feat: C++ kmeans

This commit is contained in:
straile 2024-10-25 13:20:01 +02:00
parent 2f0b84bb3e
commit 51b3608b68
4 changed files with 196 additions and 38 deletions

View File

@ -1,22 +1,21 @@
import tensorflow as tf
import numpy as np
from sklearn.cluster import KMeans
import os
def initiate_model(model_file_path, cuda_dir):
os.environ["TF_XLA_FLAGS"] = "--tf_xla_cpu_global_jit"
os.environ["XLA_FLAGS"] = "--xla_gpu_cuda_data_dir=" + cuda_dir
os.environ["TF_XLA_FLAGS"] = "--tf_xla_cpu_global_jit"
os.environ["XLA_FLAGS"] = "--xla_gpu_cuda_data_dir=" + cuda_dir
def k_means(data, k=2, tol=1e-6):
kmeans = KMeans(n_clusters=k, tol=tol)
labels = kmeans.fit_predict(data)
return labels
def initiate_model(model_file_path):
print("AI: Model loaded from: " + model_file_path, flush=True)
model = tf.keras.models.load_model(model_file_path)
return model
def training_step(model, x, y, x_val, y_val, batch_size, epochs):
history = model.fit(x, y,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_val, y_val))
print(history, flush=True)
return history["val_loss"]
def prediction_step(model, x, batch_size):
prediction = model.predict(x, batch_size)
return np.array(prediction, dtype=np.float64)
@ -27,6 +26,22 @@ def get_weights(model):
return weights
def training_step(model, x, y, batch_size, epochs, output_file_path):
# Check clustering of input data
# and only train for the cluster where nothing is happening
labels = k_means(x)
n = int(np.sqrt(len(labels)))
for row in range(n):
row_values = []
for col in range(n):
row_values.append(labels[((n - (row + 1)) * n) + col])
print("".join(map(str, row_values)), flush=True)
x = x[labels==labels[-1]]
y = y[labels==labels[-1]]
print("Relevant Cluster is: " + str(labels[-1]), flush=True)
print("Data size is: " + str(len(x)), flush=True)
history = model.fit(x, y,
epochs=epochs,
batch_size=batch_size)
@ -35,4 +50,3 @@ def training_step(model, x, y, batch_size, epochs, output_file_path):
output_file_path += ".keras"
model.save(output_file_path)
return history

