mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-16 12:54:50 +01:00
add training weight serializer functions
This commit is contained in:
parent
13ad41d302
commit
f76e438c30
@ -1,15 +1,21 @@
|
|||||||
#include <iostream>
|
|
||||||
#include <string>
|
|
||||||
#include <cstring>
|
|
||||||
#include <vector>
|
|
||||||
#include <Python.h>
|
|
||||||
#include <numpy/arrayobject.h>
|
|
||||||
#include <Eigen/Dense>
|
|
||||||
#include <thread>
|
|
||||||
#include <mutex>
|
|
||||||
#include <condition_variable>
|
|
||||||
#include "AI_functions.hpp"
|
#include "AI_functions.hpp"
|
||||||
|
#include "Base/Macros.hpp"
|
||||||
|
#include "naaice_ap2.h"
|
||||||
#include "poet.hpp"
|
#include "poet.hpp"
|
||||||
|
#include "serializer.hpp"
|
||||||
|
#include <Eigen/Dense>
|
||||||
|
#include <Eigen/src/Core/Matrix.h>
|
||||||
|
#include <Python.h>
|
||||||
|
#include <condition_variable>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <cstring>
|
||||||
|
#include <iostream>
|
||||||
|
#include <mutex>
|
||||||
|
#include <numpy/arrayobject.h>
|
||||||
|
#include <string>
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
@ -21,18 +27,21 @@ namespace poet {
|
|||||||
* functions are defined
|
* functions are defined
|
||||||
* @return 0 if function was succesful
|
* @return 0 if function was succesful
|
||||||
*/
|
*/
|
||||||
int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir) {
|
int Python_Keras_setup(std::string functions_file_path,
|
||||||
|
std::string cuda_src_dir) {
|
||||||
// Initialize Python functions
|
// Initialize Python functions
|
||||||
Py_Initialize();
|
Py_Initialize();
|
||||||
// Import numpy functions
|
// Import numpy functions
|
||||||
_import_array();
|
_import_array();
|
||||||
PyRun_SimpleString(("cuda_dir = \"" + cuda_src_dir + "\"").c_str());
|
PyRun_SimpleString(("cuda_dir = \"" + cuda_src_dir + "\"").c_str());
|
||||||
FILE *fp = fopen(functions_file_path.c_str(), "r");
|
FILE *fp = fopen(functions_file_path.c_str(), "r");
|
||||||
int py_functions_initialized = PyRun_SimpleFile(fp, functions_file_path.c_str());
|
int py_functions_initialized =
|
||||||
|
PyRun_SimpleFile(fp, functions_file_path.c_str());
|
||||||
fclose(fp);
|
fclose(fp);
|
||||||
if (py_functions_initialized != 0) {
|
if (py_functions_initialized != 0) {
|
||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
throw std::runtime_error(std::string("AI surrogate Python functions could not be loaded." ) +
|
throw std::runtime_error(
|
||||||
|
std::string("AI surrogate Python functions could not be loaded.") +
|
||||||
"Are tensorflow and numpy installed?");
|
"Are tensorflow and numpy installed?");
|
||||||
}
|
}
|
||||||
return py_functions_initialized;
|
return py_functions_initialized;
|
||||||
@ -44,25 +53,29 @@ int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir
|
|||||||
* a variable "model_file_path" in the R input script
|
* a variable "model_file_path" in the R input script
|
||||||
* @return 0 if function was succesful
|
* @return 0 if function was succesful
|
||||||
*/
|
*/
|
||||||
int Python_Keras_load_model(std::string model, std::string model_reactive, bool use_clustering) {
|
int Python_Keras_load_model(std::string model, std::string model_reactive,
|
||||||
|
bool use_clustering) {
|
||||||
// Acquire the Python GIL
|
// Acquire the Python GIL
|
||||||
PyGILState_STATE gstate = PyGILState_Ensure();
|
PyGILState_STATE gstate = PyGILState_Ensure();
|
||||||
|
|
||||||
// Initialize Keras default model
|
// Initialize Keras default model
|
||||||
int py_model_loaded = PyRun_SimpleString(("model = initiate_model(\"" +
|
int py_model_loaded =
|
||||||
model + "\")").c_str());
|
PyRun_SimpleString(("model = initiate_model(\"" + model + "\")").c_str());
|
||||||
if (py_model_loaded != 0) {
|
if (py_model_loaded != 0) {
|
||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
throw std::runtime_error("Keras model could not be loaded from: " + model);
|
throw std::runtime_error("Keras model could not be loaded from: " + model);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (use_clustering) {
|
if (use_clustering) {
|
||||||
// Initialize second Keras model that will be used for the "reaction" cluster
|
// Initialize second Keras model that will be used for the "reaction"
|
||||||
py_model_loaded = PyRun_SimpleString(("model_reactive = initiate_model(\"" +
|
// cluster
|
||||||
model_reactive + "\")").c_str());
|
py_model_loaded = PyRun_SimpleString(
|
||||||
|
("model_reactive = initiate_model(\"" + model_reactive + "\")")
|
||||||
|
.c_str());
|
||||||
if (py_model_loaded != 0) {
|
if (py_model_loaded != 0) {
|
||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
throw std::runtime_error("Keras model could not be loaded from: " + model_reactive);
|
throw std::runtime_error("Keras model could not be loaded from: " +
|
||||||
|
model_reactive);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Release the Python GIL
|
// Release the Python GIL
|
||||||
@ -71,8 +84,8 @@ int Python_Keras_load_model(std::string model, std::string model_reactive, bool
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Converts the std::vector 2D matrix representation of a POET Field object to a numpy array
|
* @brief Converts the std::vector 2D matrix representation of a POET Field
|
||||||
* for use in the Python AI surrogate functions
|
* object to a numpy array for use in the Python AI surrogate functions
|
||||||
* @param field 2D-Matrix with the content of a Field object
|
* @param field 2D-Matrix with the content of a Field object
|
||||||
* @return Numpy representation of the input vector
|
* @return Numpy representation of the input vector
|
||||||
*/
|
*/
|
||||||
@ -94,8 +107,8 @@ PyObject* vector_to_numpy_array(const std::vector<std::vector<double>>& field) {
|
|||||||
/**
|
/**
|
||||||
* @brief Converts a Pyton matrix object to a std::vector vector
|
* @brief Converts a Pyton matrix object to a std::vector vector
|
||||||
* @param py_matrix Pyobject that must be a 2D matrix
|
* @param py_matrix Pyobject that must be a 2D matrix
|
||||||
* @result Vector that can be used similar to the return value of the Field object
|
* @result Vector that can be used similar to the return value of the Field
|
||||||
* Field.AsVector() method.
|
* object Field.AsVector() method.
|
||||||
*/
|
*/
|
||||||
std::vector<double> numpy_array_to_vector(PyObject *py_array) {
|
std::vector<double> numpy_array_to_vector(PyObject *py_array) {
|
||||||
std::vector<double> result;
|
std::vector<double> result;
|
||||||
@ -123,13 +136,17 @@ std::vector<double> numpy_array_to_vector(PyObject* py_array) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Uses the Python Keras functions to calculate predictions from a neural network.
|
* @brief Uses the Python Keras functions to calculate predictions from a neural
|
||||||
|
* network.
|
||||||
* @param x 2D-Matrix with the content of a Field object
|
* @param x 2D-Matrix with the content of a Field object
|
||||||
* @param batch_size size for mini-batches that are used in the Keras model.predict() method
|
* @param batch_size size for mini-batches that are used in the Keras
|
||||||
* @return Predictions that the neural network made from the input values x. The predictions are
|
* model.predict() method
|
||||||
* represented as a vector similar to the representation from the Field.AsVector() method
|
* @return Predictions that the neural network made from the input values x. The
|
||||||
|
* predictions are represented as a vector similar to the representation from
|
||||||
|
* the Field.AsVector() method
|
||||||
*/
|
*/
|
||||||
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>& x, int batch_size,
|
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>> &x,
|
||||||
|
int batch_size,
|
||||||
std::vector<int> &cluster_labels) {
|
std::vector<int> &cluster_labels) {
|
||||||
// Acquire the Python GIL
|
// Acquire the Python GIL
|
||||||
PyGILState_STATE gstate = PyGILState_Ensure();
|
PyGILState_STATE gstate = PyGILState_Ensure();
|
||||||
@ -147,17 +164,21 @@ std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>& x, in
|
|||||||
PyObject *py_main_module = PyImport_AddModule("__main__");
|
PyObject *py_main_module = PyImport_AddModule("__main__");
|
||||||
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
||||||
PyObject *py_keras_model = PyDict_GetItemString(py_global_dict, "model");
|
PyObject *py_keras_model = PyDict_GetItemString(py_global_dict, "model");
|
||||||
PyObject* py_inference_function = PyDict_GetItemString(py_global_dict, "prediction_step");
|
PyObject *py_inference_function =
|
||||||
|
PyDict_GetItemString(py_global_dict, "prediction_step");
|
||||||
|
|
||||||
// Get secod model if clustering is used
|
// Get secod model if clustering is used
|
||||||
PyObject* py_keras_model_reactive = Py_None;;
|
PyObject *py_keras_model_reactive = Py_None;
|
||||||
|
;
|
||||||
if (cluster_labels.size() > 0) {
|
if (cluster_labels.size() > 0) {
|
||||||
py_keras_model_reactive = PyDict_GetItemString(py_global_dict, "model_reactive");
|
py_keras_model_reactive =
|
||||||
|
PyDict_GetItemString(py_global_dict, "model_reactive");
|
||||||
}
|
}
|
||||||
|
|
||||||
// Build the function arguments as four python objects and an integer
|
// Build the function arguments as four python objects and an integer
|
||||||
PyObject* args = Py_BuildValue("(OOOOi)",
|
PyObject *args =
|
||||||
py_keras_model, py_keras_model_reactive, py_df_x, py_cluster_list, batch_size);
|
Py_BuildValue("(OOOOi)", py_keras_model, py_keras_model_reactive, py_df_x,
|
||||||
|
py_cluster_list, batch_size);
|
||||||
|
|
||||||
// Call the Python inference function
|
// Call the Python inference function
|
||||||
PyObject *py_predictions = PyObject_CallObject(py_inference_function, args);
|
PyObject *py_predictions = PyObject_CallObject(py_inference_function, args);
|
||||||
@ -178,15 +199,19 @@ std::vector<double> Python_Keras_predict(std::vector<std::vector<double>>& x, in
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Uses Eigen for fast inference with the weights and biases of a neural network.
