# SMILE Thermodynamic Database (EDH version) # # Project: SMILE Version 01-November-2021 ################################################################################################################################## # # This thermodynamic database has been developed by Helmholtz-Zentrum Dresden-Rossendorf and GRS Braunschweig for the BMWi founded projects: # # - SMILE: "Smart-Kd in der Langzeitsicherheitsanalyse - Anwendungen" (Contract Nos. 02E11668B) # - WEIMAR: "Further Development of the Smart Kd-Concept for Long-Term Safety Assessment" (Contract Nos. 02 E 10518 + 02 E 11072A) # - ESTRAL: "Realistic Integrataion of Sorption Processes in Transport Programs for long-term Safety Analysis" (Contract Nos. 02 E 10528 + 02 E 11072B) # # For the geochemical calculations within this projects two separate thermodynamic databases were created (dependent on the salinity of the groundwater solutions): # # (I) The EDH version for groundwater solutions with ionic strength lower than 0.5 mol L-1. This database # based on the actual PSI/Nagra Chemical Thermodynamic Database Version 12/07 (PSI/Nagra TDB 12/07) formatted for # PHREEQC /Thoenen et al. 2014/ considering the Davies approach /Davies, 1962/ to represent ion-ion interactions # based on the Extended Debye-Hückel Theory (EDH) with updated values from NEA Second Update, Vol. 14 (Grenthe et al. 2020) # # (II) The Pitzer version (PIT.dat) for high saline solutions using the Pitzer formalism. # # For the projects the site-specific minerals and matrix elements of the sedimentary rock above the repository site Gorleben # and actinides and fission products relevant in the context of a nuclear waste repository are important and considered in the database. # So far only parameters for T=298.15 K are provided. Relevant thermodynamic data which are not included or not actual in the PSI/Nagra TDB 12/07 # were taken from either other databases, original literature or own batch experiments and were clearly commented in the database # and listed here (not relevent date or not recommended data wer commented out, e.g. Graphite, Molybdenum, Niob, Palladium, Tin). # # In general the data can be divided into three groups: # # (1) Thermodynamic data for aqueous element species # - Fe+2/Fe+3 were updated from NEA TDB Vol. 13a [Lemire et al., 2013] # - Mg+2 (MgPO4-, MgHPO4, MgCl+ & MgH2PO4) complexes were added from the LLNL database # - MgOH+ was updated from [Brown & Ekberg, 2016] # - Mn+3, MnO4-2, MnO4- # - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U) # # (2) Solubility data for site-specific Minerals: # - Fe+2/Fe+3-solid phases were updated from NEA TDB Vol. 13a [Lemire et al., 2013] # - Albite, Anorthite, Chlorite, Illite and Montmorillonite were included from the ANDRA Database # ThermoChimie [Giffaut et al., 2014]. Thereby, for Albite, only Albite-low was used, being stable below # 700°C with an ordered Si-Al arrangement. # - K-Feldspar (Orthoclase) were calculated from logK(T)-functions published in Stefánsson and Arnórsson (2000) for Microcline. # - Muscovite were taken from Richter et al. (2016). # - generic Gibbsite phase 'Gibbsite(gen)' from own fit to experimental Gorleben data # - amorphous Gibbsite phase from Lindsay (1979) # - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U) # # (3) Thermodynamic sorption data for representative sorbates (pair of element and minerals): # - Surface complexation data (SCM), e.g. protolysis constants (pK-values), stability constants (log K-values) # and reaction equations were taken from the thermodynamic sorption database RES³T (Rossendorf Expert System # for Surface and Sorption Thermodynamics; [Brendler et al. 2003], full bibliographic references are # available at http://www.hzdr.de/res3t). # - Missing SCM data are derived from batch experiments by GRS & HZDR. # - primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/scarce SCM data sets # additionally other SCM models are used # - generic sites (»XOH) are prefered (with no differentiation between strong and weak sites) # - Following Kulik (2006, 2002) the protolysis and stability constants were normalised to a reference surface # site density of 2.31 nm-2 as recommended by Davis and Kent (1990). # - All