update benchmarks for ai surrogate

This commit is contained in:
Hannes Signer 2025-12-10 19:59:15 +01:00
parent c7d1fc152c
commit 49135615d1
16 changed files with 160 additions and 305 deletions

View File

@ -1,12 +1,10 @@
# Create a list of files
set(bench_files
barite_200.R
barite_het.R
)
set(runtime_files
barite_200_rt.R
barite_het_rt.R
)
# add_custom_target(barite_bench DEPENDS ${bench_files} ${runtime_files})

View File

@ -0,0 +1,82 @@
scale_min_max <- function(x, min, max, backtransform) {
if (backtransform) {
return((x * (max - min)) + min)
} else {
return((x - min) / (max - min))
}
}
scale_standardizer <- function(x, mean, scale, backtransform) {
if(backtransform){
return(x * scale + mean)
}
else{
return((x-mean) / scale)
}
}
standard <- list(mean = c(H = 111.01243361730982, O= 55.50673140754027, Ba= 0.0016161137065825058,
Cl= 0.0534503766678322, S=0.00012864849674669584, Sr=0.0252377348949622,
Barite_kin=0.05292312117000998, Celestite_kin=0.9475491659328229),
scale = c(H=1.0, O=0.00048139729680698453, Ba=0.008945717576237102, Cl=0.03587363709464328,
S=0.00012035100591827131, Sr=0.01523052668095922, Barite_kin=0.21668648247230615,
Celestite_kin=0.21639449682671968))
minmax <- list(min = c(H = 111.012433592824, O = 55.5062185549492, Charge = -3.1028354471876e-08,
Ba = 1.87312878574393e-141, Cl = 0, `S(6)` = 4.24227510643685e-07,
Sr = 0.00049382996130541, Barite = 0.000999542409828586, Celestite = 0.244801877115968),
max = c(H = 111.012433679682, O = 55.5087003521685, Charge = 5.27666636082035e-07,
Ba = 0.0908849779513762, Cl = 0.195697626449355, `S(6)` = 0.000620774752665846,
Sr = 0.0558680070692722, Barite = 0.756779139057097, Celestite = 1.00075422160624
))
ai_surrogate_species_input = c("H", "O", "Ba", "Cl", "S", "Sr", "Barite_kin", "Celestite_kin")
ai_surrogate_species_output = c("O", "Ba", "S", "Sr", "Barite_kin", "Celestite_kin")
threshold <- list(species = "Cl", value = 2E-10)
preprocess <- function(df) {
if (!is.data.frame(df))
df <- as.data.frame(df, check.names = FALSE)
as.data.frame(lapply(colnames(df),
function(x) scale_standardizer(x=df[x],
mean=standard$mean[x],
scale=standard$scale[x],
backtransform=FALSE)),
check.names = FALSE)
}
postprocess <- function(df) {
if (!is.data.frame(df))
df <- as.data.frame(df, check.names = FALSE)
as.data.frame(lapply(colnames(df),
function(x) scale_standardizer(x=df[x],
mean=standard$mean[x],
scale=standard$scale[x],
backtransform=TRUE)),
check.names = FALSE)
}
mass_balance <- function(predictors, prediction) {
dBa <- abs(prediction$Ba + prediction$Barite_kin -
predictors$Ba - predictors$Barite_kin)
dSr <- abs(prediction$Sr + prediction$Celestite_kin -
predictors$Sr - predictors$Celestite_kin)
dS <- abs(prediction$S + prediction$Celestite_kin + prediction$Barite_kin -
predictors$S - predictors$Celestite_kin - predictors$Barite_kin)
return(dBa + dSr + dS)
}
validate_predictions <- function(predictors, prediction) {
epsilon <- 1E-5
mb <- mass_balance(predictors, prediction)
msgm("Mass balance mean:", mean(mb))
msgm("Mass balance variance:", var(mb))
ret <- mb < epsilon
msgm("Rows where mass balance meets threshold", epsilon, ":",
sum(ret), "/", nrow(predictors))
return(ret)
}

