feat: control_flags are sent via MasterSenPkgs() and not bcast before

This commit is contained in:
rastogi 2025-10-28 14:40:35 +01:00
parent 33269d531a
commit dda78c7b17
8 changed files with 283 additions and 151 deletions

Binary file not shown.

View File

@ -3,10 +3,9 @@
#define CHEMISTRYMODULE_H_
#include "ChemistryDefs.hpp"
#include "Control/ControlModule.hpp"
#include "DataStructures/Field.hpp"
#include "DataStructures/NamedVector.hpp"
#include "ChemistryDefs.hpp"
#include "Control/ControlModule.hpp"
#include "Init/InitialList.hpp"
#include "NameDouble.h"
#include "PhreeqcRunner.hpp"
@ -22,7 +21,7 @@
#include <vector>
namespace poet {
class ControlModule;
class ControlModule;
/**
* \brief Wrapper around PhreeqcRM to provide POET specific parallelization with
* easy access.
@ -252,7 +251,15 @@ public:
std::vector<int> ai_surrogate_validity_vector;
void setControlModule(poet::ControlModule *ctrl) { control_module = ctrl; }
void SetControlModule(poet::ControlModule *ctrl) { control_module = ctrl; }
void SetDhtEnabled(bool enabled) { dht_enabled = enabled; }
bool GetDhtEnabled() const { return dht_enabled; }
void SetInterpEnabled(bool enabled) { interp_enabled = enabled; }
bool GetInterpEnabled() const { return interp_enabled; }
void SetWarmupEnabled(bool enabled) { warmup_enabled = enabled; }
protected:
void initializeDHT(uint32_t size_mb,
@ -267,13 +274,13 @@ protected:
enum {
CHEM_FIELD_INIT,
CHEM_DHT_ENABLE,
//CHEM_DHT_ENABLE,
CHEM_DHT_SIGNIF_VEC,
CHEM_DHT_SNAPS,
CHEM_DHT_READ_FILE,
//CHEM_IP, // Control flag
CHEM_CTRL, // Control flag
CHEM_IP_ENABLE,
//CHEM_WARMUP_PHASE, // Control flag
//CHEM_CTRL_ENABLE, // Control flag
//CHEM_IP_ENABLE,
CHEM_IP_MIN_ENTRIES,
CHEM_IP_SIGNIF_VEC,
CHEM_WORK_LOOP,
@ -387,7 +394,7 @@ protected:
bool ai_surrogate_enabled{false};
static constexpr uint32_t BUFFER_OFFSET = 5;
static constexpr uint32_t BUFFER_OFFSET = 6;
inline void ChemBCast(void *buf, int count, MPI_Datatype datatype) const {
MPI_Bcast(buf, count, datatype, 0, this->group_comm);
@ -396,6 +403,9 @@ protected:
inline void PropagateFunctionType(int &type) const {
ChemBCast(&type, 1, MPI_INT);
}
void PropagateControlLogic(int type, int flag);
double simtime = 0.;
double idle_t = 0.;
double seq_t = 0.;
@ -422,6 +432,7 @@ protected:
poet::ControlModule *control_module = nullptr;
bool control_enabled{false};
bool warmup_enabled{false};
// std::vector<double> sur_shuffled;
};