|
* @brief Uses Eigen for fast inference with the weights and biases of a neural
|
||||||
* This function assumes ReLU activation for each layer.
|
* network. This function assumes ReLU activation for each layer.
|
||||||
* @param input_batch Batch of input data that must fit the size of the neural networks input layer
|
* @param input_batch Batch of input data that must fit the size of the neural
|
||||||
* @param model Struct of aligned Eigen vectors that hold the neural networks weights and biases.
|
* networks input layer
|
||||||
* Only supports simple fully connected feed forward networks.
|
* @param model Struct of aligned Eigen vectors that hold the neural networks
|
||||||
* @return The batch of predictions made with the neural network weights and biases and the data
|
* weights and biases. Only supports simple fully connected feed forward
|
||||||
* in input_batch
|
* networks.
|
||||||
|
* @return The batch of predictions made with the neural network weights and
|
||||||
|
* biases and the data in input_batch
|
||||||
*/
|
*/
|
||||||
Eigen::MatrixXd eigen_inference_batched(const Eigen::Ref<const Eigen::MatrixXd>& input_batch, const EigenModel& model) {
|
Eigen::MatrixXd
|
||||||
|
eigen_inference_batched(const Eigen::Ref<const Eigen::MatrixXd> &input_batch,
|
||||||
|
const EigenModel &model) {
|
||||||
Eigen::MatrixXd current_layer = input_batch;
|
Eigen::MatrixXd current_layer = input_batch;
|
||||||
|
|
||||||
// Process all hidden layers
|
// Process all hidden layers
|
||||||
@ -198,31 +223,41 @@ Eigen::MatrixXd eigen_inference_batched(const Eigen::Ref<const Eigen::MatrixXd>&
|
|||||||
|
|
||||||
// Process output layer (without ReLU)
|
// Process output layer (without ReLU)
|
||||||
size_t output_layer = model.weight_matrices.size() - 1;
|
size_t output_layer = model.weight_matrices.size() - 1;
|
||||||
return (model.weight_matrices[output_layer] * current_layer).colwise() + model.biases[output_layer];
|
return (model.weight_matrices[output_layer] * current_layer).colwise() +
|
||||||
|
model.biases[output_layer];
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Uses the Eigen representation of the two different Keras model weights for fast inference
|
* @brief Uses the Eigen representation of the two different Keras model weights
|
||||||
|
* for fast inference
|
||||||
* @param model The model for the non reactive cluster of the field (label 0)
|
* @param model The model for the non reactive cluster of the field (label 0)
|
||||||
* @param model_reactive The model for the non reactive cluster of the field (label 1)
|
* @param model_reactive The model for the non reactive cluster of the field
|
||||||
|
* (label 1)
|
||||||
* @param x 2D-Matrix with the content of a Field object
|
* @param x 2D-Matrix with the content of a Field object
|
||||||
* @param batch_size size for mini-batches that are used in the Keras model.predict() method
|
* @param batch_size size for mini-batches that are used in the Keras
|
||||||
* @param Eigen_model_mutex Mutex that locks the model during inference and prevents updaties from
|
* model.predict() method
|
||||||
* the training thread
|
* @param Eigen_model_mutex Mutex that locks the model during inference and
|
||||||
|
* prevents updaties from the training thread
|
||||||
* @param cluster_labels K-Means cluster label dor each row in the field
|
* @param cluster_labels K-Means cluster label dor each row in the field
|
||||||
* @return Predictions that the neural network made from the input values x. The predictions are
|
* @return Predictions that the neural network made from the input values x. The
|
||||||
* represented as a vector similar to the representation from the Field.AsVector() method
|
* predictions are represented as a vector similar to the representation from
|
||||||
|
* the Field.AsVector() method
|
||||||
*/
|
*/
|
||||||
std::vector<double> Eigen_predict_clustered(const EigenModel& model, const EigenModel& model_reactive,
|
std::vector<double> Eigen_predict_clustered(const EigenModel &model,
|
||||||
std::vector<std::vector<double>>& x, int batch_size,
|
const EigenModel &model_reactive,
|
||||||
std::mutex* Eigen_model_mutex, std::vector<int>& cluster_labels) {
|
std::vector<std::vector<double>> &x,
|
||||||
|
int batch_size,
|
||||||
|
std::mutex *Eigen_model_mutex,
|
||||||
|
std::vector<int> &cluster_labels) {
|
||||||
const int num_samples = x[0].size();
|
const int num_samples = x[0].size();
|
||||||
const int num_features = x.size();
|
const int num_features = x.size();
|
||||||
if (num_features != model.weight_matrices[0].cols() ||
|
if (num_features != model.weight_matrices[0].cols() ||
|
||||||
num_features != model_reactive.weight_matrices[0].cols()) {
|
num_features != model_reactive.weight_matrices[0].cols()) {
|
||||||
throw std::runtime_error("Input data size " + std::to_string(num_features) +
|
throw std::runtime_error(
|
||||||
" does not match model input layer sizes" + std::to_string(model.weight_matrices[0].cols()) +
|
"Input data size " + std::to_string(num_features) +
|
||||||
" / " + std::to_string(model_reactive.weight_matrices[0].cols()));
|
" does not match model input layer sizes" +
|
||||||
|
std::to_string(model.weight_matrices[0].cols()) + " / " +
|
||||||
|
std::to_string(model_reactive.weight_matrices[0].cols()));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert input data to Eigen matrix
|
// Convert input data to Eigen matrix
|
||||||
@ -259,13 +294,16 @@ std::vector<double> Eigen_predict_clustered(const EigenModel& model, const Eigen
|
|||||||
Eigen_model_mutex->lock();
|
Eigen_model_mutex->lock();
|
||||||
|
|
||||||
if (!cluster_0_indices.empty()) {
|
if (!cluster_0_indices.empty()) {
|
||||||
int num_batches_0 = std::ceil(static_cast<double>(cluster_0_indices.size()) / batch_size);
|
int num_batches_0 =
|
||||||
|
std::ceil(static_cast<double>(cluster_0_indices.size()) / batch_size);
|
||||||
for (int batch = 0; batch < num_batches_0; ++batch) {
|
for (int batch = 0; batch < num_batches_0; ++batch) {
|
||||||
int start_idx = batch * batch_size;
|
int start_idx = batch * batch_size;
|
||||||
int end_idx = std::min((batch + 1) * batch_size, static_cast<int>(cluster_0_indices.size()));
|
int end_idx = std::min((batch + 1) * batch_size,
|
||||||
|
static_cast<int>(cluster_0_indices.size()));
|
||||||
int current_batch_size = end_idx - start_idx;
|
int current_batch_size = end_idx - start_idx;
|
||||||
|
|
||||||
Eigen::MatrixXd batch_data = input_matrix.block(0, start_idx, num_features, current_batch_size);
|
Eigen::MatrixXd batch_data =
|
||||||
|
input_matrix.block(0, start_idx, num_features, current_batch_size);
|
||||||
Eigen::MatrixXd batch_result = eigen_inference_batched(batch_data, model);
|
Eigen::MatrixXd batch_result = eigen_inference_batched(batch_data, model);
|
||||||
|
|
||||||
// Store results in their original positions
|
// Store results in their original positions
|
||||||
@ -280,14 +318,18 @@ std::vector<double> Eigen_predict_clustered(const EigenModel& model, const Eigen
|
|||||||
|
|
||||||
// Process cluster 1
|
// Process cluster 1
|
||||||
if (!cluster_1_indices.empty()) {
|
if (!cluster_1_indices.empty()) {
|
||||||
int num_batches_1 = std::ceil(static_cast<double>(cluster_1_indices.size()) / batch_size);
|
int num_batches_1 =
|
||||||
|
std::ceil(static_cast<double>(cluster_1_indices.size()) / batch_size);
|
||||||
for (int batch = 0; batch < num_batches_1; ++batch) {
|
for (int batch = 0; batch < num_batches_1; ++batch) {
|
||||||
int start_idx = batch * batch_size;
|
int start_idx = batch * batch_size;
|
||||||
int end_idx = std::min((batch + 1) * batch_size, static_cast<int>(cluster_1_indices.size()));
|
int end_idx = std::min((batch + 1) * batch_size,
|
||||||
|
static_cast<int>(cluster_1_indices.size()));
|
||||||
int current_batch_size = end_idx - start_idx;
|
int current_batch_size = end_idx - start_idx;
|
||||||
|
|
||||||
Eigen::MatrixXd batch_data = input_matrix_reactive.block(0, start_idx, num_features, current_batch_size);
|
Eigen::MatrixXd batch_data = input_matrix_reactive.block(
|
||||||
Eigen::MatrixXd batch_result = eigen_inference_batched(batch_data, model_reactive);
|
0, start_idx, num_features, current_batch_size);
|
||||||
|
Eigen::MatrixXd batch_result =
|
||||||
|
eigen_inference_batched(batch_data, model_reactive);
|
||||||
|
|
||||||
// Store results in their original positions
|
// Store results in their original positions
|
||||||
for (size_t i = 0; i < current_batch_size; ++i) {
|
for (size_t i = 0; i < current_batch_size; ++i) {
|
||||||
@ -304,16 +346,21 @@ std::vector<double> Eigen_predict_clustered(const EigenModel& model, const Eigen
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Uses the Eigen representation of the tKeras model weights for fast inference
|
* @brief Uses the Eigen representation of the tKeras model weights for fast
|
||||||
|
* inference
|
||||||
* @param model The model weights and biases
|
* @param model The model weights and biases
|
||||||
* @param x 2D-Matrix with the content of a Field object
|
* @param x 2D-Matrix with the content of a Field object
|
||||||
* @param batch_size size for mini-batches that are used in the Keras model.predict() method
|
* @param batch_size size for mini-batches that are used in the Keras
|
||||||
* @param Eigen_model_mutex Mutex that locks the model during inference and prevents updaties from
|
* model.predict() method
|
||||||