View File

@ -21,11 +21,12 @@ namespace poet {
* functions are defined
* @return 0 if function was succesful
*/
int Python_Keras_setup(std::string functions_file_path) {
int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir) {
// Initialize Python functions
Py_Initialize();
// Import numpy functions
_import_array();
PyRun_SimpleString(("cuda_dir = \"" + cuda_src_dir + "\"").c_str()) ;
FILE* fp = fopen(functions_file_path.c_str(), "r");
int py_functions_initialized = PyRun_SimpleFile(fp, functions_file_path.c_str());
fclose(fp);
@ -43,24 +44,142 @@ int Python_Keras_setup(std::string functions_file_path) {
* a variable "model_file_path" in the R input script
* @return 0 if function was succesful
*/
int Python_Keras_load_model(std::string model_file_path, std::string cuda_src_dir) {
int Python_Keras_load_model(std::string model_reaction, std::string model_no_reaction) {
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
// Initialize Keras model
int py_model_loaded = PyRun_SimpleString(("model = initiate_model(\"" +
model_file_path + "\", \"" +
cuda_src_dir + "\")").c_str());
// Initialize Keras model for the reaction cluster
int py_model_loaded = PyRun_SimpleString(("model_reaction = initiate_model(\"" +
model_reaction + "\")").c_str());
if (py_model_loaded != 0) {
PyErr_Print(); // Ensure that python errors make it to stdout
throw std::runtime_error("Keras model could not be loaded from: " + model_file_path);
throw std::runtime_error("Keras model could not be loaded from: " + model_reaction);
}
// Initialize Keras model for the no reaction cluster
py_model_loaded = PyRun_SimpleString(("model_no_reaction = initiate_model(\"" +
model_no_reaction + "\")").c_str());
if (py_model_loaded != 0) {
PyErr_Print(); // Ensure that python errors make it to stdout
throw std::runtime_error("Keras model could not be loaded from: " + model_no_reaction);
}
// Release the Python GIL
PyGILState_Release(gstate);
return py_model_loaded;
}
/**
* @brief Calculates the euclidian distance between two points in n dimensional space
* @param a Point a
* @param b Point b
* @return The distance
*/
double distance(const std::vector<double>& a, const std::vector<double>& b) {
double sum = 0.0;
for (size_t i = 0; i < a.size(); ++i) {
sum += (a[i] - b[i]) * (a[i] - b[i]);
}
return sqrt(sum);
}
/**
* @brief Assigns all elements of a 2D-Matrix to the nearest cluster center point
* @param field 2D-Matrix with the content of a Field object
* @param clusters The vector of clusters represented by their center points
* @return A vector that contains the assigned cluster for each of the rows in field
*/
std::vector<int> assign_clusters(const std::vector<vector<double>>& field, const std::vector<vector<double>>& clusters) {
// Initiate a vector that holds the cluster labels of each row
std::vector<int> labels(field[0].size());
for (size_t row = 0; row < labels.size(); row++) {
// Get the coordinates of the current row
std::vector<double> row_data(field.size());
for (int column = 0; column < row_data.size(); column++) {
row_data[column] = field[column][row];
}
// Iterate over the clusters and check which cluster center is the closest
double current_min_distance = numeric_limits<double>::max();
int current_closest_cluster;
for (size_t cluster = 0; cluster < clusters.size(); cluster++) {
double cluster_distance = distance(row_data, clusters[cluster]);
if (cluster_distance < current_min_distance) {
current_min_distance = cluster_distance;
current_closest_cluster = cluster;
}
}
labels[row] = current_closest_cluster;
}
return labels;
}
/**
* @brief Calculates new center points for each given cluster by averaging the coordinates
* of all points that are assigen to it
* @param field 2D-Matrix with the content of a Field object
* @param labels The vector that contains the assigned cluster for each of the rows in field
* @param k The number of clusters
* @return The new cluster center points
*/
std::vector<vector<double>> calculate_new_clusters(const std::vector<std::vector<double>>& field,
const vector<int>& labels, int k) {
int columns = field.size();
int rows = field[0].size();
std::vector<std::vector<double>> clusters(k, std::vector<double>(columns, 0.0));
vector<int> count(k, 0);
// Sum the coordinates of all points that are assigned to each cluster
for (int row = 0; row < rows; row++) {
int assigned_cluster = labels[row];
for (int column = 0; column < columns; column++) {
clusters[assigned_cluster][column] += field[column][row];
}
count[assigned_cluster]++;
}
// Take the average of the summed coordinates
for (int cluster = 0; cluster < k; cluster++) {
if (count[cluster] == 0) continue;
for (int column = 0; column < columns; column++) {
clusters[cluster][column] /= count[cluster];
}
}
return clusters;
}
/**
* @brief Performs KMeans clustering for the elements of a 2D-Matrix