View File

@ -232,6 +232,37 @@ inline void printProgressbar(int count_pkgs, int n_wp, int barWidth = 70) {
/* end visual progress */
}
void poet::ChemistryModule::PropagateControlLogic(int type, int flag) {
/*
PropagateFunctionType(type);
static int master_bcast_seq = 0;
int tmp = flag ? 1 : 0;
std::cerr << "[MASTER BCAST " << master_bcast_seq << "] ftype=" << type
<< " flag=" << tmp << std::endl
<< std::flush;
master_bcast_seq++;
ChemBCast(&tmp, 1, MPI_INT);
switch (type) {
case CHEM_CTRL_ENABLE:
this->control_enabled = (tmp == 1);
break;
case CHEM_WARMUP_PHASE:
this->warmup_enabled = (tmp == 1);
break;
case CHEM_DHT_ENABLE:
this->dht_enabled = (tmp == 1);
break;
case CHEM_IP_ENABLE:
this->interp_enabled = (tmp == 1);
break;
default:
break;
}
*/
}
inline void poet::ChemistryModule::MasterSendPkgs(
worker_list_t &w_list, workpointer_t &work_pointer,
workpointer_t &sur_pointer, int &pkg_to_send, int &count_pkgs,
@ -250,6 +281,10 @@ inline void poet::ChemistryModule::MasterSendPkgs(
local_work_package_size = (int)wp_sizes_vector[count_pkgs];
count_pkgs++;
uint32_t wp_start_index =
std::accumulate(wp_sizes_vector.begin(),
std::next(wp_sizes_vector.begin(), count_pkgs), 0);
/* note current processed work package in workerlist */
w_list[p].send_addr = work_pointer.base();
w_list[p].surrogate_addr = sur_pointer.base();
@ -272,10 +307,12 @@ inline void poet::ChemistryModule::MasterSendPkgs(
// current time of simulation (age) in seconds
send_buffer[end_of_wp + 3] = this->simtime;
// current work package start location in field
uint32_t wp_start_index =
std::accumulate(wp_sizes_vector.begin(),
std::next(wp_sizes_vector.begin(), count_pkgs), 0);
send_buffer[end_of_wp + 4] = wp_start_index;
// control flags (bitmask)
int flags = (this->interp_enabled ? 1 : 0) | (this->dht_enabled ? 2 : 0) |
(this->warmup_enabled ? 4 : 0) |
(this->control_enabled ? 8 : 0);
send_buffer[end_of_wp + 5] = static_cast<double>(flags);
/* ATTENTION Worker p has rank p+1 */
// MPI_Send(send_buffer, end_of_wp + BUFFER_OFFSET, MPI_DOUBLE, p + 1,
@ -427,18 +464,35 @@ void poet::ChemistryModule::MasterRunParallel(double dt) {
MPI_INT);
}
uint32_t control_flag = control_module->GetControlIntervalEnabled();
if (control_flag) {
ftype = CHEM_CTRL;
PropagateFunctionType(ftype);
ChemBCast(&control_flag, 1, MPI_INT);
// ftype = CHEM_IP_ENABLE;
// ftype = CHEM_WARMUP_PHASE;
/*
PropagateFunctionType(ftype);
int warmup_flag = this->warmup_enabled ? 1 : 0;
if (warmup_flag) {
this->interp_enabled = false;
int interp_flag = 0;
ChemBCast(&interp_flag, 1, MPI_INT);
// PropagateControlLogic(CHEM_WARMUP_PHASE, 1);
// PropagateControlLogic(CHEM_DHT_ENABLE, 0);
// PropagateControlLogic(CHEM_IP_ENABLE, 0);
