diff --git a/bench/barite/barite_200ai_surrogate_input_script.R b/bench/barite/barite_200ai_surrogate_input_script.R index 63b8f66ad..93e8e0191 100644 --- a/bench/barite/barite_200ai_surrogate_input_script.R +++ b/bench/barite/barite_200ai_surrogate_input_script.R @@ -38,7 +38,7 @@ mass_balance <- function(predictors, prediction) { } validate_predictions <- function(predictors, prediction) { - epsilon <- 0.00003 + epsilon <- 0.000000003 mb <- mass_balance(predictors, prediction) msgm("Mass balance mean:", mean(mb)) msgm("Mass balance variance:", var(mb)) diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 66dc48a50..24c10c834 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -83,4 +83,3 @@ target_link_libraries(poet_init PRIVATE POETLib RRuntime) target_include_directories(poet_init PRIVATE "${CMAKE_CURRENT_BINARY_DIR}") install(TARGETS poet poet_init DESTINATION bin) - diff --git a/src/poet.cpp b/src/poet.cpp index 65264c746..5ee6260fc 100644 --- a/src/poet.cpp +++ b/src/poet.cpp @@ -289,9 +289,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, // Predict R.parseEval("predictors_scaled <- preprocess(predictors)"); - R.parseEval("print('PREDICTORS:')"); - R.parseEval("print(head(predictors))"); - R.parseEval("prediction <- preprocess(prediction_step(model, predictors_scaled),\ backtransform = TRUE,\ outputs = TRUE)"); @@ -327,9 +324,6 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms, // TODO: Check how to get the correct columns R.parseEval("target_scaled <- preprocess(targets, outputs = TRUE)"); - - R.parseEval("print('TARGET:')"); - R.parseEval("print(head(target_scaled))"); R.parseEval("training_step(model, predictors_scaled, target_scaled, validity_vector)"); double ai_end_t = MPI_Wtime();