* @param field 2D-Matrix with the content of a Field object
* @param k The number of different clusters
* @param iterations The number of cluster update steps
* @return A vector that contains the assigned cluster for each of the rows in field
*/
std::vector<int> kMeans(std::vector<std::vector<double>>& field, int k, int iterations) {
// Initialize cluster centers by selecting random points from the field
srand(time(0));
std::vector<vector<double>> clusters;
for (int i = 0; i < k; ++i) {
std::vector<double> cluster_center(field.size());
int row = rand() % field.size();
for (int column = 0; column < cluster_center.size(); column++) {
cluster_center[column] = field[column][row];
}
clusters.push_back(cluster_center);
}
std::vector<int> labels;
for (int iter = 0; iter < iterations; ++iter) {
// Get the nearest cluster for each row
labels = assign_clusters(field, clusters);
// Update each cluster center as the average location of each point assigned to it
std::vector<vector<double>> new_clusters = calculate_new_clusters(field, labels, k);
clusters = new_clusters;
}
return labels;
}
/**
* @brief Converts the std::vector 2D matrix representation of a POET Field object to a numpy array
* for use in the Python AI surrogate functions
@ -120,7 +239,7 @@ std::vector<double> numpy_array_to_vector(PyObject* py_array) {
* @return Predictions that the neural network made from the input values x. The predictions are
* represented as a vector similar to the representation from the Field.AsVector() method
*/
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>> x, int batch_size) {
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>& x, int batch_size) {
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
@ -130,7 +249,7 @@ std::vector<double> Python_Keras_predict(std::vector<std::vector<double>> x, int
// Get the model and training function from the global python interpreter
PyObject* py_main_module = PyImport_AddModule("__main__");
PyObject* py_global_dict = PyModule_GetDict(py_main_module);
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model");
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model_no_reaction");
PyObject* py_inference_function = PyDict_GetItemString(py_global_dict, "prediction_step");
// Build the function arguments as four python objects and an integer
PyObject* args = Py_BuildValue("(OOi)",
@ -184,7 +303,7 @@ Eigen::MatrixXd eigen_inference_batched(const Eigen::Ref<const Eigen::MatrixXd>&
* @return Predictions that the neural network made from the input values x. The predictions are
* represented as a vector similar to the representation from the Field.AsVector() method
*/
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>> x, int batch_size,
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>>& x, int batch_size,
std::mutex* Eigen_model_mutex) {
// Convert input data to Eigen matrix
const int num_samples = x[0].size();
@ -249,7 +368,7 @@ void training_data_buffer_append(std::vector<std::vector<double>>& training_data
* @param y Training data targets
* @param params Global runtime paramters
*/
void Python_keras_train(std::vector<std::vector<double>> x, std::vector<std::vector<double>> y,
void Python_Keras_train(std::vector<std::vector<double>>& x, std::vector<std::vector<double>>& y,
const RuntimeParameters& params) {
// Prepare data for python
PyObject* py_df_x = vector_to_numpy_array(x);
@ -258,7 +377,7 @@ void Python_keras_train(std::vector<std::vector<double>> x, std::vector<std::vec
// Get the model and training function from the global python interpreter
PyObject* py_main_module = PyImport_AddModule("__main__");
PyObject* py_global_dict = PyModule_GetDict(py_main_module);
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model");
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model_no_reaction");
PyObject* py_training_function = PyDict_GetItemString(py_global_dict, "training_step");
// Build the function arguments as four python objects and an integer
@ -350,7 +469,7 @@ void parallel_training(EigenModel* Eigen_model,
PyGILState_STATE gstate = PyGILState_Ensure();
// Start training
Python_keras_train(inputs, targets, params);
Python_Keras_train(inputs, targets, params);
if (!params.use_Keras_predictions) {
std::cout << "AI: Training thread: Update shared model weights" << std::endl;
@ -435,7 +554,7 @@ std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights() {
PyObject* py_main_module = PyImport_AddModule("__main__");
PyObject* py_global_dict = PyModule_GetDict(py_main_module);
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model");
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, "model_no_reaction");
PyObject* py_get_weights_function = PyDict_GetItemString(py_global_dict, "get_weights");
PyObject* args = Py_BuildValue("(O)", py_keras_model);

