diff --git a/src/poet.cpp b/src/poet.cpp index 4520b3d5d..d8077a2b9 100644 --- a/src/poet.cpp +++ b/src/poet.cpp @@ -397,14 +397,11 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, std::string("field <- setNames(data.frame(matrix(TMP, nrow=" + std::to_string(chem.getField().GetRequestedVecSize()) + ")), TMP_PROPS)")); - R.parseEval("print(head(field))"); R.parseEval("validity_vector <- rep(FALSE, nrow(field))"); R.parseEval("length(validity_vector)"); - R.parseEval("print(length(validity_vector))"); - if (params.copy_non_reactive_regions) { R.parseEval( "validity_vector <- field[[threshold$species]] < threshold$value"); @@ -418,8 +415,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, // deep copy field R.parseEval("predictors <- field"); // get only ai related species - R.parseEval("print(head(predictors))"); - R.parseEval("print(ai_surrogate_species_input)"); R.parseEval("predictors <- predictors[ai_surrogate_species_input]"); // remove already copied values @@ -430,7 +425,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, R.parseEval("predictors_scaled <- preprocess(predictors)"); - R.parseEval("print(head(predictors_scaled))"); std::vector> predictors_scaled = R["predictors_scaled"]; @@ -442,13 +436,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, std::vector predictions_scaled_double(predictions_scaled.begin(), predictions_scaled.end()); - std::cout << "First elements of predictions_scaled_double: "; - for (size_t i = 0; - i < std::min(size_t(10), predictions_scaled_double.size()); i++) { - std::cout << predictions_scaled_double[i] << " "; - } - std::cout << std::endl; - R["TMP"] = predictions_scaled_double; R["n_samples"] = n_samples; R["n_output"] = n_output_features; @@ -456,8 +443,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, R.parseEval("predictions_scaled <- setNames(data.frame(matrix(TMP, " "nrow=n_samples, ncol=n_output, byrow=TRUE)), " "ai_surrogate_species_output)"); - // R.parseEval("print(head(predictions_scaled))"); - // R.parseEval("print(head(predictions_scaled))"); + R.parseEval("predictions <- postprocess(predictions_scaled)"); MSG("AI Validation"); @@ -465,8 +451,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, R.parseEval("ai_validity_vector <- validate_predictions(predictors, " "predictions) "); - R.parseEval("print(length(ai_validity_vector))"); - // get only indices where prediction was valid R.parseEval("predictor_idx <- predictor_idx[ai_validity_vector]"); @@ -474,8 +458,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, // was possible R.parseEval("validity_vector[as.numeric(predictor_idx)] <- TRUE"); - R.parseEval("print(length(validity_vector))"); - MSG("AI TempField"); // maybe row.names was overwritten by function calls ?? R.parseEval("row.names(predictions) <- row.names(predictors)"); @@ -502,7 +484,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, MSG("Set copied or predicted values for the workers"); R.parseEval( "print(paste('Number of valid cells:', sum(validity_vector)))"); - R.parseEval("print(head(validity_vector))"); chem.set_ai_surrogate_validity_vector(R.parseEval("validity_vector")); } @@ -517,22 +498,15 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, std::string("targets <- setNames(data.frame(matrix(TMP, nrow=" + std::to_string(chem.getField().GetRequestedVecSize()) + ")), TMP_PROPS)")); - R.parseEval("print(paste('Length of validity_vector:', " - "length(ai_validity_vector)))"); + R.parseEval("predictors_retraining <- " "get_invalid_values(predictors_scaled, ai_validity_vector)"); R.parseEval("targets <- " "targets[as.numeric(row.names(predictors_retraining)), " "ai_surrogate_species_output]"); - R.parseEval("print(length(predictors_scaled$H))"); - R.parseEval("print(length(ai_validity_vector))"); - R.parseEval("targets_retraining <- preprocess(targets)"); - R.parseEval("print(head(predictors_retraining))"); - R.parseEval("print(head(targets_retraining))"); - std::vector> predictors_retraining = R["predictors_retraining"]; std::vector> targets_retraining = @@ -540,11 +514,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, MSG("AI: add invalid data to buffer"); - std::cout << "size of predictors " << predictors_retraining[0].size() - << std::endl; - std::cout << "size of targets " << targets_retraining[0].size() - << std::endl; - ai_ctx->data_semaphore_write.acquire(); if (predictors_retraining[0].size() > 0 &&