## Simple library of functions to assess and visualize the results of the coupled simulations ## Time-stamp: "Last modified 2023-05-29 13:51:21 mluebke" require(RedModRphree) require(Rmufits) ## essentially for PlotCartCellData require(Rcpp) require(stringr) curdir <- dirname(sys.frame(1)$ofile) ##path.expand(".") print(paste("RFun_Eval.R is in ", curdir)) sourceCpp(file = paste0(curdir, "/interpret_keys.cpp")) # Wrapper around previous sourced Rcpp function ConvertDHTKey <- function(value) { rcpp_key_convert(value) } ConvertToUInt64 <- function(double_data) { rcpp_uint64_convert(double_data) } ## function which reads all simulation results in a given directory ReadRTSims <- function(dir) { files_full <- list.files(dir, pattern="iter.*rds", full.names=TRUE) files_name <- list.files(dir, pattern="iter.*rds", full.names=FALSE) res <- lapply(files_full, readRDS) names(res) <- gsub(".rds","",files_name, fixed=TRUE) return(res[str_sort(names(res), numeric = TRUE)]) } ## function which reads all successive DHT stored in a given directory ReadAllDHT <- function(dir, new_scheme = TRUE) { files_full <- list.files(dir, pattern="iter.*dht", full.names=TRUE) files_name <- list.files(dir, pattern="iter.*dht", full.names=FALSE) res <- lapply(files_full, ReadDHT, new_scheme = new_scheme) names(res) <- gsub(".rds","",files_name, fixed=TRUE) return(res) } ## function which reads one .dht file and gives a matrix ReadDHT <- function(file, new_scheme = TRUE) { conn <- file(file, "rb") ## open for reading in binary mode if (!isSeekable(conn)) stop("Connection not seekable") ## we first reposition ourselves to the end of the file... tmp <- seek(conn, where=0, origin = "end") ## ... and then back to the origin so to store the length in bytes flen <- seek(conn, where=0, origin = "start") ## we read the first 2 integers (4 bytes each) containing dimensions in bytes dims <- readBin(conn, what="integer", n=2) ## compute dimensions of the data tots <- sum(dims) ncol <- tots/8 nrow <- (flen - 8)/tots ## 8 here is 2*sizeof("int") buff <- readBin(conn, what="double", n=ncol*nrow) ## close connection close(conn) res <- matrix(buff, nrow=nrow, ncol=ncol, byrow=TRUE) if (new_scheme) { nkeys <- dims[1] / 8 keys <- res[, 1:nkeys - 1] conv <- apply(keys, 2, ConvertDHTKey) res[, 1:nkeys - 1] <- conv } return(res) } ## function which reads all successive DHT stored in a given directory ReadAllPHT <- function(dir, with_info = FALSE) { files_full <- list.files(dir, pattern="iter.*pht", full.names=TRUE) files_name <- list.files(dir, pattern="iter.*pht", full.names=FALSE) res <- lapply(files_full, ReadPHT, with_info = with_info) names(res) <- gsub(".pht","",files_name, fixed=TRUE) return(res) } ## function which reads one .dht file and gives a matrix ReadPHT <- function(file, with_info = FALSE) { conn <- file(file, "rb") ## open for reading in binary mode if (!isSeekable(conn)) stop("Connection not seekable") ## we first reposition ourselves to the end of the file... tmp <- seek(conn, where=0, origin = "end") ## ... and then back to the origin so to store the length in bytes flen <- seek(conn, where=0, origin = "start") ## we read the first 2 integers (4 bytes each) containing dimensions in bytes dims <- readBin(conn, what="integer", n=2) ## compute dimensions of the data tots <- sum(dims) ncol <- tots/8 nrow <- (flen - 8)/tots ## 8 here is 2*sizeof("int") buff <- readBin(conn, what="double", n=ncol*nrow) ## close connection close(conn) res <- matrix(buff, nrow=nrow, ncol=ncol, byrow=TRUE) nkeys <- dims[1] / 8 keys <- res[, 1:nkeys - 1] timesteps <- res[, nkeys] conv <- apply(keys, 2, ConvertDHTKey) #res[, 1:nkeys - 1] <- conv ndata <- dims[2] / 8 fill_rate <- ConvertToUInt64(res[, nkeys + 1]) buff <- c(conv, timesteps, fill_rate) if (with_info) { ndata <- dims[2]/8 visit_count <- ConvertToUInt64(res[, nkeys + ndata]) buff <- c(buff, visit_count) } res <- matrix(buff, nrow = nrow, byrow = FALSE) return(res) } ## Scatter plots of each variable in the iteration PlotScatter <- function(sam1, sam2, which=NULL, labs=c("NO DHT", "DHT"), pch=".", cols=3, ...) { if ((!is.data.frame(sam1)) & ("T" %in% names(sam1))) sam1 <- sam1$C if ((!is.data.frame(sam2)) & ("T" %in% names(sam2))) sam2 <- sam2$C if (is.numeric(which)) inds <- which else if (is.character(which)) inds <- match(which, colnames(sam1)) else if (is.null(which)) inds <- seq_along(colnames(sam1)) rows <- nrow(matrix(seq_along(inds), ncol=cols)) par(mfrow=c(rows, cols)) a <- lapply(inds, function(x) { plot(sam1[,x], sam2[,x], main=colnames(sam1)[x], xlab=labs[1], ylab=labs[2], pch=pch, col="red", ...) abline(0,1, col="grey", cex=1.5) }) invisible() } ##### Some metrics for relative comparison ## Using range as norm RranRMSE <- function(pred, obs) sqrt(mean((pred - obs)^2))/abs(max(pred) - min(pred)) ## Using max val as norm RmaxRMSE <- function(pred, obs) sqrt(mean((pred - obs)^2)/abs(max(pred))) ## Using sd as norm RsdRMSE <- function(pred, obs) sqrt(mean((pred - obs)^2))/sd(pred) ## Using mean as norm RmeanRMSE <- function(pred, obs) sqrt(mean((pred - obs)^2))/mean(pred) ## Using mean as norm RAEmax <- function(pred, obs) mean(abs(pred - obs))/max(pred) ## Max absolute error MAE <- function(pred, obs) max(abs(pred - obs)) ## workhorse function for ComputeErrors and its use with mapply AppliedFun <- function(a, b, .fun) mapply(.fun, as.list(a$C), as.list(b$C)) ## Compute the diffs between two simulation, iter by iter, ## with a given metric (passed in form of function name to this function) ComputeErrors <- function(sim1, sim2, FUN=RMSE) { if (length(sim1)!= length(sim2)) { cat("The simulations do not have the same length, subsetting to the shortest\n") a <- min(length(sim1), length(sim2)) sim1 <- sim1[1:a] sim2 <- sim2[1:a] } if (!is.function(match.fun(FUN))) { cat("Invalid function\n") } t(mapply(AppliedFun, sim1, sim2, MoreArgs=list(.fun=FUN))) } ## Function to display the error progress between 2 simulations ErrorProgress <- function(mat, ignore, colors, metric, ...) { if (missing(colors)) colors <- sample(rainbow(ncol(mat))) if (missing(metric)) metric <- "Metric" ## if the optional argument "ignore" (a character vector) is ## passed, we remove the matching column names if (!missing(ignore)) { to_remove <- match(ignore, colnames(mat)) mat <- mat[, -to_remove] colors <- colors[-to_remove] } yc <- mat[nrow(mat),] par(mar=c(5,4,2,6)) matplot(mat, type="l", lty=1, lwd=2, col=colors, xlab="iteration", ylab=metric, ...) mtext(colnames(mat), side = 4, line = 2, outer = FALSE, at = yc, adj = 0.5, col = colors, las=2) } ## Function which exports all simulations to ParaView's .vtu Requires ## package RcppVTK ExportToParaview <- function(vtu, nameout, results) { require(RcppVTK) n <- length(results) vars <- colnames(results[[1]]) ## strip eventually present ".vtu" from nameout nameout <- sub(".vtu", "", nameout, fixed=TRUE) namesteps <- paste0(nameout, ".", sprintf("%04d",seq(1,n)), ".vtu") for (step in seq_along(results)) { file.copy(from=vtu, to=namesteps[step], overwrite = TRUE) cat(paste("Saving step ", step, " in file ", namesteps[step], "\n")) ret <- ExportMatrixToVTU (fin=vtu, fout=namesteps[step], names=colnames(results[[step]]), mat=results[[step]]) } invisible(ret) } ## Version of Rmufits::PlotCartCellData with the ability to fix the ## "breaks" for color coding of 2D simulations Plot2DCellData <- function (data, grid, nx, ny, contour = TRUE, nlevels = 12, breaks, palette = "heat.colors", rev.palette = TRUE, scale = TRUE, plot.axes=TRUE, ...) { if (!missing(grid)) { xc <- unique(sort(grid$cell$XCOORD)) yc <- unique(sort(grid$cell$YCOORD)) nx <- length(xc) ny <- length(yc) if (!length(data) == nx * ny) stop("Wrong nx, ny or grid") } else { xc <- seq(1, nx) yc <- seq(1, ny) } z <- matrix(round(data, 6), ncol = nx, nrow = ny, byrow = TRUE) pp <- t(z[rev(seq(1, nrow(z))), ]) if (missing(breaks)) { breaks <- pretty(data, n = nlevels) } breakslen <- length(breaks) colors <- do.call(palette, list(n = breakslen - 1)) if (rev.palette) colors <- rev(colors) if (scale) { par(mfrow = c(1, 2)) nf <- layout(matrix(c(1, 2), 1, 2, byrow = TRUE), widths = c(4, 1)) } par(las = 1, mar = c(5, 5, 3, 1)) image(xc, yc, pp, xlab = "X [m]", ylab = "Y[m]", las = 1, asp = 1, breaks = breaks, col = colors, axes = FALSE, ann=plot.axes, ...) if (plot.axes) { axis(1) axis(2) } if (contour) contour(unique(sort(xc)), unique(sort(yc)), pp, breaks = breaks, add = TRUE) if (scale) { par(las = 1, mar = c(5, 1, 5, 5)) PlotImageScale(data, breaks = breaks, add.axis = FALSE, axis.pos = 4, col = colors) axis(4, at = breaks) } invisible(pp) } PlotAsMP4 <- function(data, nx, ny, to_plot, out_dir, name, contour = FALSE, scale = FALSE, framerate = 30) { sort_data <- data[str_sort(names(data), numeric = TRUE)] plot_data <- lapply(sort_data, function(x) x$C[[to_plot]]) pad_size <- ceiling(log10(length(plot_data))) dir.create(out_dir, showWarnings = FALSE) output_files <- paste0(out_dir, "/", name, "_%0", pad_size, "d.png") output_mp4 <- paste0(out_dir, "/", name, ".mp4") png(output_files, width = 297, height = 210, units = "mm", res = 100 ) for (i in 1:length(plot_data)) { Rmufits::PlotCartCellData(plot_data[[i]], nx = nx, ny = ny, contour = contour, scale = scale) } dev.off() ffmpeg_command <- paste( "ffmpeg -framerate", framerate, "-i", output_files, "-c:v libx264 -crf 22", output_mp4 ) unlink(output_mp4) system(ffmpeg_command) }