Fancier benchmark for fgcs paper

This commit is contained in:
Marco De Lucia 2024-12-11 23:46:44 +01:00 committed by Max Lübke
parent ab01dbc0a7
commit 554d501ed0
7 changed files with 355 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,102 @@
% Created 2024-12-11 mer 23:24
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 9pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{fullpage}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{charter}
\usepackage{listings}
\lstloadlanguages{R}
\author{MDL <delucia@gfz.de>}
\date{2024-12-11}
\title{A \texttt{barite}-based benchmark for FGCS interpolation paper}
\begin{document}
\maketitle
\section{Description}
\label{sec:org739879a}
\begin{itemize}
\item \texttt{barite\_fgcs\_2.R}: POET input script with circular
"crystals" on a 200x200 nodes grid
\item \(\alpha\): isotropic 10\textsuperscript{-5}
m\textsuperscript{2}/s outside of the crystals,
10\textsuperscript{-7} inside
\item 200 iterations, dt = 1000
\item \texttt{barite\_fgcs\_2.pqi}: PHREEQC input, 4 SOLUTIONS
(basically the same as in \texttt{barite} benchmark):
\begin{enumerate}
\item Equilibrium with Celestite, no mineral \(Rightarrow\)
\item Equilibrium with Celestite, KINETICS Celestite (1 mol) and
Barite (0 mol)
\item Injection of 0.1 BaCl2 from NW corner
\item Injection of 0.2 BaCl2 from SE corner
\end{enumerate}
\item \texttt{db\_barite.dat}: PHREEQC database containing the kinetic
expressions for barite and celestite, stripped down from
\texttt{phreeqc.dat}
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.48\textwidth]{./fgcs_Celestite_init.pdf}
\includegraphics[width=0.48\textwidth]{./fgcs_Barite_200.pdf}
\caption{\textbf{Left:} Initial distribution of Celestite
"crystals". \textbf{Right:} precipitated Barite}
\end{figure}
\section{Interpolation}
\label{sec:org2a09431}
Using the following parametrization:
\begin{lstlisting}
dht_species <- c("H" = 7,
"O" = 7,
"Ba" = 7,
"Cl" = 7,
"S(6)" = 7,
"Sr" = 7,
"Barite" = 4,
"Celestite" = 4)
pht_species <- c("Ba" = 4,
"Cl" = 3,
"S(6)" = 3,
"Sr" = 3,
"Barite" = 2,
"Celestite" = 2 )
\end{lstlisting}
Runtime goes from 1800 to 600 s (21 CPUs) but there are "suspect"
errors especially in O and H, where "suspect" means some values appear
to be multiplied by 2:
\begin{figure}[htbp]
\centering
\includegraphics[width=0.9\textwidth]{./fgcs_interp_1.pdf}
\caption{Scatterplots reference vs interpolated after 1 coupling
iteration}
\end{figure}
\end{document}
%%% Local Variables:
%%% mode: LaTeX
%%% TeX-master: t
%%% End:

90
bench/fgcs/EvalFGCS.R Normal file
View File

@ -0,0 +1,90 @@
## Time-stamp: "Last modified 2024-12-11 23:21:25 delucia"
library(PoetUtils)
library(viridis)
res <- ReadPOETSims("./res_fgcs2_96/")
pp <- PlotField(res$iter_200$C$Barite, rows = 200, cols = 200, contour = FALSE,
nlevels=12, palette=terrain.colors)
cairo_pdf("fgcs_Celestite_init.pdf", family="serif")
par(mar=c(0,0,0,0))
pp <- PlotField((res$iter_000$Celestite), rows = 200, cols = 200,
contour = FALSE, breaks=c(-0.5,0.5,1.5),
palette = grey.colors, plot.axes = FALSE, scale = FALSE,
main="Initial Celestite crystals")
dev.off()
cairo_pdf("fgcs_Ba_init.pdf", family="serif")
par(mar=c(0,0,0,0))
pp <- PlotField(log10(res$iter_001$C$Cl), rows = 200, cols = 200,
contour = FALSE,
palette = terrain.colors, plot.axes = FALSE, scale = FALSE,
main="log10(Ba)")
dev.off()
pp <- PlotField(log10(res$iter_002$C$Ba), rows = 200, cols = 200,
contour = FALSE, palette = viridis, rev.palette = FALSE,
main = "log10(Ba) after 5 iterations")
pp <- PlotField(log10(res$iter_200$C$`S(6)`), rows = 200, cols = 200, contour = FALSE)
str(res$iter_00)
res$iter_178$C$Barite
pp <- res$iter_043$C$Barite
breaks <- pretty(pp, n = 5)
br <- c(0, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1)
pp <- PlotField(res$iter_200$C$Barite, rows = 200, cols = 200, contour = FALSE,
breaks = br, palette=terrain.colors)
cairo_pdf("fgcs_Barite_200.pdf", family="serif")
pp <- PlotField(log10(res$iter_200$C$Barite), rows = 200, cols = 200,
contour = FALSE, palette = terrain.colors, plot.axes = FALSE,
rev.palette = FALSE, main = "log10(Barite) after 200 iter")
dev.off()
ref <- ReadPOETSims("./res_fgcs_2_ref")
rei <- ReadPOETSims("./res_fgcs_2_interp1/")
timref <- ReadRObj("./res_fgcs_2_ref/timings.qs")
timint <- ReadRObj("./res_fgcs_2_interp1/timings.qs")
timref
timint
wch <- c("H","O", "Ba", "Sr","Cl", "S(6)")
rf <- data.matrix(ref$iter_001$C[, wch])
r1 <- data.matrix(rei$iter_001$C[, wch])
r1[is.nan(r1)] <- NA
rf[is.nan(rf)] <- NA
cairo_pdf("fgcs_interp_1.pdf", family="serif", width = 10, height = 7)
PlotScatter(rf, r1, which = wch, labs = c("ref", "interp"), cols = 3, log="", las = 1, pch=4)
dev.off()
head(r1)
head(rf)
rf$O
r1$O

