mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-15 20:38:23 +01:00
update submodule
This commit is contained in:
parent
6890553a6c
commit
d825f33b4f
@ -1 +1 @@
|
||||
Subproject commit 2dd2b8881d6fe27b08a259d48ee8bca6188f049a
|
||||
Subproject commit 68c643bd0b9dfd02d3d9eb7408621d48544937c9
|
||||
110
src/poet.cpp
110
src/poet.cpp
@ -46,7 +46,6 @@
|
||||
|
||||
#include <Model.hpp>
|
||||
#include <NAABackend.hpp>
|
||||
#include <PythonBackend.hpp>
|
||||
#include <TrainingBackend.hpp>
|
||||
#include <TrainingData.hpp>
|
||||
|
||||
@ -166,6 +165,9 @@ int parseInitValues(int argc, char **argv, RuntimeParameters ¶ms) {
|
||||
app.add_flag("-c,--copy-non-reactive", params.copy_non_reactive_regions,
|
||||
"Copy non-reactive regions instead of computing them");
|
||||
|
||||
app.add_option("-f,--fn", params.function_code, "Function code for the NAA")
|
||||
->check(CLI::PositiveNumber);
|
||||
|
||||
app.add_flag("--rds", params.as_rds,
|
||||
"Save output as .rds file instead of default .qs2");
|
||||
|
||||
@ -311,8 +313,14 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
|
||||
if (params.ai) {
|
||||
|
||||
ai_ctx = std::make_unique<AIContext>(
|
||||
"/mnt/scratch/signer/poet/bench/barite/barite_trained.weights.h5");
|
||||
if (params.function_code == 1) {
|
||||
ai_ctx = std::make_unique<AIContext>(
|
||||
"./bench/barite/barite_trained.weights.h5");
|
||||
} else if (params.function_code == 2) {
|
||||
ai_ctx = std::make_unique<AIContext>(
|
||||
"./bench/dolo/dolomite_trained.weights.h5");
|
||||
}
|
||||
|
||||
R.parseEval(
|
||||
"mean <- as.numeric(standard$mean[ai_surrogate_species_output])");
|
||||
R.parseEval(
|
||||
@ -326,8 +334,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
// initialzie training backens only if retraining is desired
|
||||
if (params.ai_backend == PYTHON_BACKEND) {
|
||||
MSG("AI Surrogate with Python/keras backend enabled.")
|
||||
ai_ctx->training_backend =
|
||||
std::make_unique<PythonBackend<ai_type_t>>(4 * params.batch_size);
|
||||
std::cerr << "Not implemented" << std::endl;
|
||||
} else if (params.ai_backend == NAA_BACKEND) {
|
||||
MSG("AI Surrogate with NAA backend enabled.")
|
||||
ai_ctx->training_backend =
|
||||
@ -339,7 +346,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
ai_ctx->design_buffer, ai_ctx->results_buffer, ai_ctx->model,
|
||||
ai_ctx->meta_params, ai_ctx->scaler, ai_ctx->data_semaphore_write,
|
||||
ai_ctx->data_semaphore_read, ai_ctx->model_semaphore,
|
||||
ai_ctx->training_is_running, 1);
|
||||
ai_ctx->training_is_running, params.function_code);
|
||||
}
|
||||
}
|
||||
|
||||
@ -361,6 +368,21 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
/* run transport */
|
||||
diffusion.simulate(dt);
|
||||
|
||||
// validity_vector:
|
||||
// vector with length = number of grid cells (1 indicates
|
||||
// that values are copied into the next time step (no chemical reaction)
|
||||
// or the ai surrogate prediction was good enoug. In both cases the
|
||||
// workers skip the exact simulation with PHREEQC) predictor_idx
|
||||
// ai_validity_vector
|
||||
// predictors:
|
||||
// data frame with elements that are used as input for the ai surrogate
|
||||
// model. The data frame can be smaller than the grid size if
|
||||
// copy_non_reactive_regions option is enabled. In this case only the
|
||||
// reactive data are used for ai prediction.
|
||||
// targets:
|
||||
// data frame with elements that are used as ai outputs for the
|
||||
// retraining step.