View File

@ -40,14 +40,16 @@ struct TrainingData {
// Ony declare the actual functions if flag is set
#ifdef USE_AI_SURROGATE
int Python_Keras_setup(std::string functions_file_path);
int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir);
void Python_finalize(std::mutex* Eigen_model_mutex, std::mutex* training_data_buffer_mutex,
std::condition_variable* training_data_buffer_full, bool* start_training, bool* end_training);
int Python_Keras_load_model(std::string model_file_path, std::string cuda_src_dir);
int Python_Keras_load_model(std::string model_reaction, std::string model_no_reaction);
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>> x, int batch_size);
std::vector<int> kMeans(std::vector<std::vector<double>>& field, int k, int maxIterations = 100);
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>& x, int batch_size);
void training_data_buffer_append(std::vector<std::vector<double>>& training_data_buffer,
std::vector<std::vector<double>>& new_values);
@ -64,16 +66,17 @@ void update_weights(EigenModel* model, const std::vector<std::vector<std::vector
std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights();
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>> x, int batch_size,
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>>& x, int batch_size,
std::mutex* Eigen_model_mutex);
// Otherwise, define the necessary stubs
#else
inline void Python_Keras_setup(std::string){}
inline void Python_Keras_setup(std::string, std::string){}
inline void Python_finalize(std::mutex*, std::mutex*, std::condition_variable*, bool*, bool*){}
inline void Python_Keras_load_model(std::string, std::string){}
inline std::vector<int> kMeans(std::vector<std::vector<double>>&, int, int) {return {};}
inline std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>&, int){return {};}
inline void training_data_buffer_append(std::vector<std::vector<double>>&, std::vector<std::vector<double>>&){}
inline std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>, int){return {};}
inline int Python_Keras_training_thread(EigenModel*, std::mutex*,
TrainingData*, std::mutex*,
std::condition_variable*,
@ -81,7 +84,7 @@ inline int Python_Keras_training_thread(EigenModel*, std::mutex*,
inline void update_weights(EigenModel*, const std::vector<std::vector<std::vector<double>>>&){}
inline std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(){return {};}
inline std::vector<double> Eigen_predict(const EigenModel&, std::vector<std::vector<double>>, int, std::mutex*){return {};}
inline std::vector<double> Eigen_predict(const EigenModel&, std::vector<std::vector<double>>&, int, std::mutex*){return {};}
#endif
} // namespace poet

View File

@ -297,7 +297,9 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters &params,
TrainingData training_data_buffer;
if (params.use_ai_surrogate) {
MSG("AI: Initialize model");
Python_Keras_load_model(R["model_file_path"], params.cuda_src_dir);
// Initiate two models from one file TODO: Expand this for two input files
Python_Keras_load_model(R["model_file_path"], R["model_file_path"]);
if (!params.disable_training) {
MSG("AI: Initialize training thread");
Python_Keras_training_thread(&Eigen_model, &Eigen_model_mutex,
@ -352,6 +354,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters &params,
if (params.use_ai_surrogate) {
double ai_start_t = MPI_Wtime();
// Get current values from the tug field for the ai predictions
R["TMP"] = Rcpp::wrap(chem.getField().AsVector());
R.parseEval(std::string("predictors <- ") +
@ -360,13 +363,32 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters &params,
// Apply preprocessing
MSG("AI Preprocessing");
R.parseEval("predictors_scaled <- preprocess(predictors)");
std::vector<std::vector<double>> predictors_scaled = R["predictors_scaled"];
// get k means
MSG("KMEANSSSSS:");
std::vector<int> labels = kMeans(predictors_scaled, 2, 300);
int size = (int)(std::sqrt(chem.getField().GetRequestedVecSize()));
MSG("SIZE: " + std::to_string(size));
for (int row = size; row > 0; row--) {
for (int column = 0; column < size; column++) {
std::cout << labels[((row - 1) * size) + column];
}
std::cout << std::endl;
}
MSG("AI: Predict");
if (params.use_Keras_predictions) { // Predict with Keras default function
R["TMP"] = Python_Keras_predict(R["predictors_scaled"], params.batch_size);
R["TMP"] = Python_Keras_predict(predictors_scaled, params.batch_size);
} else { // Predict with custom Eigen function
R["TMP"] = Eigen_predict(Eigen_model, R["predictors_scaled"], params.batch_size, &Eigen_model_mutex);
R["TMP"] = Eigen_predict(Eigen_model, predictors_scaled, params.batch_size, &Eigen_model_mutex);
}
// Apply postprocessing
@ -666,7 +688,7 @@ int main(int argc, char *argv[]) {
MSG("AI: Initialize Python for AI surrogate functions");
std::string python_keras_file = std::string(SRC_DIR) +
"/src/Chemistry/SurrogateModels/AI_Python_functions/keras_AI_surrogate.py";
Python_Keras_setup(python_keras_file);
Python_Keras_setup(python_keras_file, run_params.cuda_src_dir);
}
MSG("Init done on process with rank " + std::to_string(MY_RANK));