mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-15 12:28:22 +01:00
update benchmarks for ai surrogate
This commit is contained in:
parent
c7d1fc152c
commit
49135615d1
@ -1,12 +1,10 @@
|
||||
# Create a list of files
|
||||
set(bench_files
|
||||
barite_200.R
|
||||
barite_het.R
|
||||
)
|
||||
|
||||
set(runtime_files
|
||||
barite_200_rt.R
|
||||
barite_het_rt.R
|
||||
)
|
||||
|
||||
# add_custom_target(barite_bench DEPENDS ${bench_files} ${runtime_files})
|
||||
|
||||
82
bench/barite/barite_200_surrogate_input_script.R
Normal file
82
bench/barite/barite_200_surrogate_input_script.R
Normal file
@ -0,0 +1,82 @@
|
||||
scale_min_max <- function(x, min, max, backtransform) {
|
||||
if (backtransform) {
|
||||
return((x * (max - min)) + min)
|
||||
} else {
|
||||
return((x - min) / (max - min))
|
||||
}
|
||||
}
|
||||
|
||||
scale_standardizer <- function(x, mean, scale, backtransform) {
|
||||
if(backtransform){
|
||||
return(x * scale + mean)
|
||||
}
|
||||
else{
|
||||
return((x-mean) / scale)
|
||||
}
|
||||
}
|
||||
|
||||
standard <- list(mean = c(H = 111.01243361730982, O= 55.50673140754027, Ba= 0.0016161137065825058,
|
||||
Cl= 0.0534503766678322, S=0.00012864849674669584, Sr=0.0252377348949622,
|
||||
Barite_kin=0.05292312117000998, Celestite_kin=0.9475491659328229),
|
||||
scale = c(H=1.0, O=0.00048139729680698453, Ba=0.008945717576237102, Cl=0.03587363709464328,
|
||||
S=0.00012035100591827131, Sr=0.01523052668095922, Barite_kin=0.21668648247230615,
|
||||
Celestite_kin=0.21639449682671968))
|
||||
|
||||
minmax <- list(min = c(H = 111.012433592824, O = 55.5062185549492, Charge = -3.1028354471876e-08,
|
||||
Ba = 1.87312878574393e-141, Cl = 0, `S(6)` = 4.24227510643685e-07,
|
||||
Sr = 0.00049382996130541, Barite = 0.000999542409828586, Celestite = 0.244801877115968),
|
||||
max = c(H = 111.012433679682, O = 55.5087003521685, Charge = 5.27666636082035e-07,
|
||||
Ba = 0.0908849779513762, Cl = 0.195697626449355, `S(6)` = 0.000620774752665846,
|
||||
Sr = 0.0558680070692722, Barite = 0.756779139057097, Celestite = 1.00075422160624
|
||||
))
|
||||
|
||||
ai_surrogate_species_input = c("H", "O", "Ba", "Cl", "S", "Sr", "Barite_kin", "Celestite_kin")
|
||||
ai_surrogate_species_output = c("O", "Ba", "S", "Sr", "Barite_kin", "Celestite_kin")
|
||||
|
||||
|
||||
threshold <- list(species = "Cl", value = 2E-10)
|
||||
|
||||
preprocess <- function(df) {
|
||||
if (!is.data.frame(df))
|
||||
df <- as.data.frame(df, check.names = FALSE)
|
||||
|
||||
as.data.frame(lapply(colnames(df),
|
||||
function(x) scale_standardizer(x=df[x],
|
||||
mean=standard$mean[x],
|
||||
scale=standard$scale[x],
|
||||
backtransform=FALSE)),
|
||||
check.names = FALSE)
|
||||
}
|
||||
|
||||
postprocess <- function(df) {
|
||||
if (!is.data.frame(df))
|
||||
df <- as.data.frame(df, check.names = FALSE)
