mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-15 20:38:23 +01:00
fix: heap issues in R
This commit is contained in:
commit
8551e07450
@ -491,7 +491,7 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
||||
// Initialize training data input and targets
|
||||
std::vector<std::vector<double>> inputs(training_data_buffer->x.size(),
|
||||
std::vector<double>(params.training_data_size));
|
||||
std::vector<std::vector<double>> targets(training_data_buffer->y.size(),
|
||||
std::vector<std::vector<double>> targets(training_data_buffer->x.size(),
|
||||
std::vector<double>(params.training_data_size));
|
||||
|
||||
int buffer_size = training_data_buffer->x[0].size();
|
||||
|
||||
@ -170,6 +170,10 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
|
||||
}
|
||||
}
|
||||
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
// std::cout << this->comm_rank << ":" << counter++ << std::endl;
|
||||
>>>>>>> segfault_find_reason
|
||||
if (dht_enabled || interp_enabled) {
|
||||
dht->prepareKeys(s_curr_wp.input, dt);
|
||||
}
|
||||
@ -186,6 +190,10 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
|
||||
interp->tryInterpolation(s_curr_wp);
|
||||
}
|
||||
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
|
||||
>>>>>>> segfault_find_reason
|
||||
phreeqc_time_start = MPI_Wtime();
|
||||
|
||||
WorkerRunWorkPackage(s_curr_wp, current_sim_time, dt);
|
||||
|
||||
18
src/poet.cpp
18
src/poet.cpp
@ -455,13 +455,16 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
|
||||
/* AI surrogate iterative training*/
|
||||
if (params.use_ai_surrogate && !params.disable_training) {
|
||||
// Add values for which the predictions were invalid
|
||||
// to training data buffer
|
||||
MSG("AI: Add to training data buffer");
|
||||
if (!params.train_only_invalid) {
|
||||
// Use all values if not specified otherwise
|
||||
R.parseEval("validity_vector <- rep(0, length(validity_vector))");
|
||||
}
|
||||
std::vector<std::vector<double>> invalid_x =
|
||||
R.parseEval("get_invalid_values(predictors_scaled, validity_vector)");
|
||||
|
||||
if (!params.train_only_invalid) {
|
||||
// Use all values if not specified otherwise
|
||||
R.parseEval("validity_vector[] <- 0");
|
||||
}
|
||||
|
||||
R.parseEval("target_scaled <- preprocess(state_C[ai_surrogate_species])");
|
||||
std::vector<std::vector<double>> invalid_y =
|
||||
@ -682,6 +685,8 @@ int main(int argc, char *argv[]) {
|
||||
R["ai_surrogate_species"] =
|
||||
init_list.getChemistryInit().dht_species.getNames();
|
||||
|
||||
// TODO REMOVE!!
|
||||
R.parseEval("ai_surrogate_species <- ai_surrogate_species[ai_surrogate_species != \"Charge\"]");
|
||||
const std::string ai_surrogate_input_script =
|
||||
init_list.getChemistryInit().ai_surrogate_input_script;
|
||||
|
||||
@ -710,6 +715,9 @@ int main(int argc, char *argv[]) {
|
||||
if (Rcpp::as<bool>(R.parseEval("exists(\"disable_training\")"))) {
|
||||
run_params.disable_training = R["disable_training"];
|
||||
}
|
||||
if (Rcpp::as<bool>(R.parseEval("exists(\"train_only_invalid\")"))) {
|
||||
run_params.train_only_invalid = R["train_only_invalid"];
|
||||
}
|
||||
if (Rcpp::as<bool>(R.parseEval("exists(\"save_model_path\")"))) {
|
||||
run_params.save_model_path = Rcpp::as<std::string>(R["save_model_path"]);
|
||||
MSG("AI: Model will be saved as \"" + run_params.save_model_path + "\"");
|
||||
@ -723,7 +731,7 @@ int main(int argc, char *argv[]) {
|
||||
}
|
||||
if (!Rcpp::as<bool>(R.parseEval("exists(\"model_reactive_file_path\")"))) {
|
||||
R.parseEval("model_reactive_file_path <- model_file_path");
|
||||
}
|
||||
}
|
||||
MSG("AI: Initialize Python for the AI surrogate functions");
|
||||
std::string python_keras_file = std::string(SRC_DIR) +
|
||||
"/src/Chemistry/SurrogateModels/AI_Python_functions/keras_AI_surrogate.py";
|
||||
|
||||
@ -71,12 +71,21 @@ struct RuntimeParameters {
|
||||
|
||||
/*AI surriogate configuration*/
|
||||
bool use_ai_surrogate = false; // Can be set with command line flag ---ai-surrogate
|
||||
<<<<<<< HEAD
|
||||
bool disable_training = false; // Can be set in the R input script
|
||||
bool use_clustering = false; // Can be set in the R input script
|
||||
bool use_Keras_predictions = false; // Can be set in the R input script
|
||||
bool train_only_invalid = false; // Can be set in the R input script
|
||||
int batch_size = 2560; // default value determined in test on the UP Turing cluster
|
||||
int training_epochs = 20;; // Can be set in the R input script
|
||||
=======
|
||||
bool disable_training; // Can be set in the R input script
|
||||
bool use_k_means_clustering; // Can be set in the R input script
|
||||
bool use_Keras_predictions; // Can be set in the R input script
|
||||
bool train_only_invalid; // Can be set in the R input script
|
||||
int batch_size; // Can be set in the R input script
|
||||
int training_epochs; // Can be set in the R input script
|
||||
>>>>>>> segfault_find_reason
|
||||
int training_data_size; // Can be set in the R input script
|
||||
std::string save_model_path = ""; // Can be set in the R input script
|
||||
std::string cuda_src_dir = CUDA_SRC_DIR; // From CMake
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user