ + Mll_sOH + UO2+2 + 3H2O = Mll_sOUO2(OH)3-2 + 4H+ + log_k = -20.66 # /JOS13/ + + # U(IV) + # Mll_sOH + U+4 + H2O = Mll_sOUOH+2 + 2H+ + # log_k = 7.7 # TR 17-11, Tab. A-3 + # Mll_sOH + U+4 + 2H2O = Mll_sOU(OH)2+1 + 3H+ + # log_k = 4.0 # TR 17-11, Tab. A-3 + # Mll_sOH + U+4 + 4H2O = Mll_sOU(OH)4 + 5H+ + # log_k = -1.4 # TR 17-11, Tab. A-3 + +### Chlorite ######################################################################################################### + + ChlOH = ChlOH + log_K 0.0 + ChlOH + H+ = ChlOH2+ + log_K = 10.2 # /JOS13/ + + ChlOH + UO2+2 = ChlOUO2+ + H+ + log_K = 4.51 # /JOS13/ + + +END diff --git a/bench/surfex/SurfExBase.pqi b/bench/surfex/SurfExBase.pqi new file mode 100644 index 000000000..a820d70e0 --- /dev/null +++ b/bench/surfex/SurfExBase.pqi @@ -0,0 +1,56 @@ +## Time-stamp: "Last modified 2023-02-27 14:31:11 delucia" +KNOBS + -logfile false + -iterations 10000 + -convergence_tolerance 1E-12 + -step_size 2 + -pe_step_size 2 +SELECTED_OUTPUT + -reset false + -high_precision true + -solution true + -state true + -step true + -pH true + -pe true + -ionic_strength true + -water true +USER_PUNCH +-head total_o total_h cb C(-4) C(4) Ca Cl Fe(2) Fe(3) H(0) K Mg Na S(-2) S(2) S(4) S(6) Sr U(4) U(5) U(6) UO2(am,hyd) KdU +-start +5 w=TOT("water") +10 PUNCH TOTMOLE("O"), TOTMOLE("H"), CHARGE_BALANCE, w*TOT("C(-4)"), w*TOT("C(4)"), w*TOT("Ca"), w*TOT("Cl"), w*TOT("Fe(2)"), w*TOT("Fe(3)"), w*TOT("H(0)"), w*TOT("K"), w*TOT("Mg"), w*TOT("Na"), w*TOT("S(-2)"), w*TOT("S(2)"), w*TOT("S(4)"), w*TOT("S(6)"), w*TOT("Sr"), w*TOT("U(4)"), w*TOT("U(5)"), w*TOT("U(6)"), EQUI("UO2(am,hyd)") +20 PUNCH ((SURF("U, Ill")+SURF("U, Mll")+SURF("U, Kln")+EDL("U, Ill")+EDL("U, Mll")+EDL("U, Kln"))/((TOT("U")*1.01583)))/(0.002251896406*1000) +-end +SOLUTION 1 +temp 13 +units mol/kgw +pH 7.06355 +pe -2.626517 +C(4) 0.001990694 +Ca 0.02172649 +Cl 0.3227673 charge +Fe 0.0001434717 +K 0.001902357 +Mg 0.01739704 +Na 0.2762882 +S(6) 0.01652701 +Sr 0.0004520361 +U(4) 8.147792e-12 +U(6) 2.237946e-09 +-water 0.00133 +SURFACE 1 +-equil 1 +-sites_units density +-donnan 4.9e-10 + Kln_aOH 1.155 11. 5.0518 + Kln_siOH 1.155 + Ill_sOH 0.05 100. 5.5931 + Ill_wOH 2.26 + Mll_sOH 0.05 100. 1.0825 + Mll_wOH 2.26 +EXCHANGE 1 + -equil 1 + Z 0.0012585 + Y 0.0009418 +END diff --git a/bench/surfex/surfex.R b/bench/surfex/surfex.R new file mode 100644 index 000000000..1810bce83 --- /dev/null +++ b/bench/surfex/surfex.R @@ -0,0 +1,139 @@ +## Time-stamp: "Last modified 2023-02-27 18:33:30 delucia" + +database <- normalizePath("./SMILE_2021_11_01_TH.dat") +input_script <- normalizePath("./SurfExBase.pqi") + +cat(paste(":: R This is a test 1\n")) + +################################################################# +## Section 1 ## +## Grid initialization ## +################################################################# + +n <- 10 +m <- 10 + +types <- c("scratch", "phreeqc", "rds") + +init_cell <- list(H = 1.476571028625e-01, + O = 7.392297218936e-02, + Charge = -1.765225732724e-18, + `C(-4)` = 