} else {
this->interp_enabled = true;
int interp_flag = 1;
ChemBCast(&interp_flag, 1, MPI_INT);
// PropagateControlLogic(CHEM_WARMUP_PHASE, 0);
// PropagateControlLogic(CHEM_DHT_ENABLE, 1);
// PropagateControlLogic(CHEM_IP_ENABLE, 1);
}
/*
ftype = CHEM_IP;
PropagateFunctionType(ftype);
ctrl_module->BCastControlFlags();
*/
int control_flag = this->control_module->GetControlIntervalEnabled() ? 1 : 0;
if (control_flag) {
PropagateControlLogic(CHEM_CTRL_ENABLE, control_flag);
}
*/
ftype = CHEM_WORK_LOOP;
PropagateFunctionType(ftype);
@ -455,8 +509,8 @@ void poet::ChemistryModule::MasterRunParallel(double dt) {
shuffleField(chem_field.AsVector(), this->n_cells, this->prop_count,
wp_sizes_vector.size());
std::vector<double> mpi_surr_buffer;
mpi_surr_buffer.resize(mpi_buffer.size());
control_enabled = this->control_module->GetControlIntervalEnabled() ? 1 : 0;
std::vector<double> mpi_surr_buffer{mpi_buffer};
/* setup local variables */
pkg_to_send = wp_sizes_vector.size();
@ -511,15 +565,48 @@ void poet::ChemistryModule::MasterRunParallel(double dt) {
chem_field = out_vec;
/* do master stuff */
if (control_flag) {
if (control_enabled) {
std::cout << "[Master] Control logic enabled for this iteration."
<< std::endl;
std::vector<double> sur_unshuffled{mpi_surr_buffer};
unshuffleField(mpi_surr_buffer, this->n_cells, this->prop_count,
wp_sizes_vector.size(), sur_unshuffled);
control_module->computeSpeciesErrors(out_vec, sur_unshuffled,
// Quick debug: compare out_vec vs sur_unshuffled
size_t N = out_vec.size();
if (N != sur_unshuffled.size()) {
std::cerr << "[MASTER DBG] size mismatch out_vec=" << N
<< " sur_unshuffled=" << sur_unshuffled.size() << std::endl;
} /*else {
double max_abs = 0.0;
double max_rel = 0.0;
size_t worst_i = 0;
for (size_t i = 0; i < N; i) {
double a = out_vec[i];
double b = sur_unshuffled[i];
double absd = std::fabs(a - b);
if (absd > max_abs) {
max_abs = absd;
worst_i = i;
}
double rel = (std::fabs(a) > 1e-12) ? absd / std::fabs(a) : (absd > 0 ?
1e12 : 0.0); if (rel > max_rel) max_rel = rel;
}
std::cerr << "[MASTER DBG] control compare N=" << N
<< " max_abs=" << max_abs << " max_rel=" << max_rel
<< " worst_idx=" << worst_i
<< " out_vec[worst]=" << out_vec[worst_i]
<< " sur[worst]=" << sur_unshuffled[worst_i] << std::endl;
// optionally print first 8 entries
std::cerr << "[MASTER DBG] out[0..7]: ";
for (size_t i = 0; i < std::min<size_t>(8, N); i) std::cerr << out_vec[i]
<< " "; std::cerr << "\n[MASTER DBG] sur[0..7]: "; for (size_t i = 0; i <
std::min<size_t>(8, N); +i) std::cerr << sur_unshuffled[i] << " "; std::cerr
<< std::endl;
}
*/
control_module->ComputeSpeciesErrorMetrics(out_vec, sur_unshuffled,
this->n_cells);
}