|
||||
|
||||
as.data.frame(lapply(colnames(df),
|
||||
function(x) scale_standardizer(x=df[x],
|
||||
mean=standard$mean[x],
|
||||
scale=standard$scale[x],
|
||||
backtransform=TRUE)),
|
||||
check.names = FALSE)
|
||||
}
|
||||
|
||||
mass_balance <- function(predictors, prediction) {
|
||||
dBa <- abs(prediction$Ba + prediction$Barite_kin -
|
||||
predictors$Ba - predictors$Barite_kin)
|
||||
dSr <- abs(prediction$Sr + prediction$Celestite_kin -
|
||||
predictors$Sr - predictors$Celestite_kin)
|
||||
dS <- abs(prediction$S + prediction$Celestite_kin + prediction$Barite_kin -
|
||||
predictors$S - predictors$Celestite_kin - predictors$Barite_kin)
|
||||
return(dBa + dSr + dS)
|
||||
}
|
||||
|
||||
validate_predictions <- function(predictors, prediction) {
|
||||
epsilon <- 1E-5
|
||||
mb <- mass_balance(predictors, prediction)
|
||||
msgm("Mass balance mean:", mean(mb))
|
||||
msgm("Mass balance variance:", var(mb))
|
||||
ret <- mb < epsilon
|
||||
msgm("Rows where mass balance meets threshold", epsilon, ":",
|
||||
sum(ret), "/", nrow(predictors))
|
||||
return(ret)
|
||||
}
|
||||
@ -1,48 +0,0 @@
|
||||
## load a pretrained model from tensorflow file
|
||||
## Use the global variable "ai_surrogate_base_path" when using file paths
|
||||
## relative to the input script
|
||||
initiate_model <- function() {
|
||||
init_model <- normalizePath(paste0(ai_surrogate_base_path,
|
||||
"model_min_max_float64.keras"))
|
||||
return(load_model_tf(init_model))
|
||||
}
|
||||
|
||||
scale_min_max <- function(x, min, max, backtransform) {
|
||||
if (backtransform) {
|
||||
return((x * (max - min)) + min)
|
||||
} else {
|
||||
return((x - min) / (max - min))
|
||||
}
|
||||
}
|
||||
|
||||
preprocess <- function(df, backtransform = FALSE, outputs = FALSE) {
|
||||
minmax_file <- normalizePath(paste0(ai_surrogate_base_path,
|
||||
"min_max_bounds.rds"))
|
||||
global_minmax <- readRDS(minmax_file)
|
||||
for (column in colnames(df)) {
|
||||
df[column] <- lapply(df[column],
|
||||
scale_min_max,
|
||||
global_minmax$min[column],
|
||||
global_minmax$max[column],
|
||||
backtransform)
|
||||
}
|
||||
return(df)
|
||||
}
|
||||
|
||||
mass_balance <- function(predictors, prediction) {
|
||||
dBa <- abs(prediction$Ba + prediction$Barite -
|
||||
predictors$Ba - predictors$Barite)
|
||||
dSr <- abs(prediction$Sr + prediction$Celestite -
|
||||
predictors$Sr - predictors$Celestite)
|
||||
return(dBa + dSr)
|
||||
}
|
||||
|
||||
validate_predictions <- function(predictors, prediction) {
|
||||
epsilon <- 3e-5
|
||||
mb <- mass_balance(predictors, prediction)
|
||||
msgm("Mass balance mean:", mean(mb))
|
||||
msgm("Mass balance variance:", var(mb))
|
||||
msgm("Rows where mass balance meets threshold", epsilon, ":",
|
||||
sum(mb < epsilon))
|
||||
return(mb < epsilon)
|
||||
}
|
||||
Binary file not shown.