* the training thread
|
* @param Eigen_model_mutex Mutex that locks the model during inference and
|
||||||
* @return Predictions that the neural network made from the input values x. The predictions are
|
* prevents updaties from the training thread
|
||||||
* represented as a vector similar to the representation from the Field.AsVector() method
|
* @return Predictions that the neural network made from the input values x. The
|
||||||
|
* predictions are represented as a vector similar to the representation from
|
||||||
|
* the Field.AsVector() method
|
||||||
*/
|
*/
|
||||||
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>> x, int batch_size,
|
std::vector<double> Eigen_predict(const EigenModel &model,
|
||||||
|
std::vector<std::vector<double>> x,
|
||||||
|
int batch_size,
|
||||||
std::mutex *Eigen_model_mutex) {
|
std::mutex *Eigen_model_mutex) {
|
||||||
// Convert input data to Eigen matrix
|
// Convert input data to Eigen matrix
|
||||||
const int num_samples = x[0].size();
|
const int num_samples = x[0].size();
|
||||||
@ -330,8 +377,9 @@ std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vect
|
|||||||
result.reserve(num_samples * num_features);
|
result.reserve(num_samples * num_features);
|
||||||
|
|
||||||
if (num_features != model.weight_matrices[0].cols()) {
|
if (num_features != model.weight_matrices[0].cols()) {
|
||||||
throw std::runtime_error("Input data size " + std::to_string(num_features) + \
|
throw std::runtime_error("Input data size " + std::to_string(num_features) +
|
||||||
" does not match model input layer of size " + std::to_string(model.weight_matrices[0].cols()));
|
" does not match model input layer of size " +
|
||||||
|
std::to_string(model.weight_matrices[0].cols()));
|
||||||
}
|
}
|
||||||
int num_batches = std::ceil(static_cast<double>(num_samples) / batch_size);
|
int num_batches = std::ceil(static_cast<double>(num_samples) / batch_size);
|
||||||
|
|
||||||
@ -342,24 +390,26 @@ std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vect
|
|||||||
int current_batch_size = end_idx - start_idx;
|
int current_batch_size = end_idx - start_idx;
|
||||||
// Extract the current input data batch
|
// Extract the current input data batch
|
||||||
Eigen::MatrixXd batch_data(num_features, current_batch_size);
|
Eigen::MatrixXd batch_data(num_features, current_batch_size);
|
||||||
batch_data = full_input_matrix.block(0, start_idx, num_features, current_batch_size);
|
batch_data =
|
||||||
|
full_input_matrix.block(0, start_idx, num_features, current_batch_size);
|
||||||
// Predict
|
// Predict
|
||||||
batch_data = eigen_inference_batched(batch_data, model);
|
batch_data = eigen_inference_batched(batch_data, model);
|
||||||
|
|
||||||
result.insert(result.end(), batch_data.data(), batch_data.data() + batch_data.size());
|
result.insert(result.end(), batch_data.data(),
|
||||||
|
batch_data.data() + batch_data.size());
|
||||||
}
|
}
|
||||||
Eigen_model_mutex->unlock();
|
Eigen_model_mutex->unlock();
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Appends data from one matrix (column major std::vector<std::vector<double>>) to another
|
* @brief Appends data from one matrix (column major
|
||||||
|
* std::vector<std::vector<double>>) to another
|
||||||
* @param training_data_buffer Matrix that the values are appended to
|
* @param training_data_buffer Matrix that the values are appended to
|
||||||
* @param new_values Matrix that is appended
|
* @param new_values Matrix that is appended
|
||||||
*/
|
*/
|
||||||
void training_data_buffer_append(std::vector<std::vector<double>>& training_data_buffer,
|
void training_data_buffer_append(
|
||||||
|
std::vector<std::vector<double>> &training_data_buffer,
|
||||||
std::vector<std::vector<double>> &new_values) {
|
std::vector<std::vector<double>> &new_values) {
|
||||||
// Initialize training data buffer if empty
|
// Initialize training data buffer if empty
|
||||||
if (training_data_buffer.size() == 0) {
|
if (training_data_buffer.size() == 0) {
|
||||||
@ -367,7 +417,8 @@ void training_data_buffer_append(std::vector<std::vector<double>>& training_data
|
|||||||
} else { // otherwise append
|
} else { // otherwise append
|
||||||
for (size_t col = 0; col < training_data_buffer.size(); col++) {
|
for (size_t col = 0; col < training_data_buffer.size(); col++) {
|
||||||
training_data_buffer[col].insert(training_data_buffer[col].end(),
|
training_data_buffer[col].insert(training_data_buffer[col].end(),
|
||||||
new_values[col].begin(), new_values[col].end());
|
new_values[col].begin(),
|
||||||
|
new_values[col].end());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -376,9 +427,11 @@ void training_data_buffer_append(std::vector<std::vector<double>>& training_data
|
|||||||
* @brief Appends data from one int vector to another based on a mask vector
|
* @brief Appends data from one int vector to another based on a mask vector
|
||||||
* @param labels Vector that the values are appended to
|
* @param labels Vector that the values are appended to
|
||||||
* @param new_labels Values that are appended
|
* @param new_labels Values that are appended
|
||||||
* @param validity Mask vector that defines how many and which values are appended
|
* @param validity Mask vector that defines how many and which values are
|
||||||
|
* appended
|
||||||
*/
|
*/
|
||||||
void cluster_labels_append(std::vector<int>& labels_buffer, std::vector<int>& new_labels,
|
void cluster_labels_append(std::vector<int> &labels_buffer,
|
||||||
|
std::vector<int> &new_labels,
|
||||||
std::vector<int> validity) {
|
std::vector<int> validity) {
|
||||||
// Calculate new buffer size from number of valid elements in mask
|
// Calculate new buffer size from number of valid elements in mask
|
||||||
int n_invalid = validity.size();
|
int n_invalid = validity.size();
|
||||||
@ -400,15 +453,17 @@ void cluster_labels_append(std::vector<int>& labels_buffer, std::vector<int>& ne
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Uses the Python environment with Keras' default functions to train the model
|
* @brief Uses the Python environment with Keras' default functions to train the
|
||||||
|
* model
|
||||||
* @param x Training data features
|
* @param x Training data features
|
||||||
* @param y Training data targets
|
* @param y Training data targets
|
||||||
* @param params Global runtime paramters
|
* @param params Global runtime paramters
|
||||||
*/
|
*/
|
||||||
void Python_Keras_train(std::vector<std::vector<double>>& x, std::vector<std::vector<double>>& y,
|
void Python_Keras_train(std::vector<std::vector<double>> &x,
|
||||||
int train_cluster, std::string model_name, const RuntimeParameters& params) {
|
std::vector<std::vector<double>> &y, int train_cluster,
|
||||||
|
std::string model_name,
|
||||||
|
const RuntimeParameters ¶ms) {
|
||||||
// Prepare data for python
|
// Prepare data for python
|
||||||
PyObject *py_df_x = vector_to_numpy_array(x);
|
PyObject *py_df_x = vector_to_numpy_array(x);
|
||||||
PyObject *py_df_y = vector_to_numpy_array(y);
|
PyObject *py_df_y = vector_to_numpy_array(y);
|
||||||
@ -416,7 +471,8 @@ void Python_Keras_train(std::vector<std::vector<double>>& x, std::vector<std::ve
|
|||||||
// Make sure that model output file name .keras file
|
// Make sure that model output file name .keras file
|
||||||
std::string model_path = params.save_model_path;
|
std::string model_path = params.save_model_path;
|
||||||
if (!model_path.empty()) {
|
if (!model_path.empty()) {
|
||||||
if (model_path.length() >= 6 && model_path.substr(model_path.length() - 6) != ".keras") {
|
if (model_path.length() >= 6 &&
|
||||||
|
model_path.substr(model_path.length() - 6) != ".keras") {
|
||||||
model_path += ".keras";
|
model_path += ".keras";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -432,12 +488,14 @@ void Python_Keras_train(std::vector<std::vector<double>>& x, std::vector<std::ve
|
|||||||
// Get the model and training function from the global python interpreter
|
// Get the model and training function from the global python interpreter
|
||||||
PyObject *py_main_module = PyImport_AddModule("__main__");
|
PyObject *py_main_module = PyImport_AddModule("__main__");
|
||||||
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
||||||
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, model_name.c_str());
|
PyObject *py_keras_model =
|
||||||
PyObject* py_training_function = PyDict_GetItemString(py_global_dict, "training_step");
|
PyDict_GetItemString(py_global_dict, model_name.c_str());
|
||||||
|
PyObject *py_training_function =
|
||||||
|
PyDict_GetItemString(py_global_dict, "training_step");
|
||||||
|
|
||||||
// Build the function arguments as four python objects and an integer
|
// Build the function arguments as four python objects and an integer
|
||||||
PyObject* args = Py_BuildValue("(OOOiis)",
|
PyObject *args = Py_BuildValue("(OOOiis)", py_keras_model, py_df_x, py_df_y,
|
||||||
py_keras_model, py_df_x, py_df_y, params.batch_size, params.training_epochs,
|
params.batch_size, params.training_epochs,
|
||||||
model_path.c_str());
|
model_path.c_str());
|
||||||
|
|
||||||
// Call the Python training function
|
// Call the Python training function
|
||||||
@ -453,20 +511,26 @@ void Python_Keras_train(std::vector<std::vector<double>>& x, std::vector<std::ve
|
|||||||
/**
|
/**
|
||||||
* @brief Function for threadsafe parallel training and weight updating.