2
bench/fgcs/README.org Normal file
View File

@ -0,0 +1,2 @@
* Refer to the LaTeX file (and pdf) for more information

105
bench/fgcs/barite_fgcs_2.R Normal file
View File

@ -0,0 +1,105 @@
## Time-stamp: "Last modified 2024-12-11 16:08:11 delucia"
cols <- 200
rows <- 200
dim_cols <- 10
dim_rows <- 10
ncirc <- 20 ## number of crystals
rmax <- cols/10 ## max radius (in nodes)
set.seed(22933)
centers <- cbind(sample(seq_len(cols), ncirc), sample(seq_len(rows), ncirc))
radii <- sample(seq_len(rmax), ncirc, replace=TRUE)
mi <- matrix(rep(seq_len(cols), rows), byrow = TRUE, nrow = rows)
mj <- matrix(rep(seq_len(cols), each = rows), byrow = TRUE, nrow = rows)
tmpl <- lapply(seq_len(ncirc), function(x) which((mi-centers[x, 1])^2 + (mj-centers[x, 2])^2 < radii[x]^2, arr.ind = TRUE))
inds <- do.call(rbind, tmpl)
grid <- matrix(1, nrow = rows, ncol = cols)
grid[inds] <- 2
alpha <- matrix( 1e-5, ncol = cols, nrow = rows)
alpha[inds] <- 1e-7
## image(grid, asp=1)
## Define grid configuration for POET model
grid_setup <- list(
pqc_in_file = "./barite_fgcs_2.pqi",
pqc_db_file = "./db_barite.dat", ## database file
grid_def = grid, ## grid definition, IDs according to the Phreeqc input
grid_size = c(dim_cols, dim_rows), ## grid size in meters
constant_cells = c() ## IDs of cells with constant concentration
)
bound_length <- cols/10
bound_N <- list(
"type" = rep("constant", bound_length),
"sol_id" = rep(3, bound_length),
"cell" = seq(1, bound_length)
)
bound_W <- list(
"type" = rep("constant", bound_length),
"sol_id" = rep(3, bound_length),
"cell" = seq(1, bound_length)
)
bound_E <- list(
"type" = rep("constant", bound_length),
"sol_id" = rep(4, bound_length),
"cell" = seq(rows-bound_length+1, rows)
)
bound_S <- list(
"type" = rep("constant", bound_length),
"sol_id" = rep(4, bound_length),
"cell" = seq(cols-bound_length+1, cols)
)
diffusion_setup <- list(
boundaries = list(
"W" = bound_W,
"N" = bound_N,
"E" = bound_E,
"S" = bound_S
),
alpha_x = alpha,
alpha_y = alpha
)
dht_species <- c(
"H" = 7,
"O" = 7,
"Ba" = 7,
"Cl" = 7,
"S(6)" = 7,
"Sr" = 7,
"Barite" = 4,
"Celestite" = 4
)
pht_species <- c(
"Ba" = 4,
"Cl" = 3,
"S(6)" = 3,
"Sr" = 3,
"Barite" = 2,
"Celestite" = 2
)
chemistry_setup <- list(
dht_species = dht_species,
pht_species = pht_species
)
## Define a setup list for simulation configuration
setup <- list(
Grid = grid_setup, ## Parameters related to the grid structure
Diffusion = diffusion_setup, ## Parameters related to the diffusion process
Chemistry = chemistry_setup
)

View File

@ -0,0 +1,49 @@
SOLUTION 1
units mol/kgw
water 1
temperature 25
pH 7.008
pe 10.798
S 6.205e-04
Sr 6.205e-04
END
SOLUTION 2
units mol/kgw
water 1
temperature 25
pH 7.008
pe 10.798
S 6.205e-04
Sr 6.205e-04
KINETICS 2
Barite
-m 0.00
-parms 50. # reactive surface area
-tol 1e-9
Celestite
-m 1
-parms 10.0 # reactive surface area
-tol 1e-9
END
SOLUTION 3
units mol/kgw
water 1
temperature 25
Ba 0.1
Cl 0.2
END
SOLUTION 4
units mol/kgw
water 1
temperature 25
Ba 0.2
Cl 0.4
END
RUN_CELLS
-cells 1 2 3 4
END

View File

@ -0,0 +1,7 @@
iterations <- 200
dt <- 1000
list(
timesteps = rep(dt, iterations),
store_result = TRUE
)