|
||||
|
||||
if (params.ai || params.copy_non_reactive_regions) {
|
||||
|
||||
chem.getField().update(diffusion.getField());
|
||||
@ -370,46 +392,58 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
std::string("field <- setNames(data.frame(matrix(TMP, nrow=" +
|
||||
std::to_string(chem.getField().GetRequestedVecSize()) +
|
||||
")), TMP_PROPS)"));
|
||||
R.parseEval("print(head(field))");
|
||||
|
||||
R.parseEval("validity_vector <- rep(FALSE, nrow(field))");
|
||||
|
||||
R.parseEval("length(validity_vector)");
|
||||
|
||||
R.parseEval("print(length(validity_vector))");
|
||||
|
||||
if (params.copy_non_reactive_regions) {
|
||||
R.parseEval("validity_vector <- field$Cl < 1e-14");
|
||||
R.parseEval(
|
||||
"validity_vector <- field[[threshold$species]] < threshold$value");
|
||||
}
|
||||
}
|
||||
|
||||
// MSG("Chemistry start");
|
||||
MSG("Chemistry start");
|
||||
if (params.ai) {
|
||||
double ai_start_t = MPI_Wtime();
|
||||
|
||||
// deep copy field
|
||||
R.parseEval("predictors <- data.frame(field)");
|
||||
R.parseEval("predictors <- field");
|
||||
// get only ai related species
|
||||
R.parseEval("print(head(predictors))");
|
||||
R.parseEval("print(ai_surrogate_species_input)");
|
||||
R.parseEval("predictors <- predictors[ai_surrogate_species_input]");
|
||||
|
||||
// remove already copied values
|
||||
R.parseEval("predictors <- predictors[!validity_vector,]");
|
||||
|
||||
R.parseEval(
|
||||
"print(paste('Length of predictors:', length(predictors$H)))");
|
||||
|
||||
// store row names of predictors
|
||||
R.parseEval("predictor_idx <- row.names(predictors)");
|
||||
|
||||
R.parseEval("print(head(predictors))");
|
||||
R.parseEval("predictors_scaled <- preprocess(predictors)");
|
||||
|
||||
R.parseEval("print(head(predictors_scaled))");
|
||||
std::vector<std::vector<float>> predictors_scaled =
|
||||
R["predictors_scaled"];
|
||||
|
||||
std::vector<float> predictions_scaled =
|
||||
ai_ctx->model.predict(predictors_scaled, params.batch_size,
|
||||
ai_ctx->model_semaphore); // features per cell
|
||||
|
||||
int n_samples = R.parseEval("nrow(predictors)");
|
||||
int n_output_features = ai_ctx->model.weight_matrices.back().cols();
|
||||
std::cout << "n_output_features: " << n_output_features << std::endl;
|
||||
std::vector<double> predictions_scaled_double(predictions_scaled.begin(),
|
||||
predictions_scaled.end());
|
||||
|
||||
std::cout << "First elements of predictions_scaled_double: ";
|
||||
for (size_t i = 0;
|
||||
i < std::min(size_t(10), predictions_scaled_double.size()); i++) {
|
||||
std::cout << predictions_scaled_double[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
R["TMP"] = predictions_scaled_double;
|
||||
R["n_samples"] = n_samples;
|
||||
R["n_output"] = n_output_features;
|
||||
@ -418,15 +452,14 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
"nrow=n_samples, ncol=n_output, byrow=TRUE)), "
|
||||
"ai_surrogate_species_output)");
|
||||
// R.parseEval("print(head(predictions_scaled))");
|
||||
// R.parseEval("print(head(predictions_scaled))");
|
||||
R.parseEval("predictions <- postprocess(predictions_scaled)");
|
||||
// R.parseEval("print(head(predictions))");
|
||||
|
||||
MSG("AI Validation");
|
||||
|
||||
R.parseEval("ai_validity_vector <- validate_predictions(predictors, "
|
||||
"predictions) ");
|
||||
|
||||
R.parseEval("print(length(predictor_idx))");
|
||||
R.parseEval("print(length(ai_validity_vector))");
|
||||
|
||||
// get only indices where prediction was valid
|
||||
@ -434,9 +467,9 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
|
||||
// set in global validity vector all elements to true, where prediction
|
||||
// was possible
|
||||
R.parseEval("validity_vector[predictor_idx] <- TRUE");
|
||||
R.parseEval("validity_vector[as.numeric(predictor_idx)] <- TRUE");
|
||||
|
||||
R.parseEval("print(head(validity_vector))");
|
||||
R.parseEval("print(length(validity_vector))");
|
||||
|
||||
MSG("AI TempField");
|
||||
// maybe row.names was overwritten by function calls ??
