From a8d23a9563b0cf08c967c92cbfc647e9e3de9ae9 Mon Sep 17 00:00:00 2001 From: Marco De Lucia Date: Sat, 26 Aug 2023 13:10:17 +0200 Subject: [PATCH] eqs and text --- bench/barite/README.org | 33 ++++++++++++++++----------------- 1 file changed, 16 insertions(+), 17 deletions(-) diff --git a/bench/barite/README.org b/bench/barite/README.org index f417d1b32..caf4635e4 100644 --- a/bench/barite/README.org +++ b/bench/barite/README.org @@ -1,4 +1,4 @@ -#+TITLE: Description of \texttt{barite} benchmark +#+TITLE: Description of =barite= benchmark #+AUTHOR: MDL #+DATE: 2023-08-26 #+STARTUP: inlineimages @@ -19,28 +19,27 @@ mpirun -np 4 ./poet barite.R barite_results * Chemical system The benchmark depicts a porous system where pure water is initially at -equilibrium with the *celestite* (strontium sulfate; brute formula: -SrSO_4). A solution containing only dissolved Ba^{2+} and Cl^- -diffuses into the system causing celestite dissolution. The resulting -increased concentration of dissolved sulfate SO_4^{2-} induces -precipitation of *barite* (barium sulfate; brute formula: -BaSO_4^{2-}). The overall reaction can be written: +equilibrium with *celestite* (strontium sulfate; brute formula: +SrSO_4). -Ba^{2+} + SrSO_4 \rightarrow BaSO_4 + Sr^{2+} +A solution containing only dissolved Ba^{2+} and Cl^- diffuses into +the system causing celestite dissolution. The increased concentration +of dissolved sulfate SO_{4}^{2-} induces precipitation of *barite* +(barium sulfate; brute formula: BaSO_{4}^{2-}). The overall reaction +can be written: + +Ba^{2+} + celestite \rightarrow barite + Sr^{2+} Both celestite dissolution and barite precipitation are calculated -using a general kinetics rate law based on transition state theory: +using a kinetics rate law based on transition state theory: -\frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m} -(1-\mathrm{SR}_{m}) +rate = -S_{m} K (1-SR_{m}) +where the reaction rate has units mol/s, S_m (m^2) is the reactive +surface area, K (mol/m^2/s) is the rate constant, and SR is the +saturation ratio, i.e., the ratio of the ion activity product of the +reacting species and the solubility constant. -where $\mathrm{d}m\,(\mathrm{mol/s})$ is the rate of a mineral phase -$m$, $\mathrm{SA}\,\mathrm{(m^2)}$ is the reactive surface area, -$k_{\mathrm{r}}\,\mathrm{(mol/m^2/s)}$ is the rate constant, and -$\mathrm{SR}\, {(\text{--})}$ is the saturation ratio, i.e., the ratio -of the ion activity product of the reacting species and the solubility -constant. * List of Files