|
* @brief Function for threadsafe parallel training and weight updating.
|
||||||
* The function waits conditionally until the training data buffer is full.
|
* The function waits conditionally until the training data buffer is full.
|
||||||
* It then clears the buffer and starts training, after training it writes the new weights to
|
* It then clears the buffer and starts training, after training it writes the
|
||||||
* the Eigen model.
|
* new weights to the Eigen model.
|
||||||
* @param Eigen_model Pointer to the EigenModel struct that will be updates with new weights
|
* @param Eigen_model Pointer to the EigenModel struct that will be updates with
|
||||||
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel struct
|
* new weights
|
||||||
* @param training_data_buffer Pointer to the Training data struct with which the model is trained
|
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
|
||||||
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the training data struct
|
* struct
|
||||||
* @param training_data_buffer_full Conditional waiting variable with wich the main thread signals
|
* @param training_data_buffer Pointer to the Training data struct with which
|
||||||
* when a training run can start
|
* the model is trained
|
||||||
* @param start_training Conditional waiting predicate to mitigate against spurious wakeups
|
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
|
||||||
|
* training data struct
|
||||||
|
* @param training_data_buffer_full Conditional waiting variable with wich the
|
||||||
|
* main thread signals when a training run can start
|
||||||
|
* @param start_training Conditional waiting predicate to mitigate against
|
||||||
|
* spurious wakeups
|
||||||
* @param end_training Signals end of program to wind down thread gracefully
|
* @param end_training Signals end of program to wind down thread gracefully
|
||||||
* @param params Global runtime paramters
|
* @param params Global runtime paramters
|
||||||
* @return 0 if function was succesful
|
* @return 0 if function was succesful
|
||||||
*/
|
*/
|
||||||
void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive,
|
void parallel_training(EigenModel *Eigen_model,
|
||||||
|
EigenModel *Eigen_model_reactive,
|
||||||
std::mutex *Eigen_model_mutex,
|
std::mutex *Eigen_model_mutex,
|
||||||
TrainingData *training_data_buffer,
|
TrainingData *training_data_buffer,
|
||||||
std::mutex *training_data_buffer_mutex,
|
std::mutex *training_data_buffer_mutex,
|
||||||
@ -479,10 +543,13 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
// - Releases the lock on training_data_buffer_mutex while sleeping
|
// - Releases the lock on training_data_buffer_mutex while sleeping
|
||||||
// - Lambda function with start_training checks if it was a spurious wakeup
|
// - Lambda function with start_training checks if it was a spurious wakeup
|
||||||
// - Reaquires the lock on training_data_buffer_mutex after waking up
|
// - Reaquires the lock on training_data_buffer_mutex after waking up
|
||||||
// - If start_training has been set to true while the thread was active, it does NOT
|
// - If start_training has been set to true while the thread was active, it
|
||||||
// wait for a signal on training_data_buffer_full but starts the next round immediately.
|
// does NOT
|
||||||
|
// wait for a signal on training_data_buffer_full but starts the next
|
||||||
|
// round immediately.
|
||||||
std::unique_lock<std::mutex> lock(*training_data_buffer_mutex);
|
std::unique_lock<std::mutex> lock(*training_data_buffer_mutex);
|
||||||
training_data_buffer_full->wait(lock, [start_training] { return *start_training;});
|
training_data_buffer_full->wait(
|
||||||
|
lock, [start_training] { return *start_training; });
|
||||||
// Return if program is about to end
|
// Return if program is about to end
|
||||||
if (*end_training) {
|
if (*end_training) {
|
||||||
return;
|
return;
|
||||||
@ -490,19 +557,30 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
// Get the necessary training data
|
// Get the necessary training data
|
||||||
std::cout << "AI: Training thread: Getting training data" << std::endl;
|
std::cout << "AI: Training thread: Getting training data" << std::endl;
|
||||||
// Initialize training data input and targets
|
// Initialize training data input and targets
|
||||||
std::vector<std::vector<double>> inputs(training_data_buffer->x.size(),
|
std::vector<std::vector<double>> inputs(
|
||||||
|
training_data_buffer->x.size(),
|
||||||
std::vector<double>(params.training_data_size));
|
std::vector<double>(params.training_data_size));
|
||||||
std::vector<std::vector<double>> targets(training_data_buffer->x.size(),
|
std::vector<std::vector<double>> targets(
|
||||||
|
training_data_buffer->x.size(),
|
||||||
std::vector<double>(params.training_data_size));
|
std::vector<double>(params.training_data_size));
|
||||||
|
|
||||||
|
fprintf(stdout, "x.size: %zu\n", training_data_buffer->x.size());
|
||||||
|
fprintf(stdout, "params.training_data_size: %d\n", params.training_data_size);
|
||||||
|
|
||||||
int buffer_size = training_data_buffer->x[0].size();
|
int buffer_size = training_data_buffer->x[0].size();
|
||||||
|
fprintf(stdout, "training_data_buffer->x[0].size: %zu\n", training_data_buffer->x[0].size());
|
||||||
|
sleep(10);
|
||||||
|
|
||||||
// If clustering is used, check the current cluster
|
// If clustering is used, check the current cluster
|
||||||
int n_cluster_reactive = 0;
|
int n_cluster_reactive = 0;
|
||||||
int train_cluster = -1; // Default value for non clustered training (all data is used)
|
int train_cluster =
|
||||||
|
-1; // Default value for non clustered training (all data is used)
|
||||||
if (params.use_clustering) {
|
if (params.use_clustering) {
|
||||||
for (size_t i = 0; i < buffer_size; i++) {
|
for (size_t i = 0; i < buffer_size; i++) {
|
||||||
n_cluster_reactive += training_data_buffer->cluster_labels[i];
|
n_cluster_reactive += training_data_buffer->cluster_labels[i];
|
||||||
}
|
}
|
||||||
|
// ? set train_cluster to true only if all labels in training_data_buffer
|
||||||
|
// have the corresponding cluster_label?
|
||||||
train_cluster = n_cluster_reactive >= params.training_data_size;
|
train_cluster = n_cluster_reactive >= params.training_data_size;
|
||||||
}
|
}
|
||||||
int buffer_row = 0;
|
int buffer_row = 0;
|
||||||
@ -514,10 +592,10 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
// Copy and remove from training data buffer
|
// Copy and remove from training data buffer
|
||||||
inputs[col][copied_row] = training_data_buffer->x[col][buffer_row];
|
inputs[col][copied_row] = training_data_buffer->x[col][buffer_row];
|
||||||
targets[col][copied_row] = training_data_buffer->y[col][buffer_row];
|
targets[col][copied_row] = training_data_buffer->y[col][buffer_row];
|
||||||
training_data_buffer->x[col].erase(training_data_buffer->x[col].begin() +
|
training_data_buffer->x[col].erase(
|
||||||
buffer_row);
|
training_data_buffer->x[col].begin() + buffer_row);
|
||||||
training_data_buffer->y[col].erase(training_data_buffer->y[col].begin() +
|
training_data_buffer->y[col].erase(
|
||||||
buffer_row);
|
training_data_buffer->y[col].begin() + buffer_row);
|
||||||
}
|
}
|
||||||
// Remove from cluster label buffer
|
// Remove from cluster label buffer
|
||||||
if (params.use_clustering) {
|
if (params.use_clustering) {
|
||||||
@ -530,13 +608,17 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Set the waiting predicate to immediately continue training if enough elements of any cluster remain
|
// Set the waiting predicate to immediately continue training if enough
|
||||||
|
// elements of any cluster remain
|
||||||
if (train_cluster == 1) {
|
if (train_cluster == 1) {
|
||||||
*start_training = ((n_cluster_reactive - params.training_data_size) >= params.training_data_size) ||
|
*start_training =
|
||||||
|
((n_cluster_reactive - params.training_data_size) >=
|
||||||
|
params.training_data_size) ||
|
||||||
((buffer_size - n_cluster_reactive) >= params.training_data_size);
|
((buffer_size - n_cluster_reactive) >= params.training_data_size);
|
||||||
} else {
|
} else {
|
||||||
*start_training = (buffer_size - n_cluster_reactive - params.training_data_size)
|
*start_training =
|
||||||
>= params.training_data_size;
|
(buffer_size - n_cluster_reactive - params.training_data_size) >=
|
||||||
|
params.training_data_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
// update number of training runs
|
// update number of training runs
|
||||||
@ -548,7 +630,8 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
if (train_cluster == 1) {
|
if (train_cluster == 1) {
|
||||||
model_name = "model_reactive";
|
model_name = "model_reactive";
|
||||||
}
|
}
|
||||||
std::cout << "AI: Training thread: Start training " << model_name << std::endl;
|
std::cout << "AI: Training thread: Start training " << model_name
|
||||||
|
<< std::endl;
|
||||||
|
|
||||||
// Acquire the Python GIL
|
// Acquire the Python GIL
|
||||||
PyGILState_STATE gstate = PyGILState_Ensure();
|
PyGILState_STATE gstate = PyGILState_Ensure();
|
||||||
@ -556,8 +639,10 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
Python_Keras_train(inputs, targets, train_cluster, model_name, params);
|
Python_Keras_train(inputs, targets, train_cluster, model_name, params);
|
||||||
|
|
||||||
if (!params.use_Keras_predictions) {
|
if (!params.use_Keras_predictions) {
|
||||||
std::cout << "AI: Training thread: Update shared model weights" << std::endl;
|
std::cout << "AI: Training thread: Update shared model weights"
|
||||||
std::vector<std::vector<std::vector<double>>> cpp_weights = Python_Keras_get_weights(model_name);
|
<< std::endl;
|
||||||
|
std::vector<std::vector<std::vector<double>>> cpp_weights =
|
||||||
|
Python_Keras_get_weights(model_name);
|
||||||
Eigen_model_mutex->lock();
|
Eigen_model_mutex->lock();
|
||||||
if (train_cluster == 1) {
|
if (train_cluster == 1) {
|
||||||
update_weights(Eigen_model_reactive, cpp_weights);
|
update_weights(Eigen_model_reactive, cpp_weights);
|
||||||
@ -569,50 +654,157 @@ void parallel_training(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive
|
|||||||
|
|
||||||
// Release the Python GIL
|
// Release the Python GIL
|
||||||
PyGILState_Release(gstate);
|
PyGILState_Release(gstate);
|
||||||
std::cout << "AI: Training thread: Finished training, waiting for new data" << std::endl;
|
std::cout << "AI: Training thread: Finished training, waiting for new data"
|
||||||
|
<< std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::thread python_train_thread;
|
void naa_training(EigenModel *Eigen_model, EigenModel *Eigen_model_reactive,
|
||||||
/**
|
|
||||||
* @brief Starts a thread for parallel training and weight updating. This Wrapper function
|
|
||||||
* ensures, that the main POET program can be built without pthread support if the AI
|
|
||||||
* surrogate functions are disabled during compilation.
|
|
||||||
* @param Eigen_model Pointer to the EigenModel struct that will be updates with new weights
|
|
||||||
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel struct
|
|
||||||
* @param training_data_buffer Pointer to the Training data struct with which the model is trained
|
|
||||||
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the training data struct
|
|
||||||
* @param training_data_buffer_full Conditional waiting variable with wich the main thread signals
|
|
||||||
* when a training run can start
|
|
||||||
* @param start_training Conditional waiting predicate to mitigate against spurious wakeups
|
|
||||||
* @param end_training Signals end of program to wind down thread gracefully
|
|
||||||
* @param params Global runtime paramters
|
|
||||||
* @return 0 if function was succesful
|
|
||||||
*/
|
|
||||||
int Python_Keras_training_thread(EigenModel* Eigen_model, EigenModel* Eigen_model_reactive,
|
|
||||||
std::mutex *Eigen_model_mutex,
|
std::mutex *Eigen_model_mutex,
|
||||||
TrainingData *training_data_buffer,
|
TrainingData *training_data_buffer,
|
||||||
std::mutex *training_data_buffer_mutex,
|
std::mutex *training_data_buffer_mutex,
|
||||||
std::condition_variable *training_data_buffer_full,
|
std::condition_variable *training_data_buffer_full,
|
||||||
bool *start_training, bool *end_training,
|
bool *start_training, bool *end_training,
|
||||||
const RuntimeParameters& params) {
|
const RuntimeParameters ¶ms, naa_handle *handle){
|
||||||
PyThreadState *_save = PyEval_SaveThread();
|
Eigen_model_mutex->lock();
|
||||||
python_train_thread = std::thread(parallel_training, Eigen_model, Eigen_model_reactive,
|
training_data_buffer_mutex->lock();
|
||||||
Eigen_model_mutex, training_data_buffer,
|
size_t model_size = calculateStructSize(Eigen_model, 'E');
|
||||||
training_data_buffer_mutex, training_data_buffer_full,
|
// TODO: initialize models with weights from keras model
|
||||||
start_training, end_training, params);
|
std::string model_name = "model";
|
||||||
|
std::vector<std::vector<std::vector<double>>> model_weight =
|
||||||
|
Python_Keras_get_weights(model_name);
|
||||||
|
update_weights(Eigen_model, model_weight);
|
||||||
|
fprintf(stdout, "example weight: %f\n",
|
||||||
|
Eigen_model->weight_matrices[0](0, 0));
|
||||||
|
model_size = calculateStructSize(Eigen_model, 'E');
|
||||||
|
|
||||||
|
|
||||||
|
fprintf(stdout, "size after: %zu\n", model_size);
|
||||||
|
char *serializedData = (char *)calloc(model_size, sizeof(char));
|
||||||
|
if (serializedData == NULL) {
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
int res = serializeModelWeights(Eigen_model, serializedData);
|
||||||
|
|
||||||
|
struct naa_param_t weight_region[] = {(void*) serializedData, model_size};
|
||||||
|
|
||||||
|
printf("-- Setting Up Connection --\n");
|
||||||
|
if (naa_create(1, weight_region, 1,
|
||||||
|
weight_region, 0, handle)) {
|
||||||
|
fprintf(stderr, "Error during naa_create. Exiting.\n");
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("-- RPC Invocation --\n");
|
||||||
|
if (naa_invoke(handle)) {
|
||||||
|
fprintf(stderr, "Error during naa_invoke. Exiting.\n");
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: naa_wait with new weights
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
EigenModel deserializedModel = deserializeModelWeights(serializedData, model_size);
|
||||||
|
fprintf(stdout, "After deserialization: %f\n", deserializedModel.weight_matrices[0](0,0));
|
||||||
|
|
||||||
|
for(int i=0;i<Eigen_model->weight_matrices[0].rows();i++){
|
||||||
|
for (int j=0;j<Eigen_model->weight_matrices[0].cols();j++){
|
||||||
|
fprintf(stdout, "model: %f, deserializedModel: %f\n",
|
||||||
|
Eigen_model->weight_matrices[0](i, j), deserializedModel.weight_matrices[0](i,j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
free(serializedData);
|
||||||
|
serializedData = nullptr;
|
||||||
|
// naa_finalize: clean up connection.
|
||||||
|
printf("-- Cleaning Up --\n");
|
||||||
|
naa_finalize(handle);
|
||||||
|
// fprintf(stdout, "after free\n");
|
||||||
|
// TODO: determine the struct sizes of EigenModel and TrainData
|
||||||
|
// TODO: initialize RDMA memory regions (two sections: model weights and training data)
|
||||||
|
|
||||||
|
// TODO: establish connection to NAA server
|
||||||
|
|
||||||
|
// TODO: if training buffer is full
|
||||||
|
|
||||||
|
|
||||||
|
// TODO: serialize EigenModel and TrainData
|
||||||
|
// TODO: run invoke call from naaice API
|
||||||
|
// TODO: wait for results
|
||||||
|
// TODO: update model weights (dont forget locking)
|
||||||
|
// TODO: wait for next training buffer iteration
|
||||||
|
|
||||||
|
Eigen_model_mutex->unlock();
|
||||||
|
training_data_buffer_mutex->unlock();
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
std::thread python_train_thread;
|
||||||
|
std::thread naa_train_thread;
|
||||||
|
/**
|
||||||
|
* @brief Starts a thread for parallel training and weight updating. This
|
||||||
|
* Wrapper function ensures, that the main POET program can be built without
|
||||||
|
* pthread support if the AI surrogate functions are disabled during
|
||||||
|
* compilation.
|
||||||
|
* @param Eigen_model Pointer to the EigenModel struct that will be updates with
|
||||||
|
* new weights
|
||||||
|
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
|
||||||
|
* struct
|
||||||
|
* @param training_data_buffer Pointer to the Training data struct with which
|
||||||
|
* the model is trained
|
||||||
|
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
|
||||||
|
* training data struct
|
||||||
|
* @param training_data_buffer_full Conditional waiting variable with wich the
|
||||||
|
* main thread signals when a training run can start
|
||||||
|
* @param start_training Conditional waiting predicate to mitigate against
|
||||||
|
* spurious wakeups
|
||||||
|
* @param end_training Signals end of program to wind down thread gracefully
|
||||||
|
* @param params Global runtime paramters
|
||||||
|
* @return 0 if function was succesful
|
||||||
|
*/
|
||||||
|
int Python_Keras_training_thread(
|
||||||
|
EigenModel *Eigen_model, EigenModel *Eigen_model_reactive,
|
||||||
|
std::mutex *Eigen_model_mutex, TrainingData *training_data_buffer,
|
||||||
|
std::mutex *training_data_buffer_mutex,
|
||||||
|
std::condition_variable *training_data_buffer_full, bool *start_training,
|
||||||
|
bool *end_training, const RuntimeParameters ¶ms, naa_handle *handle) {
|
||||||
|
MSG("In Python_Keras_training_thread");
|
||||||
|
PyThreadState *_save = PyEval_SaveThread(); // ?