SCM-values were corrected to infinite dilution (ionic strength 0) using the Davies equation (Davies, 1962). # - The solid surface binding sites are essential components and their abbreviations correspond to the international # code after Whitney and Evans (2010), e. g. for quartz: =Qz-OH2+. # # # References: # # Altmaier, M., Brendler, V, Bosbach, D., Kienzler, B., Marquardt, C. M., Neck, V., Richter, A., 2004. Sichtung, Zusammenstellung # und Bewertung von Daten zur geochemischen Modellierung. Forschungszentrum Karlsruhe, Report FZK - INE 002/04, (2004), 520 pp. # # Brendler, V., Vahle, A., Arnold, T., Bernhard, G., Fanghänel, T., 2003. RES³T-Rossendorf expert system for surface and sorption # thermodynamics. J. Cont. Hydrol., 61, 281-291. # # Brown, P.L., Ekberg, C., 2016, Hydrolysis of Metal Ions, Vol. 1, John Wiley & Sons, 952pp. # # Cornell, R.M., Schwertmann, U., 2003. The iron oxides - structure, properties, reactions, occurrences and uses. # 2nd edition, Wiley-VCH, Weinheim, 185-220. # # Davies, C. W., 1962. Ion Association. Butterworths, Washington. # # Davis, J.A., Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry, in: Hochella, M.F., White, A.F. (Eds.), # Mineral-Water Interface Geochemistry. Reviews in Mineralogy, Vol. 23. MSA, Washington, D.C., pp. 177-258. # # Giffaut, E., Grivé, M., Blanc, P., Viellard, P., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L., (2014). # Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225-236. # # Guillaumont, R., Fanghaenel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H. (2003). # Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. # OECD Nuclear Energy Agency Data Bank, Eds., North Holland Elsevier Science Publishers B.V., Amsterdam, The Netherlands. # # Grenthe et al. (2020). Vol. 14. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, # OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France. # # Kulik, D.A., 2002. Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes # of radionuclides. Radiochim. Acta 90, 815-832. # # Kulik, D.A., 2006. Standard molar Gibbs energies and activity coefficients of surface complexes on mineral-water interfaces # (thermodynamic insights), in: Lützenkirchen, J. (Eds.), Surface complexation modelling. Academic Press, Amsterdam, pp. 171-250. # # Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O. (2013). # Vol. 13a. Chemical Thermodynamics of Iron, Part 1. OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, # Issy-les-Moulineaux, France. # # Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley & Sons, New York. # # Richter, C., 2015. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica. # Doctoral thesis, TU Dresden (available at: https://www.hzdr.de/db/Cms?pNid=2850). # # Richter, C., Müller, K., Drobot, B., Steudtner, R., Großmann, K., Stockmann, M., Brendler, V., 2016. Macroscopic and spectroscopic # characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+. # Geochim. Cosmochim. Acta, 189, 143-157. # # Stefánsson, A., Arnórsson, S., 2000. Feldspar saturation state in natural waters. Geochim. Cosmochim. Acta, 64, 2567-84. # # Thoenen T., Hummel W., Berner U., Curti E., 2014. The PSI/Nagra Chemical Thermodynamic Database 12/07, PSI Report 14-04. # available for download at http://www.psi.ch/les/database # # Whitney, D. L., Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. Amer. Mineral. 95, 185-187. # # # ######################################################################################################################## # Original PSI/NAGRA TDB 12/07 # # PSI/Nagra Thermochemical Database Version 12/07 LAST MOD. 11-JUN-2015 # PSINA_110615_DAV_s.dat # # The documentation for this database is available on http://www.psi.ch/les/database. # # Change history ----------------------------------------------------------------------------------- # PSINA_120110_DAV_s.dat # 12-JAN-2010 : Added Becquerelite and Compreignacite to PSINA_060110_DAV_s.dat # PSINA_050710_DAV_s.dat # 05-JULY-2010: Added CmSCN+2 to PSINA_120110_DAV_s.dat # 05-JULY-2010: Added NpO2SCN to PSINA_120110_DAV_s.dat # PSINA_050710_rev_DAV_s.dat # 14-FEB-2011 : Sn: Changed incorrect formula (for conversion from mass to mole units) and # incorrect elemental gfw