@ -1,32 +0,0 @@
|
||||
grid_def <- matrix(c(2, 3), nrow = 2, ncol = 5)
|
||||
|
||||
# Define grid configuration for POET model
|
||||
grid_setup <- list(
|
||||
pqc_in_file = "./barite_het.pqi",
|
||||
pqc_db_file = "./db_barite.dat", # Path to the database file for Phreeqc
|
||||
grid_def = grid_def, # Definition of the grid, containing IDs according to the Phreeqc input script
|
||||
grid_size = c(ncol(grid_def), nrow(grid_def)), # Size of the grid in meters
|
||||
constant_cells = c() # IDs of cells with constant concentration
|
||||
)
|
||||
|
||||
diffusion_setup <- list(
|
||||
boundaries = list(
|
||||
"W" = list(
|
||||
"type" = rep("constant", nrow(grid_def)),
|
||||
"sol_id" = rep(4, nrow(grid_def)),
|
||||
"cell" = seq_len(nrow(grid_def))
|
||||
)
|
||||
),
|
||||
alpha_x = 1e-6,
|
||||
alpha_y = matrix(runif(10, 1e-8, 1e-7),
|
||||
nrow = nrow(grid_def),
|
||||
ncol = ncol(grid_def)
|
||||
)
|
||||
)
|
||||
|
||||
# Define a setup list for simulation configuration
|
||||
setup <- list(
|
||||
Grid = grid_setup, # Parameters related to the grid structure
|
||||
Diffusion = diffusion_setup, # Parameters related to the diffusion process
|
||||
Chemistry = list()
|
||||
)
|
||||
@ -1,80 +0,0 @@
|
||||
## Initial: everywhere equilibrium with Celestite NB: The aqueous
|
||||
## solution *resulting* from this calculation is to be used as initial
|
||||
## state everywhere in the domain
|
||||
SOLUTION 1
|
||||
units mol/kgw
|
||||
water 1
|
||||
temperature 25
|
||||
pH 7
|
||||
pe 4
|
||||
S(6) 1e-12
|
||||
Sr 1e-12
|
||||
Ba 1e-12
|
||||
Cl 1e-12
|
||||
PURE 1
|
||||
Celestite 0.0 1
|
||||
|
||||
SAVE SOLUTION 2 # <- phreeqc keyword to store and later reuse these results
|
||||
END
|
||||
|
||||
RUN_CELLS
|
||||
-cells 1
|
||||
|
||||
COPY solution 1 2-3
|
||||
|
||||
## Here a 5x2 domain:
|
||||
|
||||
|---+---+---+---+---|
|
||||
-> | 2 | 2 | 2 | 2 | 2 |
|
||||
4 |---+---+---+---+---|
|
||||
-> | 3 | 3 | 3 | 3 | 3 |
|
||||
|---+---+---+---+---|
|
||||
|
||||
## East boundary: "injection" of solution 4. North, W, S boundaries: closed
|
||||
|
||||
## Here the two distinct zones: nr 2 with kinetics Celestite (initial
|
||||
## amount is 0, is then allowed to precipitate) and nr 3 with kinetic
|
||||
## Celestite and Barite (both initially > 0) where the actual
|
||||
## replacement takes place
|
||||
|
||||
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
|
||||
KINETICS 2
|
||||
Celestite
|
||||
-m 0 # Allowed to precipitate
|
||||
-parms 10.0
|
||||
-tol 1e-9
|
||||
|
||||
END
|
||||
|
||||
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
|
||||
KINETICS 3
|
||||
Barite
|
||||
-m 0.001
|
||||
-parms 50.
|
||||
-tol 1e-9
|
||||
Celestite
|
||||
-m 1
|
||||
-parms 10.0
|
||||
-tol 1e-9
|
||||
END
|
||||
|
||||
## A BaCl2 solution (nr 4) is "injected" from the left boundary:
|
||||
SOLUTION 4
|
||||
units mol/kgw
|
||||
pH 7
|
||||
water 1
|
||||
temp 25
|
||||
Ba 0.1
|
||||
Cl 0.2
|
||||
END
|
||||
## NB: again, the *result* of the SOLUTION 4 script defines the
|
||||
## concentration of all elements (+charge, tot H, tot O)
|
||||
|
||||
## Ideally, in the initial state SOLUTION 1 we should not have to
|
||||
## define the 4 elemental concentrations (S(6), Sr, Ba and Cl) but
|
||||
## obtain them having run once the scripts with the aqueous solution
|
||||
## resulting from SOLUTION 1 once with KINETICS 2 and once with
|
||||
## KINETICS 3.
|
||||
|
||||
RUN_CELLS
|
||||
-cells 2-4
|
||||
@ -1,4 +0,0 @@
|
||||
list(
|
||||
timesteps = rep(50, 100),
|
||||
store_result = TRUE
|
||||
)
|
||||
BIN
bench/barite/barite_trained.weights.h5
Normal file
BIN
bench/barite/barite_trained.weights.h5
Normal file
Binary file not shown.