View File

@ -59,12 +59,37 @@ void poet::ChemistryModule::WorkerLoop() {
MPI_INT, 0, this->group_comm);
break;
}
case CHEM_CTRL: {
int control_flag ;
ChemBCast(&control_flag, 1, MPI_INT);
this->control_enabled = (control_flag == 1);
/*
case CHEM_WARMUP_PHASE: {
int warmup_flag = 0;
ChemBCast(&warmup_flag, 1, MPI_INT);
this->warmup_enabled = (warmup_flag == 1);
//std::cout << "Warmup phase is " << this->warmup_enabled << std::endl;
break;
}
case CHEM_DHT_ENABLE: {
int dht_flag = 0;
ChemBCast(&dht_flag, 1, MPI_INT);
this->dht_enabled = (dht_flag == 1);
//std::cout << "DHT_enabled is " << this->dht_enabled << std::endl;
break;
}
case CHEM_IP_ENABLE: {
int interp_flag = 0;
ChemBCast(&interp_flag, 1, MPI_INT);
this->interp_enabled = (interp_flag == 1);
;
std::cout << "Interp_enabled is " << this->interp_enabled << std::endl;
break;
}
case CHEM_CTRL_ENABLE: {
int control_flag = 0;
ChemBCast(&control_flag, 1, MPI_INT);
this->control_enabled = (control_flag == 1);
std::cout << "Control_enabled is " << this->control_enabled << std::endl;
break;
}
*/
case CHEM_WORK_LOOP: {
WorkerProcessPkgs(timings, iteration);
break;
@ -136,6 +161,7 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
double current_sim_time;
uint32_t wp_start_index;
int count = double_count;
int flags;
std::vector<double> mpi_buffer(count);
/* receive */
@ -162,6 +188,19 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
// current work package start location in field
wp_start_index = mpi_buffer[count + 4];
// read packed control flags
flags = static_cast<int>(mpi_buffer[count + 5]);
this->interp_enabled = (flags & 1) != 0;
this->dht_enabled = (flags & 2) != 0;
this->warmup_enabled = (flags & 4) != 0;
this->control_enabled = (flags & 8) != 0;
/*std::cout << "warmup_enabled is " << warmup_enabled << ", control_enabled is
"
<< control_enabled << ", dht_enabled is "
<< dht_enabled << ", interp_enabled is " << interp_enabled
<< std::endl;*/
for (std::size_t wp_i = 0; wp_i < s_curr_wp.size; wp_i++) {
s_curr_wp.input[wp_i] =
std::vector<double>(mpi_buffer.begin() + this->prop_count * wp_i,
@ -169,7 +208,7 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
}
// std::cout << this->comm_rank << ":" << counter++ << std::endl;
if (dht_enabled || interp_enabled) {
if (dht_enabled || interp_enabled || warmup_enabled) {
dht->prepareKeys(s_curr_wp.input, dt);
}
@ -203,7 +242,7 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
for (std::size_t wp_i = 0; wp_i < s_curr_wp_control.size; wp_i++) {
s_curr_wp_control.output[wp_i] =
std::vector<double>(this->prop_count, 0.0);
s_curr_wp_control.mapping[wp_i] = 0;
s_curr_wp_control.mapping[wp_i] = CHEM_PQC;
}
}
@ -216,7 +255,6 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
if (control_enabled) {
std::size_t sur_wp_offset = s_curr_wp.size * this->prop_count;
mpi_buffer.resize(count + sur_wp_offset);
@ -231,9 +269,8 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
// copy surrogate output after the the pqc output, mpi_buffer[pqc][interp]
for (std::size_t wp_i = 0; wp_i < s_curr_wp.size; wp_i++) {
if (s_curr_wp.mapping[wp_i] !=
CHEM_PQC) // only copy if surrogate was used
{
// only copy if surrogate was used
if (s_curr_wp.mapping[wp_i] != CHEM_PQC) {
std::copy(s_curr_wp.output[wp_i].begin(), s_curr_wp.output[wp_i].end(),
mpi_buffer.begin() + sur_wp_offset + this->prop_count * wp_i);
} else {
@ -259,14 +296,24 @@ void poet::ChemistryModule::WorkerDoWork(MPI_Status &probe_status,
MPI_Isend(mpi_buffer.data(), count, MPI_DOUBLE, 0, mpi_tag, MPI_COMM_WORLD,
&send_req);
if (dht_enabled || interp_enabled) {
if (dht_enabled || interp_enabled || warmup_enabled) {
/* write results to DHT */
dht_fill_start = MPI_Wtime();
dht->fillDHT(control_enabled ? s_curr_wp_control : s_curr_wp);
dht_fill_end = MPI_Wtime();
if (interp_enabled) {
int filled_count = std::count(dht->getDHTResults().filledDHT.begin(),
dht->getDHTResults().filledDHT.end(), true);
std::cout << "[Worker " << std::to_string(this->comm_rank)
<< "] DHT filled entries=" << std::to_string(filled_count)
<< std::endl;
if (interp_enabled || warmup_enabled) {
interp->writePairs();
std::cout << "[Worker " << std::to_string(this->comm_rank) << "] "
<< "Writing pairs to PHT after iteration "
<< std::to_string(iteration) << std::endl;
}
timings.dht_fill += dht_fill_end - dht_fill_start;
}