View File

@ -1,48 +0,0 @@
## load a pretrained model from tensorflow file
## Use the global variable "ai_surrogate_base_path" when using file paths
## relative to the input script
initiate_model <- function() {
init_model <- normalizePath(paste0(ai_surrogate_base_path,
"model_min_max_float64.keras"))
return(load_model_tf(init_model))
}
scale_min_max <- function(x, min, max, backtransform) {
if (backtransform) {
return((x * (max - min)) + min)
} else {
return((x - min) / (max - min))
}
}
preprocess <- function(df, backtransform = FALSE, outputs = FALSE) {
minmax_file <- normalizePath(paste0(ai_surrogate_base_path,
"min_max_bounds.rds"))
global_minmax <- readRDS(minmax_file)
for (column in colnames(df)) {
df[column] <- lapply(df[column],
scale_min_max,
global_minmax$min[column],
global_minmax$max[column],
backtransform)
}
return(df)
}
mass_balance <- function(predictors, prediction) {
dBa <- abs(prediction$Ba + prediction$Barite -
predictors$Ba - predictors$Barite)
dSr <- abs(prediction$Sr + prediction$Celestite -
predictors$Sr - predictors$Celestite)
return(dBa + dSr)
}
validate_predictions <- function(predictors, prediction) {
epsilon <- 3e-5
mb <- mass_balance(predictors, prediction)
msgm("Mass balance mean:", mean(mb))
msgm("Mass balance variance:", var(mb))
msgm("Rows where mass balance meets threshold", epsilon, ":",
sum(mb < epsilon))
return(mb < epsilon)
}

Binary file not shown.

View File

@ -1,32 +0,0 @@
grid_def <- matrix(c(2, 3), nrow = 2, ncol = 5)
# Define grid configuration for POET model
grid_setup <- list(
pqc_in_file = "./barite_het.pqi",
pqc_db_file = "./db_barite.dat", # Path to the database file for Phreeqc
grid_def = grid_def, # Definition of the grid, containing IDs according to the Phreeqc input script
grid_size = c(ncol(grid_def), nrow(grid_def)), # Size of the grid in meters
constant_cells = c() # IDs of cells with constant concentration
)
diffusion_setup <- list(
boundaries = list(
"W" = list(
"type" = rep("constant", nrow(grid_def)),
"sol_id" = rep(4, nrow(grid_def)),
"cell" = seq_len(nrow(grid_def))
)
),
alpha_x = 1e-6,
alpha_y = matrix(runif(10, 1e-8, 1e-7),
nrow = nrow(grid_def),
ncol = ncol(grid_def)
)
)
# Define a setup list for simulation configuration
setup <- list(
Grid = grid_setup, # Parameters related to the grid structure
Diffusion = diffusion_setup, # Parameters related to the diffusion process
Chemistry = list()
)

View File

@ -1,80 +0,0 @@
## Initial: everywhere equilibrium with Celestite NB: The aqueous
## solution *resulting* from this calculation is to be used as initial
## state everywhere in the domain
SOLUTION 1
units mol/kgw
water 1
temperature 25
pH 7
pe 4
S(6) 1e-12
Sr 1e-12
Ba 1e-12
Cl 1e-12
PURE 1
Celestite 0.0 1
SAVE SOLUTION 2 # <- phreeqc keyword to store and later reuse these results
END
RUN_CELLS
-cells 1
COPY solution 1 2-3
## Here a 5x2 domain:
|---+---+---+---+---|
-> | 2 | 2 | 2 | 2 | 2 |
4 |---+---+---+---+---|
-> | 3 | 3 | 3 | 3 | 3 |
|---+---+---+---+---|
## East boundary: "injection" of solution 4. North, W, S boundaries: closed
## Here the two distinct zones: nr 2 with kinetics Celestite (initial
## amount is 0, is then allowed to precipitate) and nr 3 with kinetic
## Celestite and Barite (both initially > 0) where the actual
## replacement takes place
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
KINETICS 2
Celestite
-m 0 # Allowed to precipitate
-parms 10.0
-tol 1e-9
END
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
KINETICS 3
Barite
-m 0.001
-parms 50.
-tol 1e-9
Celestite
-m 1
-parms 10.0
-tol 1e-9
END
## A BaCl2 solution (nr 4) is "injected" from the left boundary:
SOLUTION 4
units mol/kgw
pH 7
water 1
temp 25
Ba 0.1
Cl 0.2
END
## NB: again, the *result* of the SOLUTION 4 script defines the
## concentration of all elements (+charge, tot H, tot O)
## Ideally, in the initial state SOLUTION 1 we should not have to
## define the 4 elemental concentrations (S(6), Sr, Ba and Cl) but
## obtain them having run once the scripts with the aqueous solution
## resulting from SOLUTION 1 once with KINETICS 2 and once with
## KINETICS 3.
RUN_CELLS
-cells 2-4

View File

@ -1,4 +0,0 @@
list(
timesteps = rep(50, 100),
store_result = TRUE
)

Binary file not shown.