@ -1,11 +1,9 @@
|
||||
set(bench_files
|
||||
dolo_inner_large.R
|
||||
dolo_interp.R
|
||||
)
|
||||
|
||||
set(runtime_files
|
||||
dolo_inner_large_rt.R
|
||||
dolo_interp_rt.R
|
||||
dolo_interp_rt_dt20000.R
|
||||
)
|
||||
|
||||
ADD_BENCH_TARGET(
|
||||
|
||||
Binary file not shown.
@ -1,115 +0,0 @@
|
||||
rows <- 2000
|
||||
cols <- 1000
|
||||
|
||||
grid_def <- matrix(2, nrow = rows, ncol = cols)
|
||||
|
||||
# Define grid configuration for POET model
|
||||
grid_setup <- list(
|
||||
pqc_in_file = "./dol.pqi",
|
||||
pqc_db_file = "./phreeqc_kin.dat", # Path to the database file for Phreeqc
|
||||
grid_def = grid_def, # Definition of the grid, containing IDs according to the Phreeqc input script
|
||||
grid_size = c(cols, rows) / 100, # Size of the grid in meters
|
||||
constant_cells = c() # IDs of cells with constant concentration
|
||||
)
|
||||
|
||||
bound_size <- 2
|
||||
|
||||
diffusion_setup <- list(
|
||||
inner_boundaries = list(
|
||||
"row" = c(400, 1400, 1600),
|
||||
"col" = c(200, 800, 800),
|
||||
"sol_id" = c(3, 4, 4)
|
||||
),
|
||||
alpha_x = 1e-6,
|
||||
alpha_y = 1e-6
|
||||
)
|
||||
|
||||
check_sign_cal_dol_dht <- function(old, new) {
|
||||
if ((old["Calcite"] == 0) != (new["Calcite"] == 0)) {
|
||||
return(TRUE)
|
||||
}
|
||||
if ((old["Dolomite"] == 0) != (new["Dolomite"] == 0)) {
|
||||
return(TRUE)
|
||||
}
|
||||
return(FALSE)
|
||||
}
|
||||
|
||||
fuzz_input_dht_keys <- function(input) {
|
||||
dht_species <- c(
|
||||
"H" = 3,
|
||||
"O" = 3,
|
||||
"Charge" = 3,
|
||||
"C(4)" = 6,
|
||||
"Ca" = 6,
|
||||
"Cl" = 3,
|
||||
"Mg" = 5,
|
||||
"Calcite" = 4,
|
||||
"Dolomite" = 4
|
||||
)
|
||||
return(input[names(dht_species)])
|
||||
}
|
||||
|
||||
check_sign_cal_dol_interp <- function(to_interp, data_set) {
|
||||
dht_species <- c(
|
||||
"H" = 3,
|
||||
"O" = 3,
|
||||
"Charge" = 3,
|
||||
"C(4)" = 6,
|
||||
"Ca" = 6,
|
||||
"Cl" = 3,
|
||||
"Mg" = 5,
|
||||
"Calcite" = 4,
|
||||
"Dolomite" = 4
|
||||
)
|
||||
data_set <- as.data.frame(do.call(rbind, data_set), check.names = FALSE, optional = TRUE)
|
||||
names(data_set) <- names(dht_species)
|
||||
cal <- (data_set$Calcite == 0) == (to_interp["Calcite"] == 0)
|
||||
dol <- (data_set$Dolomite == 0) == (to_interp["Dolomite"] == 0)
|
||||
|
||||
cal_dol_same_sig <- cal == dol
|
||||
return(rev(which(!cal_dol_same_sig)))
|
||||
}
|
||||
|
||||
check_neg_cal_dol <- function(result) {
|
||||
neg_sign <- (result["Calcite"] < 0) || (result["Dolomite"] < 0)
|
||||
return(neg_sign)
|
||||
}
|
||||
|
||||
# Optional when using Interpolation (example with less key species and custom
|
||||
# significant digits)
|
||||
|
||||