View File

@ -4,22 +4,62 @@
#include "IO/StatsIO.hpp"
#include <cmath>
void poet::ControlModule::updateControlIteration(const uint32_t iter) {
void poet::ControlModule::UpdateControlIteration(const uint32_t &iter,
const bool &dht_enabled,
const bool &interp_enabled) {
global_iteration = iter;
/* dht_enabled and inter_enabled are user settings set before startig the
* simulation*/
if (control_interval == 0) {
control_interval_enabled = false;
return;
}
// InitiateWarmupPhase(dht_enabled, interp_enabled);
global_iteration = iter;
if (global_iteration <= control_interval) {
chem->SetWarmupEnabled(true);
chem->SetDhtEnabled(false);
chem->SetInterpEnabled(false);
MSG("Warmup enabled until first control interval at iteration " +
std::to_string(control_interval) + ".");
} else {
chem->SetWarmupEnabled(false);
chem->SetDhtEnabled(true);
chem->SetInterpEnabled(true);
}
control_interval_enabled =
(control_interval > 0 && iter % control_interval == 0);
control_interval_enabled = (iter % control_interval == 0);
if (control_interval_enabled) {
MSG("[Control] Control interval enabled at iteration " +
std::to_string(iter));
}
}
void poet::ControlModule::InitiateWarmupPhase(bool dht_enabled,
bool interp_enabled) {
// user requested DHT/INTEP? keep them disabled but enable warmup-phase so
// workers do prepareKeys/fillDHT/writePairs as required.
if (global_iteration < control_interval) {
/* warmup phase: keep dht and interp disabled,
workers do prepareKeys/fillDHT/writePairs*/
chem->SetWarmupEnabled(true);
// chem->SetDhtEnabled(false);
// chem->SetInterpEnabled(false);
MSG("Warmup enabled until first control interval at iteration " +
std::to_string(control_interval) + ".");
} else {
/* after warmup phase: restore according to user's request*/
chem->SetWarmupEnabled(false);
// chem->SetDhtEnabled(dht_enabled);
// chem->SetInterpEnabled(interp_enabled);
}
}
/*
void poet::ControlModule::beginIteration() {
if (rollback_enabled) {
@ -33,35 +73,33 @@ void poet::ControlModule::beginIteration() {
}
*/
void poet::ControlModule::endIteration(const uint32_t iter) {
void poet::ControlModule::EndIteration(const uint32_t iter) {
if (!control_interval_enabled) {
return;
}
/* Writing a checkpointing */
/* Control Logic*/
if (control_interval_enabled &&
checkpoint_interval > 0 /*&& !rollback_enabled*/) {
if (!chem) {
MSG("chem pointer is null — skipping checkpoint/stats write");
} else {
MSG("Writing checkpoint of iteration " + std::to_string(iter));
write_checkpoint(out_dir, "checkpoint" + std::to_string(iter) + ".hdf5",
{.field = chem->getField(), .iteration = iter});
writeStatsToCSV(error_history, species_names, out_dir, "stats_overview");
if (!chem) {
MSG("chem pointer is null — skipping checkpoint/stats write");
} else {
MSG("Writing checkpoint of iteration " + std::to_string(iter));
write_checkpoint(out_dir, "checkpoint" + std::to_string(iter) + ".hdf5",
{.field = chem->getField(), .iteration = iter});
writeStatsToCSV(error_history, species_names, out_dir, "stats_overview");
/*
// if()
/*
if (triggerRollbackIfExceeded(*chem, *params, iter)) {
rollback_enabled = true;
rollback_counter++;
sur_disabled_counter = control_interval;
MSG("Interpolation disabled for the next " +
std::to_string(control_interval) + ".");
}
*/
if (triggerRollbackIfExceeded(*chem, *params, iter)) {
rollback_enabled = true;
rollback_counter++;
sur_disabled_counter = control_interval;
MSG("Interpolation disabled for the next " +
std::to_string(control_interval) + ".");
}
*/
}
}
@ -75,50 +113,45 @@ void poet::ControlModule::BCastControlFlags() {
*/
/*
bool poet::ControlModule::triggerRollbackIfExceeded(ChemistryModule &chem,
RuntimeParameters &params,
uint32_t &iter) {
bool poet::ControlModule::RollbackIfThresholdExceeded(ChemistryModule &chem) {
/**
if (error_history.empty()) {
MSG("No error history yet; skipping rollback check.");
return false;
}
const auto &mape = chem.error_history.back().mape;
const auto &props = chem.getField().GetProps();
const auto &mape = error_history.back().mape;
for (uint32_t i = 0; i < params.mape_threshold.size(); ++i) {
// Skip invalid entries
