diff --git a/bench/barite/README.org b/bench/barite/README.org index b732ad9b0..589ca25a7 100644 --- a/bench/barite/README.org +++ b/bench/barite/README.org @@ -27,10 +27,9 @@ mpirun -np 4 ./poet --interp barite_interp_eval.R barite_results * Chemical system -The benchmark depicts a porous system where pure water is initially at -equilibrium with *celestite* (strontium sulfate; brute formula: -SrSO_4). - +The benchmark depicts an isotherm porous system at *25 °C* where pure +water is initially at equilibrium with *celestite* (strontium sulfate; +brute formula: SrSO_4). A solution containing only dissolved Ba^{2+} and Cl^- diffuses into the system causing celestite dissolution. The increased concentration of dissolved sulfate SO_{4}^{2-} induces precipitation of *barite* @@ -50,28 +49,41 @@ saturation ratio, i.e., the ratio of the ion activity product of the reacting species and the solubility constant. For barite, the reaction rate is computed as sum of two mechanisms, -/acid/ and /neutral/: +r_{/acid/} and r_{/neutral/}: - rate_{barite} = S_{m} (acid + neutral) * (1 - SR_{barite}) +rate_{barite} = S_{barite} (r_{/acid/} + r_{/neutral/}) * (1 - SR_{barite}) -where +where: - acid = 10^{-6.9} \exp(\frac {-30800 \cdot T'} R) * act(H^{+})^{0.22} +r_{/acid/} = 10^{-6.9} e^{-30800 / R} \cdot act(H^{+})^{0.22} -and +r_{/neutral/} = 10^{-7.9} e^{-30800 / R} - neutral = 10^{-7.9} \exp( \frac {-30800 * T'} R) +R (8.314462 J K^{-1} mol^{-1}) is the gas constant. -R is the gas constant (8.314462 J / K / mol) and T' (K^{-1}) accounts -for temperature dependence of the kinetic coefficients which are -experimentally determined at 25 °C or 298.15 K +For celestite the kinetic law considers only the acidic term and +reads: - T' = (1 / K) - (1 / 298.15) - +rate_{celestite} = S_{celestite} 10^{-5.66} e^{-23800 / R} \cdot +act(H^{+})^{0.109} \cdot (1 - SR_{celestite}) -The kinetic rate law as implemented in the =db_barite.dat= file +The kinetic rate laws as implemented in the =db_barite.dat= file accepts one parameter which represents reactive surface area in m^{2}. -For this benchmarks the surface areas are set to +For the benchmarks the surface areas are set to - S_{barite}: 50 m^{2} -- S_{celestite}: 10 m^{2} +- S_{celestite}: 10 m^{2} + + +** Initial conditions + +The parametrization + + +* References + +- Tranter, Wetzel, De Lucia and Kühn (2021): Reactive transport model + of kinetically controlled celestite to barite replacement, Adv. + Geosci., 1, 1–9 ,https://doi.org/10.5194/adgeo-1-1-2021 + +