in PSINA_050710_DAV.dat and PSINA_050710_DAV_s.dat # 14-FEB-2011 : Added NpSiO(OH)3+2 to PSINA_050710_DAV_s.dat # 14-FEB-2011 : Added USiO4(s) to PSINA_050710_DAV_s.dat # 20-FEB-2011 : corrected log_k for UO2(am,hyd) (from -1.5 to 1.5) in PSINA_050710_DAV.dat # and PSINA_050710_DAV_s.dat # PSINA_290714_DAV_s.dat # 29-JUL-2014 : Added I(+5) to the SOLUTION_MASTER_SPECIES # corrected log_k for I2 (wrong sign) # corrected log_k for IO3- (from -122.0400 to -101.0900) # changed some comments # PSINA_110615_DAV_s.dat # 11-JUN-2015: Changed references to PSI reports and added comment concerning documentation, # deleted warning concerning use of database at temperatures other than 25ûC #--------------------------------------------------------------------------------------------------- # # ACTIVITY COEFFICIENTS: # # This version of the database uses the Davies equation for the calculation of activity coefficients. # -gamma 0.00 0.00 for neutral species ensures that the activity coefficients # are equal to one. # # TEMPERATURE: # # This version of the database only contains logK-data for 25ûC # # DOCUMENTATION: # # NAGRA NTB 91-17: Pearson F.J., Berner U. (1992): Nagra Thermochemical Data Base I. Core Data, # Nagra NTB 91-17. # available for download at http://www.nagra.ch/de/downloadcenter.htm # NAGRA NTB 91-18: Pearson F.J., Berner U., Hummel W. (1992): Nagra Thermochemical Data Base # II. Supplemental Data, Nagra NTB 91-18. # available for download at http://www.nagra.ch/de/downloadcenter.htm # NAGRA NTB 02-16: Hummel W., Berner U., Curti E., Pearson F.J., Thoenen T. (2002): Nagra/PSI # Chemical Thermodynamic Database 01/01, Nagra NTB 02-16. # available for download at http://www.nagra.ch/de/downloadcenter.htm # PSI Report 14-04: Thoenen T., Hummel W., Berner U., Curti E. (2014): The PSI/Nagra Chemical # Thermodynamic Database 12/07, PSI Report 14-04. # available for download at http://www.psi.ch/les/database # #--------------------------------------------------------------------------------------------------- # SOLUTION_MASTER_SPECIES # # ATOMIC WEIGHTS # Naturally occurring elements: IUPAC 1993 Table 1 rounded to 0.001 # Radioelements: Mass number of longest-lived isotope # # # # elemen species alk gfw_formula element_gfw atomic Disposition Source of data # number PMATCHC # H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17 H(0) H2 0.0 H # Ma(S) NAGRA NTB 91-17 H(1) H+ -1.0 H # Ma(P) NAGRA NTB 91-17 E e- 0.0 0.0 0.0 # Ma(P) NAGRA NTB 91-17 O H2O 0.0 O 15.999 # 8 Ele NAGRA NTB 91-17 O(0) O2 0.0 O # Ma(S) NAGRA NTB 91-17 O(-2) H2O 0.0 O # Ma(P) NAGRA NTB 91-17 Al Al+3 0.0 Al 26.982 # 13 Ele, Ma(P) NAGRA NTB 02-16 Am Am+3 0.0 Am 243 # 95 Ele, Ma(P) PSI Report 14-04 Am(3) Am+3 0.0 Am # PSI Report 14-04 Am(5) AmO2+ 0.0 Am # PSI Report 14-04 As HAsO4-2 0.0 As 74.922 # 33 Ele NAGRA NTB 91-17 As(3) As(OH)3 0.0 As # Ma(S) NAGRA NTB 91-17 As(5) HAsO4-2 1.0 As # Ma(P) NAGRA NTB 91-17 B B(OH)3 0.0 B 10.812 # 5 Ma(P) NAGRA NTB 91-18 Ba Ba+2 0.0 Ba 137.328 # 56 Ma(P) NAGRA NTB 91-17 Br Br- 0.0 Br 79.904 # 35 Ma(P) NAGRA NTB 91-17 C HCO3- 1.0 C 12.011 # 6 Ele NAGRA NTB 91-17 C(+4) HCO3- 1.0 HCO3- # Ma(P) NAGRA NTB 91-17 C(-4) CH4 0.0 CH4 # Ma(S) NAGRA NTB 91-17 Alkalinity HCO3- 1.0 HCO3- 61.016 # NAGRA NTB 91-17 Ca Ca+2 0.0 Ca 40.078 # 20 Ma(P) NAGRA NTB 91-17 Cl Cl- 0.0 Cl 35.453 # 17 Ma(P) NAGRA NTB 91-17 Cm Cm+3 0.0 Cm 247 # PSI Report 14-04 Cs Cs+ 0.0 Cs 132.905 # 55 Ma(P) Master Species only Eu Eu+3 0.0 Eu 151.966 # 63 Ele Replaced with Data from ANDRA TDB ThermoChimie Eu(2) Eu+2 0.0 Eu # Ma(S) Replaced with Data from ANDRA TDB ThermoChimie Eu(3) Eu+3 0.0 Eu # Ma(P) Replaced with Data from ANDRA TDB ThermoChimie F F- 0.0 F 18.998 # 9 Ma(P) NAGRA NTB 91-17 Fe Fe+2 0.0 Fe 55.845 # 26 Ele NAGRA NTB 91-18 Fe(2) Fe+2 0.0 Fe # Ma(P) NAGRA NTB 91-18 Fe(3) Fe+3 0.0 Fe # Ma(S) NAGRA NTB 91-18 I I- 0.0 I 126.904 # 53 Ele NAGRA NTB 91-18 I(-1) I- 0.0 I # Ma(P) NAGRA NTB 91-18 I(0) I2 0.0 I # Ma(S) NAGRA NTB 91-18 I(+5) IO3- 0.0 I # PSI Report 14-04 K K+ 0.0 K 39.098 # 19 Ma(P) NAGRA NTB 91-17 Li Li+ 0.0 Li 6.941 # 6 Ma(P) NAGRA NTB 91-17 Mg Mg+2 0.0 Mg 24.305 # 12 Ma(P) NAGRA NTB 91-17 & LLNL Mn Mn+2 0.0 Mn 54.938 # 25 Ma(P) NAGRA NTB 91-18 Mn(2) Mn+2 0.0 Mn # #Mn(3) