docs: updated docs for v03

This commit is contained in:
hans 2024-05-30 13:20:50 +02:00
parent 53b9479cad
commit f8864d991a
6 changed files with 655 additions and 642 deletions

View File

@ -154,6 +154,7 @@ The following parameters can be set:
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------|
| **--work-package-size=** | _1..n_ | size of work packages (defaults to _5_) |
| **-P, --progress** | | show progress bar |
| **--ai-surrogate** | | activates the AI surrogate chemistry model (defaults to _OFF_) |
| **--dht** | | enabling DHT usage (defaults to _OFF_) |
| **--dht-strategy=** | _0-1_ | change DHT strategy. **NOT IMPLEMENTED YET** (Defaults to _0_) |
| **--dht-size=** | _1-n_ | size of DHT per process involved in megabyte (defaults to _1000 MByte_) |
@ -231,3 +232,21 @@ important information from the OpenMPI Man Page:
For example, on platforms that support it, the clock_gettime()
function will be used to obtain a monotonic clock value with whatever
precision is supported on that platform (e.g., nanoseconds).
## Additional functions for the AI surrogate
The AI surrogate can be activated for any benchmark and is by default initiated as a sequential keras model with three hidden layer of depth 48, 96, 24 with relu activation and adam optimizer. All functions in `ai_surrogate_model.R` can be overridden by adding custom definitions via an R file in the input script.
This is done by adding the path to this file in the input script. Simply add the path as an element called `ai_surrogate_input_script` to the `chemistry_setup` list.
Please use the global variable `ai_surrogate_base_path` as a base path when relative filepaths are used in custom funtions.
**There is currently no default implementation to determine the validity of predicted values.** This means, that every input script must include an R source file with a custom function `validate_predictions(predictors, prediction)`. Examples for custom functions can be found for the barite_200 benchmark
The functions can be defined as follows:
`validate_predictions(predictors, prediction)`: Returns a boolean index vector that signals for each row in the predictions if the values are considered valid. Can eg. be implemented as a mass balance threshold between the predictors and the prediction.
`initiate_model()`: Returns a keras model. Can be used to load pretrained models.
`preprocess(df, backtransform = FALSE, outputs = FALSE)`: Returns the scaled/transformed/backtransformed dataframe. The `backtransform` flag signals if the current processing step is applied to data that's assumed to be scaled and expects backtransformed values. The `outputs` flag signals if the current processing step is applied to the output or tatget of the model. This can be used to eg. skip these processing steps and only scale the model input.
`training_step (model, predictor, target, validity)`: Trains the model after each iteration. `validity` is the bool index vector given by `validate_predictions` and can eg. be used to only train on values that have not been valid predictions.

View File

@ -22,6 +22,15 @@ mpirun -np 4 ./poet --interp barite_interp_eval.R barite_results
grid
- =barite_200.R=: POET input script for a 200x200 simulation
grid
- =barite_200ai_surrogate_input_script.R=: Defines the ai surrogate functions
to load a pretrained model and apply min-max-feature scaling on the model inputs
and target. Prediction validity is assessed with a threshold of 3e-5 on the mass
balance of Ba and Sr.
- =barite_200min_max_bounds=: Minimum and maximum values from 50 iterations of the
barite_200 benchmark. Used for feature scaling in the ai surrogate.
- =barite_200model_min_max.keras=: A sequential keras model that has been trained
on 50 iterations of the barite_200 benchmark with min-max-scaled inputs
and targets/outputs.
- =db_barite.dat=: PHREEQC database containing the kinetic expressions
for barite and celestite, stripped down from =phreeqc.dat=
- =barite.pqi=: PHREEQC input script defining the chemical system

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 127 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 131 KiB

View File

@ -34,7 +34,24 @@ void InitialList::initChemistry(const Rcpp::List &chem) {
if (chem.containsElementNamed("ai_surrogate_input_script")) {
std::string ai_surrogate_input_script_path = chem["ai_surrogate_input_script"];
this->ai_surrogate_input_script = Rcpp::as<std::string>(Rcpp::Function("normalizePath")(Rcpp::wrap(ai_surrogate_input_script_path)));
ai_surrogate_input_script_path = Rcpp::as<std::string>(Rcpp::Function("normalizePath")(Rcpp::wrap(ai_surrogate_input_script_path)));
// Copying the entire script for the init file
std::ifstream file(ai_surrogate_input_script_path);
if (!file.is_open()) {
// print error message and return
Rcpp::Rcerr << "AI surroghate input script was not found at: " << ai_surrogate_input_script_path << std::endl;
}
std::stringstream buffer;
buffer << file.rdbuf();
std::string fileContent = buffer.str();
file.close();
// Add the filepath as a global variable in R to enable relative filepaths in the R script
fileContent += "\nai_surrogate_base_path <- \"" + ai_surrogate_input_script_path + "\"";
this->ai_surrogate_input_script = fileContent;
}
this->field_header =

View File

@ -462,11 +462,14 @@ int main(int argc, char *argv[]) {
R["ai_surrogate_species"] = init_list.getChemistryInit().dht_species.getNames();
R["out_dir"] = run_params.out_dir;
const std::string ai_surrogate_input_script_path = init_list.getChemistryInit().ai_surrogate_input_script;
const std::string ai_surrogate_input_script = init_list.getChemistryInit().ai_surrogate_input_script;
if (!ai_surrogate_input_script_path.empty()) {
R["ai_surrogate_base_path"] = ai_surrogate_input_script_path.substr(0, ai_surrogate_input_script_path.find_last_of('/') + 1);
R.parseEvalQ("source('" + ai_surrogate_input_script_path + "')");
if (!ai_surrogate_input_script.empty()) {
/* Incorporate user defined ai surrogate input script */
R.parseEvalQ(ai_surrogate_input_script);
std::string ai_surrogate_base_path = R["ai_surrogate_base_path"];
R["ai_surrogate_base_path"] = ai_surrogate_base_path.substr(0, ai_surrogate_base_path.find_last_of('/') + 1);
}
R.parseEval("model <- initiate_model()");
R.parseEval("gpu_info()");