|
||||||
|
// check if naa is activated and if so, we use training on naa server
|
||||||
|
if(params.use_naa){
|
||||||
|
if (!(handle == NULL)) {
|
||||||
|
MSG("NAA Accelerator is used for online training");
|
||||||
|
naa_train_thread = std::thread(
|
||||||
|
naa_training, Eigen_model, Eigen_model_reactive, Eigen_model_mutex,
|
||||||
|
training_data_buffer, training_data_buffer_mutex,
|
||||||
|
training_data_buffer_full, start_training, end_training, params, handle);
|
||||||
|
}
|
||||||
|
} else{
|
||||||
|
python_train_thread = std::thread(
|
||||||
|
parallel_training, Eigen_model, Eigen_model_reactive, Eigen_model_mutex,
|
||||||
|
training_data_buffer, training_data_buffer_mutex,
|
||||||
|
training_data_buffer_full, start_training, end_training, params);
|
||||||
|
}
|
||||||
|
fprintf(stdout, "End of Python_Keras_training_thread\n");
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Updates the EigenModels weigths and biases from the weight vector
|
* @brief Updates the EigenModels weigths and biases from the weight vector
|
||||||
* @param model Pounter to an EigenModel struct
|
* @param model Pointer to an EigenModel struct
|
||||||
* @param weights Vector of model weights from keras as returned by Python_Keras_get_weights()
|
* @param weights Vector of model weights from keras as returned by
|
||||||
|
* Python_Keras_get_weights()
|
||||||
*/
|
*/
|
||||||
void update_weights(EigenModel* model,
|
// ? check if updating was succesful -> hash about values?
|
||||||
|
void update_weights(
|
||||||
|
EigenModel *model,
|
||||||
const std::vector<std::vector<std::vector<double>>> &weights) {
|
const std::vector<std::vector<std::vector<double>>> &weights) {
|
||||||
size_t num_layers = weights.size() / 2;
|
MSG("In update_weights");
|
||||||
|
size_t num_layers =
|
||||||
|
weights.size() / 2; // half length because it contains weights and biases
|
||||||
for (size_t i = 0; i < weights.size(); i += 2) {
|
for (size_t i = 0; i < weights.size(); i += 2) {
|
||||||
// Fill current weight matrix
|
// Fill current weight matrix
|
||||||
size_t rows = weights[i][0].size();
|
size_t rows = weights[i][0].size();
|
||||||
@ -630,23 +822,28 @@ void update_weights(EigenModel* model,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Converts the weights and biases from the Python Keras model to C++ vectors
|
* @brief Converts the weights and biases from the Python Keras model to C++
|
||||||
|
* vectors
|
||||||
* @return A vector containing the model weights and biases
|
* @return A vector containing the model weights and biases
|
||||||
*/
|
*/
|
||||||
std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::string model_name) {
|
std::vector<std::vector<std::vector<double>>>
|
||||||
|
Python_Keras_get_weights(std::string model_name) {
|
||||||
// Acquire the Python GIL
|
// Acquire the Python GIL
|
||||||
|
fprintf(stdout, "In Python_Keras_get_weights\n");
|
||||||
PyGILState_STATE gstate = PyGILState_Ensure();
|
PyGILState_STATE gstate = PyGILState_Ensure();
|
||||||
|
|
||||||
PyObject *py_main_module = PyImport_AddModule("__main__");
|
PyObject *py_main_module = PyImport_AddModule("__main__");
|
||||||
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
|
||||||
PyObject* py_keras_model = PyDict_GetItemString(py_global_dict, model_name.c_str());
|
PyObject *py_keras_model =
|
||||||
PyObject* py_get_weights_function = PyDict_GetItemString(py_global_dict, "get_weights");
|
PyDict_GetItemString(py_global_dict, model_name.c_str());
|
||||||
|
PyObject *py_get_weights_function =
|
||||||
|
PyDict_GetItemString(py_global_dict, "get_weights");
|
||||||
PyObject *args = Py_BuildValue("(O)", py_keras_model);
|
PyObject *args = Py_BuildValue("(O)", py_keras_model);
|
||||||
|
|
||||||
// Call Python function
|
// Call Python function
|
||||||
PyObject* py_weights_list = PyObject_CallObject(py_get_weights_function, args);
|
PyObject *py_weights_list =
|
||||||
|
PyObject_CallObject(py_get_weights_function, args);
|
||||||
|
|
||||||
if (!py_weights_list) {
|
if (!py_weights_list) {
|
||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
@ -664,7 +861,8 @@ std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::stri
|
|||||||
throw std::runtime_error("Weight is not a NumPy array.");
|
throw std::runtime_error("Weight is not a NumPy array.");
|
||||||
}
|
}
|
||||||
|
|
||||||
PyArrayObject* weight_np = reinterpret_cast<PyArrayObject*>(py_weight_array);
|
PyArrayObject *weight_np =
|
||||||
|
reinterpret_cast<PyArrayObject *>(py_weight_array);
|
||||||
int dtype = PyArray_TYPE(weight_np);
|
int dtype = PyArray_TYPE(weight_np);
|
||||||
|
|
||||||
// If array is 2D it's a weight matrix
|
// If array is 2D it's a weight matrix
|
||||||
@ -672,31 +870,38 @@ std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::stri
|
|||||||
int num_rows = PyArray_DIM(weight_np, 0);
|
int num_rows = PyArray_DIM(weight_np, 0);
|
||||||
int num_cols = PyArray_DIM(weight_np, 1);
|
int num_cols = PyArray_DIM(weight_np, 1);
|
||||||
|
|
||||||
std::vector<std::vector<double>> weight_matrix(num_rows, std::vector<double>(num_cols));
|
std::vector<std::vector<double>> weight_matrix(
|
||||||
|
num_rows, std::vector<double>(num_cols));
|
||||||
// Handle different precision settings
|
// Handle different precision settings
|
||||||
if (dtype == NPY_FLOAT32) {
|
if (dtype == NPY_FLOAT32) {
|
||||||
float* weight_data_float = static_cast<float*>(PyArray_DATA(weight_np));
|
//
|
||||||
|
float *weight_data_float =
|
||||||
|
static_cast<float *>(PyArray_DATA(weight_np));
|
||||||
for (size_t r = 0; r < num_rows; ++r) {
|
for (size_t r = 0; r < num_rows; ++r) {
|
||||||
for (size_t c = 0; c < num_cols; ++c) {
|
for (size_t c = 0; c < num_cols; ++c) {
|
||||||
weight_matrix[r][c] = static_cast<double>(weight_data_float[r * num_cols + c]);
|
weight_matrix[r][c] =
|
||||||
|
static_cast<double>(weight_data_float[r * num_cols + c]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (dtype == NPY_DOUBLE) {
|
} else if (dtype == NPY_DOUBLE) {
|
||||||
double* weight_data_double = static_cast<double*>(PyArray_DATA(weight_np));
|
double *weight_data_double =
|
||||||
|
static_cast<double *>(PyArray_DATA(weight_np));
|
||||||
for (size_t r = 0; r < num_rows; ++r) {
|
for (size_t r = 0; r < num_rows; ++r) {
|
||||||
for (size_t c = 0; c < num_cols; ++c) {
|
for (size_t c = 0; c < num_cols; ++c) {
|
||||||
weight_matrix[r][c] = weight_data_double[r * num_cols + c];
|
weight_matrix[r][c] = weight_data_double[r * num_cols + c];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error("Unsupported data type for weights. Must be NPY_FLOAT32 or NPY_DOUBLE.");
|
throw std::runtime_error("Unsupported data type for weights. Must be "
|
||||||
|
"NPY_FLOAT32 or NPY_DOUBLE.");
|
||||||
}
|
}
|
||||||
cpp_weights.push_back(weight_matrix);
|
cpp_weights.push_back(weight_matrix);
|
||||||
|
|
||||||
// If array is 1D it's a bias vector
|
// If array is 1D it's a bias vector
|
||||||
} else if (PyArray_NDIM(weight_np) == 1) {
|
} else if (PyArray_NDIM(weight_np) == 1) {
|
||||||
int num_elements = PyArray_DIM(weight_np, 0);
|
int num_elements = PyArray_DIM(weight_np, 0);
|
||||||
std::vector<std::vector<double>> bias_vector(1, std::vector<double>(num_elements));
|
std::vector<std::vector<double>> bias_vector(
|
||||||
|
1, std::vector<double>(num_elements));
|
||||||
|
|
||||||
// Handle different precision settings
|
// Handle different precision settings
|
||||||
if (dtype == NPY_FLOAT32) {
|
if (dtype == NPY_FLOAT32) {
|
||||||
@ -705,12 +910,14 @@ std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::stri
|
|||||||
bias_vector[0][j] = static_cast<double>(bias_data_float[j]);
|
bias_vector[0][j] = static_cast<double>(bias_data_float[j]);
|
||||||
}
|
}
|
||||||
} else if (dtype == NPY_DOUBLE) {
|
} else if (dtype == NPY_DOUBLE) {
|
||||||
double* bias_data_double = static_cast<double*>(PyArray_DATA(weight_np));
|
double *bias_data_double =
|
||||||
|
static_cast<double *>(PyArray_DATA(weight_np));
|
||||||
for (size_t j = 0; j < num_elements; ++j) {
|
for (size_t j = 0; j < num_elements; ++j) {
|
||||||
bias_vector[0][j] = bias_data_double[j];
|
bias_vector[0][j] = bias_data_double[j];
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error("Unsupported data type for biases. Must be NPY_FLOAT32 or NPY_DOUBLE.");
|
throw std::runtime_error("Unsupported data type for biases. Must be "
|
||||||
|
"NPY_FLOAT32 or NPY_DOUBLE.");
|
||||||
}
|
}
|
||||||
