mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-16 12:54:50 +01:00
Refactor code for grid creation and result storage
This commit is contained in:
parent
4fa935475e
commit
af48694d22
@ -1,29 +1,16 @@
|
||||
has_foreach <- require(foreach)
|
||||
has_doParallel <- require(doParallel)
|
||||
|
||||
seq_pqc_to_grid <- function(pqc_in, grid) {
|
||||
pqc_to_grid <- function(pqc_in, grid) {
|
||||
# Convert the input DataFrame to a matrix
|
||||
pqc_in <- as.matrix(pqc_in)
|
||||
|
||||
# Flatten the matrix into a vector
|
||||
id_vector <- as.numeric(t(grid))
|
||||
|
||||
# Initialize an empty matrix to store the results
|
||||
# result_mat <- matrix(NA, nrow = length(id_vector), ncol = ncol(pqc_in))
|
||||
|
||||
# Find the matching rows in the matrix
|
||||
row_indices <- match(id_vector, pqc_in[, "ID"])
|
||||
|
||||
# Extract the matching rows from pqc_in to size of grid matrix
|
||||
result_mat <- pqc_in[row_indices, ]
|
||||
|
||||
# Iterate over each ID in the vector
|
||||
# for (i in seq_along(id_vector)) {
|
||||
# # Find the matching row in the matrix
|
||||
# # matching_row <- pqc_in[pqc_in[, "ID"] == i, ]
|
||||
|
||||
# # Append the matching row to the result matrix
|
||||
# result_mat[i, ] <- pqc_in[pqc_in[, "ID"] == i, ]
|
||||
# }
|
||||
|
||||
# Convert the result matrix to a data frame
|
||||
res_df <- as.data.frame(result_mat)
|
||||
|
||||
@ -36,55 +23,6 @@ seq_pqc_to_grid <- function(pqc_in, grid) {
|
||||
return(res_df)
|
||||
}
|
||||
|
||||
par_pqc_to_grid <- function(pqc_in, grid) {
|
||||
# Convert the input DataFrame to a matrix
|
||||
dt <- as.matrix(pqc_in)
|
||||
|
||||
# Flatten the matrix into a vector
|
||||
id_vector <- as.vector(t(grid))
|
||||
|
||||
# Initialize an empty matrix to store the results
|
||||
# result_mat <- matrix(nrow = 0, ncol = ncol(dt))
|
||||
|
||||
# Set up parallel processing
|
||||
num_cores <- detectCores()
|
||||
cl <- makeCluster(num_cores)
|
||||
registerDoParallel(cl)
|
||||
|
||||
# Iterate over each ID in the vector in parallel
|
||||
result_mat <- foreach(id_mat = id_vector, .combine = rbind) %dopar% {
|
||||
# Find the matching row in the matrix
|
||||
matching_row <- dt[dt[, "ID"] == id_mat, ]
|
||||
|
||||
# Return the matching row
|
||||
matching_row
|
||||
}
|
||||
|
||||
# Stop the parallel processing
|
||||
stopCluster(cl)
|
||||
|
||||
# Convert the result matrix to a data frame
|
||||
res_df <- as.data.frame(result_mat)
|
||||
|
||||
# Remove all columns which only contain NaN
|
||||
res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
|
||||
|
||||
# Remove row names
|
||||
rownames(res_df) <- NULL
|
||||
|
||||
return(res_df)
|
||||
}
|
||||
|
||||
pqc_to_grid <- function(pqc_in, grid) {
|
||||
# if (has_doParallel && has_foreach) {
|
||||
# print("Using parallel grid creation")
|
||||
# return(par_pqc_to_grid(pqc_in, grid))
|
||||
# } else {
|
||||
print("Using sequential grid creation")
|
||||
return(seq_pqc_to_grid(pqc_in, grid))
|
||||
# }
|
||||
}
|
||||
|
||||
resolve_pqc_bound <- function(pqc_mat, transport_spec, id) {
|
||||
df <- as.data.frame(pqc_mat, check.names = FALSE)
|
||||
value <- df[df$ID == id, transport_spec]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user