View File

@ -1,11 +1,9 @@
set(bench_files
dolo_inner_large.R
dolo_interp.R
)
set(runtime_files
dolo_inner_large_rt.R
dolo_interp_rt.R
dolo_interp_rt_dt20000.R
)
ADD_BENCH_TARGET(

Binary file not shown.

View File

@ -1,115 +0,0 @@
rows <- 2000
cols <- 1000
grid_def <- matrix(2, nrow = rows, ncol = cols)
# Define grid configuration for POET model
grid_setup <- list(
pqc_in_file = "./dol.pqi",
pqc_db_file = "./phreeqc_kin.dat", # Path to the database file for Phreeqc
grid_def = grid_def, # Definition of the grid, containing IDs according to the Phreeqc input script
grid_size = c(cols, rows) / 100, # Size of the grid in meters
constant_cells = c() # IDs of cells with constant concentration
)
bound_size <- 2
diffusion_setup <- list(
inner_boundaries = list(
"row" = c(400, 1400, 1600),
"col" = c(200, 800, 800),
"sol_id" = c(3, 4, 4)
),
alpha_x = 1e-6,
alpha_y = 1e-6
)
check_sign_cal_dol_dht <- function(old, new) {
if ((old["Calcite"] == 0) != (new["Calcite"] == 0)) {
return(TRUE)
}
if ((old["Dolomite"] == 0) != (new["Dolomite"] == 0)) {
return(TRUE)
}
return(FALSE)
}
fuzz_input_dht_keys <- function(input) {
dht_species <- c(
"H" = 3,
"O" = 3,
"Charge" = 3,
"C(4)" = 6,
"Ca" = 6,
"Cl" = 3,
"Mg" = 5,
"Calcite" = 4,
"Dolomite" = 4
)
return(input[names(dht_species)])
}
check_sign_cal_dol_interp <- function(to_interp, data_set) {
dht_species <- c(
"H" = 3,
"O" = 3,
"Charge" = 3,
"C(4)" = 6,
"Ca" = 6,
"Cl" = 3,
"Mg" = 5,
"Calcite" = 4,
"Dolomite" = 4
)
data_set <- as.data.frame(do.call(rbind, data_set), check.names = FALSE, optional = TRUE)
names(data_set) <- names(dht_species)
cal <- (data_set$Calcite == 0) == (to_interp["Calcite"] == 0)
dol <- (data_set$Dolomite == 0) == (to_interp["Dolomite"] == 0)
cal_dol_same_sig <- cal == dol
return(rev(which(!cal_dol_same_sig)))
}
check_neg_cal_dol <- function(result) {
neg_sign <- (result["Calcite"] < 0) || (result["Dolomite"] < 0)
return(neg_sign)
}
# Optional when using Interpolation (example with less key species and custom
# significant digits)
pht_species <- c(
"C(4)" = 3,
"Ca" = 3,
"Mg" = 2,
"Calcite" = 2,
"Dolomite" = 2
)
chemistry_setup <- list(
dht_species = c(
"H" = 3,
"O" = 3,
"Charge" = 3,
"C(4)" = 6,
"Ca" = 6,
"Cl" = 3,
"Mg" = 5,
"Calcite" = 4,
"Dolomite" = 4
),
pht_species = pht_species,
hooks = list(
dht_fill = check_sign_cal_dol_dht,
dht_fuzz = fuzz_input_dht_keys,
interp_pre = check_sign_cal_dol_interp,
interp_post = check_neg_cal_dol
)
)
# Define a setup list for simulation configuration
setup <- list(
Grid = grid_setup, # Parameters related to the grid structure
Diffusion = diffusion_setup, # Parameters related to the diffusion process
Chemistry = chemistry_setup # Parameters related to the chemistry process
)

View File

@ -1,10 +0,0 @@
iterations <- 500
dt <- 50
out_save <- seq(5, iterations, by = 5)
list(
timesteps = rep(dt, iterations),
store_result = TRUE,
out_save = out_save
)