|
||||
@ -444,7 +477,8 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
// subset predictions to ai_validity_vector == TRUE
|
||||
R.parseEval("predictions <- predictions[ai_validity_vector,]");
|
||||
// merge predicted values into field stored in R
|
||||
R.parseEval("field[row.names(predictions),ai_surrogate_species_output] "
|
||||
R.parseEval("field[as.numeric(row.names(predictions)),ai_surrogate_"
|
||||
"species_output] "
|
||||
"<- predictions");
|
||||
|
||||
MSG("AI Set Field");
|
||||
@ -461,9 +495,9 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
|
||||
if (params.copy_non_reactive_regions || params.ai) {
|
||||
MSG("Set copied or predicted values for the workers");
|
||||
|
||||
R.parseEval(
|
||||
"print(paste('Number of valid cells:', sum(validity_vector)))");
|
||||
R.parseEval("print(head(validity_vector))");
|
||||
chem.set_ai_surrogate_validity_vector(R.parseEval("validity_vector"));
|
||||
}
|
||||
|
||||
@ -478,18 +512,21 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
std::string("targets <- setNames(data.frame(matrix(TMP, nrow=" +
|
||||
std::to_string(chem.getField().GetRequestedVecSize()) +
|
||||
")), TMP_PROPS)"));
|
||||
|
||||
R.parseEval("print(paste('Length of validity_vector:', "
|
||||
"length(ai_validity_vector)))");
|
||||
R.parseEval("predictors_retraining <- "
|
||||
"get_invalid_values(predictors_scaled, ai_validity_vector)");
|
||||
R.parseEval("print(head(predictors_retraining))");
|
||||
R.parseEval("targets <- targets[predictor_idx, ]");
|
||||
R.parseEval("targets_retraining <- "
|
||||
"get_invalid_values(targets[ai_surrogate_species_output], "
|
||||
"ai_validity_vector)");
|
||||
R.parseEval("targets <- "
|
||||
"targets[as.numeric(row.names(predictors_retraining)), "
|
||||
"ai_surrogate_species_output]");
|
||||
|
||||
R.parseEval("print(length(predictors_scaled$H))");
|
||||
R.parseEval("print(length(ai_validity_vector))");
|
||||
|
||||
R.parseEval("targets_retraining <- preprocess(targets_retraining)");
|
||||
R.parseEval("targets_retraining <- preprocess(targets)");
|
||||
|
||||
R.parseEval("print(head(predictors_retraining))");
|
||||
R.parseEval("print(head(targets_retraining))");
|
||||
|
||||
std::vector<std::vector<float>> predictors_retraining =
|
||||
R["predictors_retraining"];
|
||||
@ -505,9 +542,11 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
std::cout << "size of targets " << targets_retraining[0].size()
|
||||
<< std::endl;
|
||||
|
||||
ai_ctx->design_buffer.addData(predictors_retraining);
|
||||
ai_ctx->results_buffer.addData(targets_retraining);
|
||||
|
||||
if (predictors_retraining[0].size() > 0 &&
|
||||
targets_retraining[0].size() > 0) {
|
||||
ai_ctx->design_buffer.addData(predictors_retraining);
|
||||
ai_ctx->results_buffer.addData(targets_retraining);
|
||||
}
|
||||
size_t elements_design_buffer =
|
||||
ai_ctx->design_buffer.getSize() /
|
||||
(predictors_retraining.size() * sizeof(float));
|
||||
@ -520,9 +559,8 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
std::cout << "results_buffer_size: " << elements_results_buffer
|
||||
<< std::endl;
|
||||
|
||||
if (elements_design_buffer >=
|
||||
20 * params.batch_size && // TODO: change to 4 * grid_size
|
||||
elements_results_buffer >= 20 * params.batch_size &&
|
||||
if (elements_design_buffer >= 4 * params.batch_size &&
|
||||
elements_results_buffer >= 4 * params.batch_size &&
|
||||
ai_ctx->training_is_running == false) {
|
||||
ai_ctx->data_semaphore_read.release();
|
||||
} else {
|
||||
@ -553,7 +591,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, const RuntimeParameters ¶ms,
|
||||
|
||||
std::cout << std::endl;
|
||||
|
||||
if (!params.disable_retraining) {
|
||||
if (params.ai && !params.disable_retraining) {
|
||||
ai_ctx->training_backend->stop_training(ai_ctx->data_semaphore_read);
|
||||
}
|
||||
|
||||
@ -769,7 +807,7 @@ int main(int argc, char *argv[]) {
|
||||
R["out_ext"] = run_params.out_ext;
|
||||
R["out_dir"] = run_params.out_dir;
|
||||
|
||||
if (run_params.ai) {
|
||||
if (run_params.ai || run_params.copy_non_reactive_regions) {
|
||||
/* Incorporate ai surrogate from R */
|
||||
R.parseEvalQ(ai_surrogate_r_library);
|
||||
/* Use dht species for model input and output */
|
||||
|
||||
@ -84,9 +84,11 @@ struct RuntimeParameters {
|
||||
bool ai = false;
|
||||
bool disable_retraining = false;
|
||||
static constexpr std::uint8_t AI_BACKEND_DEFAULT = 1;
|
||||
std::uint8_t ai_backend = 1; // 1 - python, 2 - naa
|
||||
std::uint8_t ai_backend = AI_BACKEND_DEFAULT; // 1 - python, 2 - naa
|
||||
bool train_only_invalid = true;
|
||||
int batch_size = 1000;
|
||||
int batch_size = 200 * 200;
|
||||
static constexpr std::uint8_t DEFAULT_FUNCTION_CODE = 0;
|
||||
std::uint8_t function_code = DEFAULT_FUNCTION_CODE;
|
||||
|
||||
static constexpr bool COPY_NON_REACTIVE_REGIONS = false;
|
||||
bool copy_non_reactive_regions = COPY_NON_REACTIVE_REGIONS;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user