for (uint32_t i = 0; i < species_names.size(); ++i) {
if (mape[i] == 0) {
continue;
}
bool mape_exceeded = mape[i] > params.mape_threshold[i];
if (mape_exceeded) {
uint32_t rollback_iter = ((iter - 1) / params.checkpoint_interval) *
params.checkpoint_interval;
if (mape[i] > mape_threshold[i]) {
uint32_t rollback_iter = ((global_iteration - 1) / checkpoint_interval) *
checkpoint_interval;
MSG("[THRESHOLD EXCEEDED] " + props[i] +
MSG("[THRESHOLD EXCEEDED] " + species_names[i] +
" has MAPE = " + std::to_string(mape[i]) +
" exceeding threshold = " + std::to_string(params.mape_threshold[i])
" exceeding threshold = " + std::to_string(mape_threshold[i])
+ " → rolling back to iteration " + std::to_string(rollback_iter));
Checkpoint_s checkpoint_read{.field = chem.getField()};
read_checkpoint(params.out_dir,
read_checkpoint(out_dir,
"checkpoint" + std::to_string(rollback_iter) + ".hdf5",
checkpoint_read);
iter = checkpoint_read.iteration;
global_iteration = checkpoint_read.iteration;
return true;
}
}
MSG("All species are within their MAPE and RRMSE thresholds.");
return
false;
MSG("All species are within their MAPE thresholds.");
return false;
*/
}
*/
void poet::ControlModule::computeSpeciesErrors(
void poet::ControlModule::ComputeSpeciesErrorMetrics(
const std::vector<double> &reference_values,
const std::vector<double> &surrogate_values, const uint32_t size_per_prop) {
@ -142,25 +175,12 @@ void poet::ControlModule::computeSpeciesErrors(
return;
}
int idxBa = -1, idxCl = -1;
for (size_t k = 0; k < this->species_names.size(); ++k) {
if (this->species_names[k] == "Ba")
idxBa = (int)k;
if (this->species_names[k] == "Cl")
idxCl = (int)k;
}
if (idxBa < 0 || idxCl < 0) {
std::cerr << "[CTRL DIAG] Ba/Cl indices not found: Ba=" << idxBa
<< " Cl=" << idxCl << "\n";
}
for (uint32_t i = 0; i < this->species_names.size(); ++i) {
double err_sum = 0.0;
double sqr_err_sum = 0.0;
uint32_t base_idx = i * size_per_prop;
uint32_t nan_count = 0;
uint32_t valid_count = 0;
double ref_sum = 0.0, sur_sum = 0.0;
for (uint32_t j = 0; j < size_per_prop; ++j) {
const double ref_value = reference_values[base_idx + j];
@ -172,14 +192,9 @@ void poet::ControlModule::computeSpeciesErrors(
continue;
}
valid_count++;
ref_sum += ref_value;
sur_sum += sur_value;
if (std::abs(ref_value) < ZERO_ABS) {
if (std::abs(sur_value) >= ZERO_ABS) {
std::cerr << "[CTRL TRACE] species=" << this->species_names[i]
<< " idx=" << i << " base_idx=" << base_idx << " j=" << j
<< " sur_value=" << sur_value << "\n";
err_sum += 1.0;
sqr_err_sum += 1.0;
}
@ -200,37 +215,6 @@ void poet::ControlModule::computeSpeciesErrors(
std::cerr << "[CTRL WARN] no valid samples for species " << i << " ("
<< this->species_names[i] << "), setting errors to 0\n";
}
/*
// sample printing (keeps previous behavior: species 5 and 6)
if (i == 5 || i == 6) {
std::cerr << "[CTRL SAMPLE] species_index=" << i
<< " name=" << this->species_names[i]
<< " base_idx=" << base_idx << " nan_count=" << nan_count
<< " valid_count=" << valid_count << std::endl;
uint32_t N = std::min<uint32_t>(size_per_prop, 20u);
std::cerr << "[CTRL SAMPLE] reference: ";
for (uint32_t j = 0; j < N; ++j)
std::cerr << reference_values[base_idx + j]
<< (j + 1 == N ? "\n" : " ");
std::cerr << "[CTRL SAMPLE] surrogate: ";
for (uint32_t j = 0; j < N; ++j)
std::cerr << surrogate_values[base_idx + j]
<< (j + 1 == N ? "\n" : " ");
}
*/
// DEBUG: detailed diagnostics for Ba/Cl (or whichever indices)
if (this->species_names[i] == "Ba" || this->species_names[i] == "Cl") {
double mean_ref = (valid_count > 0) ? (ref_sum / valid_count) : 0.0;
double mean_sur = (valid_count > 0) ? (sur_sum / valid_count) : 0.0;
std::cerr << "[CTRL DIAG] species=" << this->species_names[i]
<< " idx=" << i << " base_idx=" << base_idx
<< " valid_count=" << valid_count << " nan_count=" << nan_count
<< " err_sum=" << err_sum << " sqr_err_sum=" << sqr_err_sum
<< " mean_ref=" << mean_ref << " mean_sur=" << mean_sur
<< " computed_MAPE=" << species_error_stats.mape[i]
<< " computed_RRMSE=" << species_error_stats.rrmse[i] << "\n";
}
}
error_history.push_back(species_error_stats);
}