pht_species <- c(
|
||||
"C(4)" = 3,
|
||||
"Ca" = 3,
|
||||
"Mg" = 2,
|
||||
"Calcite" = 2,
|
||||
"Dolomite" = 2
|
||||
)
|
||||
|
||||
chemistry_setup <- list(
|
||||
dht_species = c(
|
||||
"H" = 3,
|
||||
"O" = 3,
|
||||
"Charge" = 3,
|
||||
"C(4)" = 6,
|
||||
"Ca" = 6,
|
||||
"Cl" = 3,
|
||||
"Mg" = 5,
|
||||
"Calcite" = 4,
|
||||
"Dolomite" = 4
|
||||
),
|
||||
pht_species = pht_species,
|
||||
hooks = list(
|
||||
dht_fill = check_sign_cal_dol_dht,
|
||||
dht_fuzz = fuzz_input_dht_keys,
|
||||
interp_pre = check_sign_cal_dol_interp,
|
||||
interp_post = check_neg_cal_dol
|
||||
)
|
||||
)
|
||||
|
||||
# Define a setup list for simulation configuration
|
||||
setup <- list(
|
||||
Grid = grid_setup, # Parameters related to the grid structure
|
||||
Diffusion = diffusion_setup, # Parameters related to the diffusion process
|
||||
Chemistry = chemistry_setup # Parameters related to the chemistry process
|
||||
)
|
||||
@ -1,10 +0,0 @@
|
||||
iterations <- 500
|
||||
dt <- 50
|
||||
|
||||
out_save <- seq(5, iterations, by = 5)
|
||||
|
||||
list(
|
||||
timesteps = rep(dt, iterations),
|
||||
store_result = TRUE,
|
||||
out_save = out_save
|
||||
)
|
||||
@ -7,6 +7,7 @@ grid_def <- matrix(2, nrow = rows, ncol = cols)
|
||||
grid_setup <- list(
|
||||
pqc_in_file = "./dol.pqi",
|
||||
pqc_db_file = "./phreeqc_kin.dat",
|
||||
pqc_with_redox = TRUE,
|
||||
grid_def = grid_def,
|
||||
grid_size = c(5, 2.5),
|
||||
constant_cells = c()
|
||||
@ -120,7 +121,8 @@ chemistry_setup <- list(
|
||||
## dht_fuzz = fuzz_input_dht_keys,
|
||||
interp_pre = check_sign_cal_dol_interp,
|
||||
interp_post = check_neg_cal_dol
|
||||
)
|
||||
),
|
||||
ai_surrogate_input_script = "./dolo_surrogate_input_script.R"
|
||||
)
|
||||
|
||||
## Define a setup list for simulation configuration
|
||||
|
||||
@ -1,10 +0,0 @@
|
||||
iterations <- 2000
|
||||
dt <- 200
|
||||
|
||||
out_save <- c(1, 10, 20, seq(40, iterations, by = 40))
|
||||
|
||||
list(
|
||||
timesteps = rep(dt, iterations),
|
||||
store_result = TRUE,
|
||||
out_save = out_save
|
||||
)
|
||||
74
bench/dolo/dolo_surrogate_input_script.R
Normal file
74
bench/dolo/dolo_surrogate_input_script.R
Normal file
@ -0,0 +1,74 @@
|
||||
scale_min_max <- function(x, min, max, backtransform) {
|
||||
if (backtransform) {
|
||||
return((x * (max - min)) + min)
|
||||
} else {
|
||||
return((x - min) / (max - min))
|
||||
}
|
||||
}
|
||||
|
||||
scale_standardizer <- function(x, mean, scale, backtransform) {
|
||||
if(backtransform){
|
||||
return(x * scale + mean)
|
||||
}
|
||||
else{
|
||||
return((x-mean) / scale)
|
||||
}
|
||||
}
|
||||
|
||||