cpp_weights.push_back(bias_vector);
|
cpp_weights.push_back(bias_vector);
|
||||||
}
|
}
|
||||||
@ -724,16 +931,20 @@ std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::stri
|
|||||||
return cpp_weights;
|
return cpp_weights;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Joins the training thread and winds down the Python environment gracefully
|
* @brief Joins the training thread and winds down the Python environment
|
||||||
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel struct
|
* gracefully
|
||||||
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the training data struct
|
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
|
||||||
* @param training_data_buffer_full Conditional waiting variable with wich the main thread signals
|
* struct
|
||||||
* when a training run can start
|
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
|
||||||
* @param start_training Conditional waiting predicate to mitigate against spurious wakeups
|
* training data struct
|
||||||
|
* @param training_data_buffer_full Conditional waiting variable with wich the
|
||||||
|
* main thread signals when a training run can start
|
||||||
|
* @param start_training Conditional waiting predicate to mitigate against
|
||||||
|
* spurious wakeups
|
||||||
* @param end_training Signals end of program to wind down thread gracefully */
|
* @param end_training Signals end of program to wind down thread gracefully */
|
||||||
void Python_finalize(std::mutex* Eigen_model_mutex, std::mutex* training_data_buffer_mutex,
|
void Python_finalize(std::mutex *Eigen_model_mutex,
|
||||||
|
std::mutex *training_data_buffer_mutex,
|
||||||
std::condition_variable *training_data_buffer_full,
|
std::condition_variable *training_data_buffer_full,
|
||||||
bool *start_training, bool *end_training) {
|
bool *start_training, bool *end_training) {
|
||||||
training_data_buffer_mutex->lock();
|
training_data_buffer_mutex->lock();
|
||||||
|
|||||||
@ -17,9 +17,14 @@
|
|||||||
#ifndef AI_FUNCTIONS_H
|
#ifndef AI_FUNCTIONS_H
|
||||||
#define AI_FUNCTIONS_H
|
#define AI_FUNCTIONS_H
|
||||||
|
|
||||||
|
#include <condition_variable>
|
||||||
|
#include <mutex>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "poet.hpp"
|
#include "poet.hpp"
|
||||||
|
extern "C"{
|
||||||
|
#include <naaice_ap2.h>
|
||||||
|
}
|
||||||
|
|
||||||
// PhreeqC definition of pi clashes with Eigen macros
|
// PhreeqC definition of pi clashes with Eigen macros
|
||||||
// so we have to temporarily undef it
|
// so we have to temporarily undef it
|
||||||
@ -44,7 +49,7 @@ struct TrainingData {
|
|||||||
int n_training_runs = 0;
|
int n_training_runs = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Ony declare the actual functions if flag is set
|
// Only declare the actual functions if flag is set
|
||||||
#ifdef USE_AI_SURROGATE
|
#ifdef USE_AI_SURROGATE
|
||||||
|
|
||||||
int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir);
|
int Python_Keras_setup(std::string functions_file_path, std::string cuda_src_dir);
|
||||||
@ -71,7 +76,7 @@ int Python_Keras_training_thread(EigenModel* Eigen_model, EigenModel* Eigen_mode
|
|||||||
std::mutex* training_data_buffer_mutex,
|
std::mutex* training_data_buffer_mutex,
|
||||||
std::condition_variable* training_data_buffer_full,
|
std::condition_variable* training_data_buffer_full,
|
||||||
bool* start_training, bool* end_training,
|
bool* start_training, bool* end_training,
|
||||||
const RuntimeParameters& params);
|
const RuntimeParameters& params, naa_handle *handle);
|
||||||
|
|
||||||
void update_weights(EigenModel* model, const std::vector<std::vector<std::vector<double>>>& weights);
|
void update_weights(EigenModel* model, const std::vector<std::vector<std::vector<double>>>& weights);
|
||||||
|
|
||||||
@ -84,7 +89,6 @@ std::vector<double> Eigen_predict_clustered(const EigenModel& model, const Eigen
|
|||||||
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>> x, int batch_size,
|
std::vector<double> Eigen_predict(const EigenModel& model, std::vector<std::vector<double>> x, int batch_size,
|
||||||
std::mutex* Eigen_model_mutex);
|
std::mutex* Eigen_model_mutex);
|
||||||
|
|
||||||
|
|
||||||
// Otherwise, define the necessary stubs
|
// Otherwise, define the necessary stubs
|
||||||
#else
|
#else
|
||||||
inline void Python_Keras_setup(std::string, std::string){}
|
inline void Python_Keras_setup(std::string, std::string){}
|
||||||
@ -97,7 +101,7 @@ inline void training_data_buffer_append(std::vector<std::vector<double>>&,
|
|||||||
inline void cluster_labels_append(std::vector<int>&, std::vector<int>&, std::vector<int>){}
|
inline void cluster_labels_append(std::vector<int>&, std::vector<int>&, std::vector<int>){}
|
||||||
inline int Python_Keras_training_thread(EigenModel*, EigenModel*, std::mutex*,
|
inline int Python_Keras_training_thread(EigenModel*, EigenModel*, std::mutex*,
|
||||||
TrainingData*, std::mutex*, std::condition_variable*,
|
TrainingData*, std::mutex*, std::condition_variable*,
|
||||||
bool*, bool*, const RuntimeParameters&){return {};}
|
bool*, bool*, const RuntimeParameters&, naa_handle*){return {};}
|
||||||
|
|
||||||
inline void update_weights(EigenModel*, const std::vector<std::vector<std::vector<double>>>&){}
|
inline void update_weights(EigenModel*, const std::vector<std::vector<std::vector<double>>>&){}
|
||||||
inline std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::string){return {};}
|
inline std::vector<std::vector<std::vector<double>>> Python_Keras_get_weights(std::string){return {};}
|
||||||
|
|||||||
221
src/Chemistry/SurrogateModels/serializer.cpp
Normal file
221
src/Chemistry/SurrogateModels/serializer.cpp
Normal file
@ -0,0 +1,221 @@
|
|||||||
|
#include "serializer.hpp"
|
||||||
|
#include "AI_functions.hpp"
|
||||||
|
#include <Eigen/src/Core/Matrix.h>
|
||||||
|
#include <cstddef>
|
||||||
|
#include <cstdio>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
namespace poet{
|
||||||
|
size_t calculateStructSize(void *struct_pointer, char type){
|
||||||
|
|
||||||
|
size_t struct_size = 0;
|
||||||
|
if (type == 'E') {
|
||||||
|
struct_size += sizeof(size_t); // number of matrices
|
||||||
|
struct_size +=
|
||||||
|
static_cast<EigenModel *>(struct_pointer)->weight_matrices.size() *
|
||||||
|
2 * sizeof(size_t); // dimensions of matrices
|
||||||
|
struct_size += sizeof(size_t); // number of vectors
|
||||||
|
struct_size += static_cast<EigenModel *>(struct_pointer)->biases.size() *
|
||||||
|
sizeof(size_t); // length of vectors
|
||||||
|
|
||||||
|
for (const Eigen::MatrixXd &matrix :
|
||||||
|
static_cast<EigenModel *>(struct_pointer)->weight_matrices) {
|
||||||
|
// fprintf(stderr, "matrix size: rows:%td, cols: %td\n", matrix.rows(), matrix.cols());
|
||||||
|
struct_size += matrix.size() * sizeof(double);
|
||||||
|
// fprintf(stderr, "matrix size %td\n", matrix.size());
|
||||||
|
|
||||||
|
}
|
||||||
|
for (const Eigen::VectorXd &bias :
|
||||||
|
static_cast<EigenModel *>(struct_pointer)->biases) {
|
||||||
|
struct_size += bias.size() * sizeof(double);
|
||||||
|
// fprintf(stderr, "matrix size %td\n", bias.size());
|
||||||
|
|
||||||
|
}
|
||||||
|
} else if (type == 'T') {
|
||||||
|
}
|
||||||
|
|
||||||
|
return struct_size;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int serializeModelWeights(const EigenModel *model, char *memory){
|
||||||
|
|
||||||
|
size_t num_matrices = model->weight_matrices.size();
|
||||||
|
size_t size_counter = 0;
|
||||||
|
std::memcpy(memory, &num_matrices, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
for (const Eigen::MatrixXd &matrix : model->weight_matrices) {
|
||||||
|
size_t rows = matrix.rows(), cols = matrix.cols();
|
||||||
|
fprintf(stdout, "rows: %zu, cols: %zu\n", rows, cols);
|
||||||
|
std::memcpy(memory, &rows, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
std::memcpy(memory, &cols, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
std::memcpy(memory, matrix.data(), rows * cols * sizeof(double));
|
||||||
|
memory += rows * cols * sizeof(double);
|
||||||
|
size_counter += rows * cols * sizeof(double);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Serialisierung der Bias-Vektoren
|
||||||
|
size_t num_biases = model->biases.size();
|
||||||
|
std::memcpy(memory, &num_biases, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
for (const Eigen::VectorXd &bias : model->biases) {
|
||||||
|
size_t size = bias.size();
|
||||||
|