2.477908970828e-21, + `C(4)` = 2.647623016916e-06, + Ca = 2.889623169138e-05, + Cl = 4.292806181039e-04, + `Fe(2)` =1.908142472666e-07, + `Fe(3)` =3.173306589931e-12, + `H(0)` =2.675642675119e-15, + K = 2.530134809667e-06, + Mg =2.313806319294e-05, + Na =3.674633059628e-04, + `S(-2)` = 8.589766637180e-15, + `S(2)` = 1.205284362720e-19, + `S(4)` = 9.108958772790e-18, + `S(6)` = 2.198092329098e-05, + Sr = 6.012080128154e-07, + `U(4)` = 1.039668623852e-14, + `U(5)` = 1.208394829796e-15, + `U(6)` = 2.976409147150e-12) + + +grid <- list( + n_cells = c(n, m), + s_cells = c(1, 1), + type = "scratch", + init_cell = as.data.frame(init_cell), + database = database, + input_script = input_script +) + + +################################################################## +## Section 2 ## +## Diffusion parameters and boundary conditions ## +################################################################## + +vecinj_diffu <- list( + list(H = 0.147659686316291, + O = 0.0739242798146046, + Charge = 7.46361643222701e-20, + `C(-4)` = 2.92438561098248e-21, + `C(4)` = 2.65160558871092e-06, + Ca = 2.89001071336443e-05, + Cl = 0.000429291158114428, + `Fe(2)` = 1.90823391198114e-07, + `Fe(3)` = 3.10832423034763e-12, + `H(0)` = 2.7888235127385e-15, + K = 2.5301787e-06, + Mg = 2.31391999937907e-05, + Na = 0.00036746969, + `S(-2)` = 1.01376078438546e-14, + `S(2)` = 1.42247026981542e-19, + `S(4)` = 9.49422092568557e-18, + `S(6)` = 2.19812504654191e-05, + Sr = 6.01218519999999e-07, + `U(4)` = 4.82255946569383e-12, + `U(5)` = 5.49050615347901e-13, + `U(6)` = 1.32462838991902e-09) +) + +## diffusion coefficients +alpha_diffu <- c(H = 1E-6, O = 1E-6, Charge = 1E-6, `C(-4)` = 1E-6, + `C(4)` = 1E-6, Ca = 1E-6, Cl = 1E-6, `Fe(2)` = 1E-6, + `Fe(3)` = 1E-6, `H(0)` = 1E-6, K = 1E-6, Mg = 1E-6, + Na = 1E-6, `S(-2)` = 1E-6, `S(2)` = 1E-6, + `S(4)` = 1E-6, `S(6)` = 1E-6, Sr = 1E-6, + `U(4)` = 1E-6, `U(5)` = 1E-6, `U(6)` = 1E-6) + +## list of boundary conditions/inner nodes + +## vecinj_inner <- list( +## list(1,1,1) +## ) + +boundary <- list( + "N" = rep(1, n), + "E" = rep(0, n), + "S" = rep(0, n), + "W" = rep(0, n) +) + +diffu_list <- names(alpha_diffu) + +diffusion <- list( + init = init_cell, + vecinj = do.call(rbind.data.frame, vecinj_diffu), +# vecinj_inner = vecinj_inner, + vecinj_index = boundary, + alpha = alpha_diffu +) + +################################################################# +## Section 3 ## +## Chemistry module (Phreeqc) ## +################################################################# + + +chemistry <- list( + database = database, + input_script = input_script +) + +################################################################# +## Section 4 ## +## Putting all those things together ## +################################################################# + + +iterations <- 10 +dt <- 200 + +setup <- list( + grid = grid, + diffusion = diffusion, + chemistry = chemistry, + iterations = iterations, + timesteps = rep(dt, iterations), + store_result = TRUE, + out_save = c(5, iterations) +)