standard <- list(mean = c(H = 111.0124335959659, O=55.5065739707202, 'C(-4)'=1.5788555695339323e-15, 'C(4)'=0.00011905649680154037,
|
||||
Ca= 0.00012525858032576948, Cl=0.00010368471137502122, Mg=4.5640346338857756e-05, Calcite_kin=0.0001798444527389999,
|
||||
Dolomite_kin=7.6152065281986634e-06),
|
||||
scale = c(H=1.0, O=3.54850912318837e-05, 'C(-4)'=2.675559053860093e-14, 'C(4)'=1.1829735682920146e-05, Ca=1.207381343127647e-05, Cl=0.00024586541554245565,
|
||||
Mg=0.00011794307217698012, Calcite_kin=5.946457663332385e-05, Dolomite_kin=2.688201435907049e-05))
|
||||
|
||||
|
||||
ai_surrogate_species_input = c("H", "O", "C(-4)", "C(4)", "Ca", "Cl", "Mg", "Calcite_kin", "Dolomite_kin")
|
||||
ai_surrogate_species_output = c("H", "O", "C(-4)", "C(4)", "Ca", "Mg", "Calcite_kin", "Dolomite_kin")
|
||||
|
||||
|
||||
threshold <- list(species = "Cl", value = 2E-10)
|
||||
|
||||
preprocess <- function(df) {
|
||||
if (!is.data.frame(df))
|
||||
df <- as.data.frame(df, check.names = FALSE)
|
||||
|
||||
as.data.frame(lapply(colnames(df),
|
||||
function(x) scale_standardizer(x=df[x],
|
||||
mean=standard$mean[x],
|
||||
scale=standard$scale[x],
|
||||
backtransform=FALSE)),
|
||||
check.names = FALSE)
|
||||
}
|
||||
|
||||
postprocess <- function(df) {
|
||||
if (!is.data.frame(df))
|
||||
df <- as.data.frame(df, check.names = FALSE)
|
||||
|
||||
as.data.frame(lapply(colnames(df),
|
||||
function(x) scale_standardizer(x=df[x],
|
||||
mean=standard$mean[x],
|
||||
scale=standard$scale[x],
|
||||
backtransform=TRUE)),
|
||||
check.names = FALSE)
|
||||
}
|
||||
|
||||
mass_balance <- function(predictors, prediction) {
|
||||
dCa <- abs(prediction$Ca + prediction$Calcite_kin + prediction$Dolomite_kin -
|
||||
predictors$Ca - predictors$Calcite_kin - predictors$Dolomite_kin)
|
||||
dC <- abs(prediction$'C(-4)' + prediction$'C(4)' + prediction$Calcite_kin + 2 * prediction$Dolomite_kin
|
||||
- predictors$'C(-4)' - predictors$'C(4)' - predictors$Calcite_kin - 2 * predictors$Dolomite_kin)
|
||||
dMg <- abs(prediction$Mg + prediction$Dolomite_kin -
|
||||
predictors$Mg - predictors$Dolomite_kin)
|
||||
return(dCa + dC + dMg)
|
||||
}
|
||||
|
||||
validate_predictions <- function(predictors, prediction) {
|
||||
epsilon <- 1E-8
|
||||
mb <- mass_balance(predictors, prediction)
|
||||
msgm("Mass balance mean:", mean(mb))
|
||||
msgm("Mass balance variance:", var(mb))
|
||||
ret <- mb < epsilon
|
||||
msgm("Rows where mass balance meets threshold", epsilon, ":",
|
||||
sum(ret))
|
||||
return(ret)
|
||||
}
|
||||
BIN
bench/dolo/dolomite_trained.weights.h5
Normal file
BIN
bench/dolo/dolomite_trained.weights.h5
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user