View File

@ -7,6 +7,7 @@ grid_def <- matrix(2, nrow = rows, ncol = cols)
grid_setup <- list(
pqc_in_file = "./dol.pqi",
pqc_db_file = "./phreeqc_kin.dat",
pqc_with_redox = TRUE,
grid_def = grid_def,
grid_size = c(5, 2.5),
constant_cells = c()
@ -120,7 +121,8 @@ chemistry_setup <- list(
## dht_fuzz = fuzz_input_dht_keys,
interp_pre = check_sign_cal_dol_interp,
interp_post = check_neg_cal_dol
)
),
ai_surrogate_input_script = "./dolo_surrogate_input_script.R"
)
## Define a setup list for simulation configuration

View File

@ -1,10 +0,0 @@
iterations <- 2000
dt <- 200
out_save <- c(1, 10, 20, seq(40, iterations, by = 40))
list(
timesteps = rep(dt, iterations),
store_result = TRUE,
out_save = out_save
)

View File

@ -0,0 +1,74 @@
scale_min_max <- function(x, min, max, backtransform) {
if (backtransform) {
return((x * (max - min)) + min)
} else {
return((x - min) / (max - min))
}
}
scale_standardizer <- function(x, mean, scale, backtransform) {
if(backtransform){
return(x * scale + mean)
}
else{
return((x-mean) / scale)
}
}
standard <- list(mean = c(H = 111.0124335959659, O=55.5065739707202, 'C(-4)'=1.5788555695339323e-15, 'C(4)'=0.00011905649680154037,
Ca= 0.00012525858032576948, Cl=0.00010368471137502122, Mg=4.5640346338857756e-05, Calcite_kin=0.0001798444527389999,
Dolomite_kin=7.6152065281986634e-06),
scale = c(H=1.0, O=3.54850912318837e-05, 'C(-4)'=2.675559053860093e-14, 'C(4)'=1.1829735682920146e-05, Ca=1.207381343127647e-05, Cl=0.00024586541554245565,
Mg=0.00011794307217698012, Calcite_kin=5.946457663332385e-05, Dolomite_kin=2.688201435907049e-05))
ai_surrogate_species_input = c("H", "O", "C(-4)", "C(4)", "Ca", "Cl", "Mg", "Calcite_kin", "Dolomite_kin")
ai_surrogate_species_output = c("H", "O", "C(-4)", "C(4)", "Ca", "Mg", "Calcite_kin", "Dolomite_kin")
threshold <- list(species = "Cl", value = 2E-10)
preprocess <- function(df) {
if (!is.data.frame(df))
df <- as.data.frame(df, check.names = FALSE)
as.data.frame(lapply(colnames(df),
function(x) scale_standardizer(x=df[x],
mean=standard$mean[x],
scale=standard$scale[x],
backtransform=FALSE)),
check.names = FALSE)
}
postprocess <- function(df) {
if (!is.data.frame(df))
df <- as.data.frame(df, check.names = FALSE)
as.data.frame(lapply(colnames(df),
function(x) scale_standardizer(x=df[x],
mean=standard$mean[x],
scale=standard$scale[x],
backtransform=TRUE)),
check.names = FALSE)
}
mass_balance <- function(predictors, prediction) {
dCa <- abs(prediction$Ca + prediction$Calcite_kin + prediction$Dolomite_kin -
predictors$Ca - predictors$Calcite_kin - predictors$Dolomite_kin)
dC <- abs(prediction$'C(-4)' + prediction$'C(4)' + prediction$Calcite_kin + 2 * prediction$Dolomite_kin
- predictors$'C(-4)' - predictors$'C(4)' - predictors$Calcite_kin - 2 * predictors$Dolomite_kin)
dMg <- abs(prediction$Mg + prediction$Dolomite_kin -
predictors$Mg - predictors$Dolomite_kin)
return(dCa + dC + dMg)
}
validate_predictions <- function(predictors, prediction) {
epsilon <- 1E-8
mb <- mass_balance(predictors, prediction)
msgm("Mass balance mean:", mean(mb))
msgm("Mass balance variance:", var(mb))
ret <- mb < epsilon
msgm("Rows where mass balance meets threshold", epsilon, ":",
sum(ret))
return(ret)
}

Binary file not shown.