View File

@ -22,20 +22,18 @@ public:
// std::uint32_t sur_disabled_counter = 0;
// std::uint32_t rollback_counter = 0;
void updateControlIteration(const uint32_t iter);
void UpdateControlIteration(const uint32_t &iter, const bool &dht_enabled,
const bool &interp_enaled);
void InitiateWarmupPhase(bool dht_enabled, bool interp_enabled);
auto GetGlobalIteration() const noexcept { return global_iteration; }
// void beginIteration();
void endIteration(const uint32_t iter);
// void BCastControlFlags();
void setChemistryModule(poet::ChemistryModule *c) { chem = c; }
// void BCastControlFlags();
//bool triggerRollbackIfExceeded(ChemistryModule &chem,
// RuntimeParameters &params, uint32_t &iter);
bool RollbackIfThresholdExceeded(ChemistryModule &chem);
struct SimulationErrorStats {
std::vector<double> mape;
@ -43,14 +41,15 @@ public:
uint32_t iteration; // iterations in simulation after rollbacks
uint32_t rollback_count;
SimulationErrorStats(uint32_t species_count, uint32_t iter, uint32_t counter)
SimulationErrorStats(uint32_t species_count, uint32_t iter,
uint32_t counter)
: mape(species_count, 0.0), rrmse(species_count, 0.0), iteration(iter),
rollback_count(counter) {}
};
void computeSpeciesErrors(const std::vector<double> &reference_values,
const std::vector<double> &surrogate_values,
const uint32_t size_per_prop);
void ComputeSpeciesErrorMetrics(const std::vector<double> &reference_values,
const std::vector<double> &surrogate_values,
const uint32_t size_per_prop);
std::vector<SimulationErrorStats> error_history;
@ -62,7 +61,7 @@ public:
std::vector<double> mape_threshold;
};
void enableControlLogic(const ControlSetup &setup) {
void EnableControlLogic(const ControlSetup &setup) {
this->out_dir = setup.out_dir;
this->checkpoint_interval = setup.checkpoint_interval;
this->control_interval = setup.control_interval;
@ -74,6 +73,10 @@ public:
return this->control_interval_enabled;
}
void EndIteration(const uint32_t iter);
void SetChemistryModule(poet::ChemistryModule *c) { chem = c; }
auto GetControlInterval() const { return this->control_interval; }
std::vector<double> GetMapeThreshold() const { return this->mape_threshold; }

View File

@ -315,7 +315,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, RuntimeParameters &params,
//control.beginIteration(iter);
// params.global_iter = iter;
control.updateControlIteration(iter);
control.UpdateControlIteration(iter, params.use_dht, params.use_interp);
// params.control_interval_enabled = (iter % params.control_interval == 0);
double start_t = MPI_Wtime();
@ -428,7 +428,7 @@ static Rcpp::List RunMasterLoop(RInsidePOET &R, RuntimeParameters &params,
MSG("End of *coupling* iteration " + std::to_string(iter) + "/" +
std::to_string(maxiter));
control.endIteration(iter);
control.EndIteration(iter);
/*
if (iter % params.checkpoint_interval == 0) {
MSG("Writing checkpoint of iteration " + std::to_string(iter));
@ -650,8 +650,8 @@ int main(int argc, char *argv[]) {
init_list.getChemistryInit(), MPI_COMM_WORLD);
ControlModule control;
chemistry.setControlModule(&control);
control.setChemistryModule(&chemistry);
chemistry.SetControlModule(&control);
control.SetChemistryModule(&chemistry);
const ChemistryModule::SurrogateSetup surr_setup = {
getSpeciesNames(init_list.getInitialGrid(), 0, MPI_COMM_WORLD),
@ -676,7 +676,7 @@ int main(int argc, char *argv[]) {
getSpeciesNames(init_list.getInitialGrid(), 0, MPI_COMM_WORLD),
run_params.mape_threshold};
control.enableControlLogic(ctrl_setup);
control.EnableControlLogic(ctrl_setup);
if (MY_RANK > 0) {
chemistry.WorkerLoop();