Refactor pqc_to_grid function to use matrix instead of data.table

This commit is contained in:
Max Lübke 2024-03-19 09:47:40 +00:00
parent 2b74fca740
commit 9fdda31151

View File

@ -1,82 +1,30 @@
input <- readRDS("/home/max/Storage/poet/build/apps/out.rds")
grid_def <- matrix(c(2, 3), nrow = 2, ncol = 5)
library(data.table)
pqc_to_grid <- function(pqc_in, grid) { pqc_to_grid <- function(pqc_in, grid) {
# Convert the input DataFrame to a data.table # Convert the input DataFrame to a matrix
dt <- data.table(pqc_in) dt <- as.matrix(pqc_in)
# Flatten the matrix into a vector # Flatten the matrix into a vector
id_vector <- as.vector(t(grid)) id_vector <- as.vector(t(grid))
# Initialize an empty data.table to store the results # Initialize an empty matrix to store the results
result_dt <- data.table() result_mat <- matrix(nrow = 0, ncol = ncol(dt))
# Iterate over each ID in the vector # Iterate over each ID in the vector
for (id_mat in id_vector) { for (id_mat in id_vector) {
# Find the matching row in the data.table # Find the matching row in the matrix
matching_dt <- dt[dt$id == id_mat] matching_row <- dt[dt[, "ID"] == id_mat, ]
# Append the matching data.table row to the result data.table # Append the matching row to the result matrix
result_dt <- rbind(result_dt, matching_dt) result_mat <- rbind(result_mat, matching_row)
} }
# Convert the result matrix to a data frame
res_df <- as.data.frame(result_mat)
# Remove all columns which only contain NaN # Remove all columns which only contain NaN
# result_dt <- result_dt[, colSums(is.na(result_dt)) != nrow(result_dt)] res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
res_df <- as.data.frame(result_dt) # Remove row names
rownames(res_df) <- NULL
return(res_df[, colSums(is.na(res_df)) != nrow(res_df)]) return(res_df)
} }
pqc_init <- pqc_to_grid(input, grid_def)
test <- pqc_init
modify_module_sizes <- function(mod_sizes, pqc_mat, init_grid) {
# Find all unique IDs in init_grid
unique_ids <- unique(init_grid$id)
# remove rows from pqc_mat that are not in init_grid
pqc_mat <- as.data.frame(pqc_mat)
pqc_mat <- pqc_mat[pqc_mat$id %in% unique_ids, ]
# Find the column indices where all rows are NaN
na_cols <- which(sapply(pqc_mat, function(x) all(is.na(x))))
# na_cols <- which(colSums(is.nan(pqc_mat)) == nrow(pqc_mat))
# Build cumsum over mod_sizes
cum_mod_sizes <- cumsum(mod_sizes)
# Find the indices where the value of na_cols is equal to the value of cum_mod_sizes
idx <- which(cum_mod_sizes %in% na_cols)
# Set the value of mod_sizes to 0 at the indices found in the previous step
mod_sizes[idx] <- 0
return(mod_sizes)
}
# mod_sizes <- c(7, 0, 4, 2, 0)
# unique_ids <- unique(as.vector(pqc_init$id))
# tmp <- as.data.frame(input)
# pqc_test <- tmp[tmp$id %in% unique_ids, ]
# na_cols <- which(colSums(is.na(pqc_test)) == nrow(pqc_test))
# cum_mod_sizes <- cumsum(mod_sizes)
# # Get the indices of the columns of cum_mod_sizes where the value of the column is equal to the value of na_cols
# idx <- which(cum_mod_sizes %in% na_cols)
# mod_sizes[idx] <- 0
# idx <- which(na_cols == cum_mod_sizes)
# idx <- which(na_cols[1] >= cum_mod_sizes)
# mod_sizes <- modify_module_sizes(mod_sizes, pqc_init, pqc_init)
# remove column with all NA