std::memcpy(memory, &size, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
std::memcpy(memory, bias.data(), size * sizeof(double));
|
||||||
|
memory += size * sizeof(double);
|
||||||
|
size_counter += size * sizeof(double);
|
||||||
|
}
|
||||||
|
fprintf(stdout, "serializer size: %zu\n", size_counter);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// EigenModel deserializeModelWeights(char *memory, size_t buffer_size){
|
||||||
|
|
||||||
|
// EigenModel deserializedModel;
|
||||||
|
|
||||||
|
|
||||||
|
// size_t num_matrices;
|
||||||
|
// size_t size_counter = 0;
|
||||||
|
// std::memcpy(&num_matrices, memory, sizeof(size_t));
|
||||||
|
// fprintf(stdout, "number of matrices: %zu\n", num_matrices);
|
||||||
|
|
||||||
|
// memory += sizeof(size_t);
|
||||||
|
// size_counter += sizeof(size_t);
|
||||||
|
// deserializedModel.weight_matrices.resize(num_matrices);
|
||||||
|
// for (Eigen::MatrixXd &matrix : deserializedModel.weight_matrices) {
|
||||||
|
// size_t rows, cols;
|
||||||
|
// std::memcpy(&rows, memory, sizeof(size_t));
|
||||||
|
// memory += sizeof(size_t);
|
||||||
|
// size_counter += sizeof(size_t);
|
||||||
|
// std::memcpy(&cols, memory, sizeof(size_t));
|
||||||
|
// fprintf(stdout, "rows: %zu, cols: %zu\n", rows, cols);
|
||||||
|
// memory += sizeof(size_t);
|
||||||
|
// size_counter += sizeof(size_t);
|
||||||
|
// fprintf(stdout, "rows before: %td, cols before: %td\n", matrix.rows(), matrix.cols());
|
||||||
|
// matrix.resize(rows, cols);
|
||||||
|
// std::memcpy(matrix.data(), memory, rows * cols * sizeof(double));
|
||||||
|
|
||||||
|
// memory += rows * cols * sizeof(double);
|
||||||
|
// size_counter += rows * cols * sizeof(double);
|
||||||
|
// }
|
||||||
|
// fprintf(stdout, "deserialized size of matrices: %zu\n", size_counter);
|
||||||
|
// size_t num_biases;
|
||||||
|
// std::memcpy(&num_biases, memory, sizeof(size_t));
|
||||||
|
// memory += sizeof(size_t);
|
||||||
|
// size_counter += sizeof(size_t);
|
||||||
|
|
||||||
|
// fprintf(stdout, "number of biases: %zu\n", num_biases);
|
||||||
|
// deserializedModel.biases.resize(num_biases);
|
||||||
|
// for (Eigen::VectorXd &bias : deserializedModel.biases) {
|
||||||
|
// size_t size;
|
||||||
|
// std::memcpy(&size, memory, sizeof(size_t));
|
||||||
|
// fprintf(stdout, "bias length: %zu\n", size);
|
||||||
|
// memory += sizeof(size_t);
|
||||||
|
// size_counter += sizeof(size_t);
|
||||||
|
// bias.resize(size);
|
||||||
|
// std::memcpy(bias.data(), memory, size * sizeof(double));
|
||||||
|
// memory += size * sizeof(double);
|
||||||
|
// size_counter += size * sizeof(double);
|
||||||
|
// }
|
||||||
|
// fprintf(stdout, "deserialized size: %zu\n", size_counter);
|
||||||
|
// if(size_counter > buffer_size){
|
||||||
|
// fprintf(stderr, "buffer corrupted!\n");
|
||||||
|
// }
|
||||||
|
// return deserializedModel;
|
||||||
|
// }
|
||||||
|
EigenModel deserializeModelWeights(char *memory, size_t buffer_size) {
|
||||||
|
EigenModel deserializedModel;
|
||||||
|
size_t size_counter = 0;
|
||||||
|
|
||||||
|
// Anzahl Matrizen
|
||||||
|
size_t num_matrices;
|
||||||
|
if (buffer_size < sizeof(size_t)) {
|
||||||
|
fprintf(stderr, "Buffer too small.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
std::memcpy(&num_matrices, memory, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
deserializedModel.weight_matrices.resize(num_matrices);
|
||||||
|
|
||||||
|
// Matrizen deserialisieren
|
||||||
|
for (Eigen::MatrixXd &matrix : deserializedModel.weight_matrices) {
|
||||||
|
size_t rows, cols;
|
||||||
|
|
||||||
|
// Buffer-Check
|
||||||
|
if (size_counter + 2 * sizeof(size_t) > buffer_size) {
|
||||||
|
fprintf(stderr, "Buffer too small for matrix dimensions.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::memcpy(&rows, memory, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
|
||||||
|
std::memcpy(&cols, memory, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
|
||||||
|
if (size_counter + rows * cols * sizeof(double) > buffer_size) {
|
||||||
|
fprintf(stderr, "Buffer too small for matrix data.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Kopiere Daten in neue Matrix
|
||||||
|
Eigen::MatrixXd temp = Eigen::Map<Eigen::MatrixXd>(
|
||||||
|
reinterpret_cast<double*>(memory), rows, cols);
|
||||||
|
matrix = temp; // Kopieren der Daten
|
||||||
|
memory += rows * cols * sizeof(double);
|
||||||
|
size_counter += rows * cols * sizeof(double);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Anzahl Biases
|
||||||
|
size_t num_biases;
|
||||||
|
if (size_counter + sizeof(size_t) > buffer_size) {
|
||||||
|
fprintf(stderr, "Buffer too small for biases.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
std::memcpy(&num_biases, memory, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
deserializedModel.biases.resize(num_biases);
|
||||||
|
|
||||||
|
// Biases deserialisieren
|
||||||
|
for (Eigen::VectorXd &bias : deserializedModel.biases) {
|
||||||
|
size_t size;
|
||||||
|
if (size_counter + sizeof(size_t) > buffer_size) {
|
||||||
|
fprintf(stderr, "Buffer too small for bias size.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::memcpy(&size, memory, sizeof(size_t));
|
||||||
|
memory += sizeof(size_t);
|
||||||
|
size_counter += sizeof(size_t);
|
||||||
|
|
||||||
|
if (size_counter + size * sizeof(double) > buffer_size) {
|
||||||
|
fprintf(stderr, "Buffer too small for bias data.\n");
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Kopiere Daten in neuen Vektor
|
||||||
|
Eigen::VectorXd temp = Eigen::Map<Eigen::VectorXd>(
|
||||||
|
reinterpret_cast<double*>(memory), size);
|
||||||
|
bias = temp; // Kopieren der Daten
|
||||||
|
memory += size * sizeof(double);
|
||||||
|
size_counter += size * sizeof(double);
|
||||||
|
}
|
||||||
|
|
||||||
|
return deserializedModel;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
56
src/Chemistry/SurrogateModels/serializer.hpp
Normal file
56
src/Chemistry/SurrogateModels/serializer.hpp
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
#ifndef SERIALIZER_H
|
||||||
|
#define SERIALIZER_H
|
||||||
|
|
||||||
|
#include "AI_functions.hpp"
|
||||||
|
#include <cstddef>
|
||||||
|
|
||||||
|
namespace poet{
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Serialize the weights and biases of the model into a memory location
|
||||||
|
* to send them via RDMA
|
||||||
|
*
|
||||||
|
* @param model: Struct of EigenModel containing the weights and biases of the
|
||||||
|
* model
|
||||||
|
* @param memory: Pointer to the memory location where the serialized data will
|
||||||
|
* be stored
|
||||||
|
* @return int: 0 if the serialization was successful, -1 otherwise
|
||||||
|
*/
|
||||||
|
int serializeModelWeights(const EigenModel *model, char *memory);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Deserialize the weights and biases of the model from a memory location
|
||||||
|
*
|
||||||
|
* @param data Pointer to the memory location where the serialized data is stored
|
||||||
|
* @return EigenModel struct containing the weights and biases of the model
|
||||||
|
*/
|
||||||
|
EigenModel deserializeModelWeights(char* memory, size_t buffer_size);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Serialize the training data into a memory location to send it via RDMA
|
||||||
|
*
|
||||||
|
* @param data Struct of TrainingData containing the training data
|
||||||
|
* @param memory
|
||||||
|
* @return std::vector<char>
|
||||||
|
*/
|
||||||
|
int serializeTrainingData(const TrainingData& data, void *memory);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Deserialize the training data from a memory location
|
||||||
|
*
|
||||||
|
* @param data Pointer to the memory location where the serialized data is stored
|
||||||
|
* @return TrainingData struct containing the training data
|
||||||
|
*/
|
||||||
|
TrainingData deserializeTrainingData(void* data);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Calculates the size of stored elements in the EigenModel and TrainData
|
||||||
|
* structs
|
||||||
|
*
|
||||||
|
* @param struct_pointer: pointer to the struct
|
||||||
|
* @param type: determines the struct type given: E for EigenModel and T TrainData
|
||||||
|
* @return size_t: size of stored elements
|
||||||
|
*/
|
||||||
|
size_t calculateStructSize(void* struct_pointer, char type);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
Loading…
x
Reference in New Issue
Block a user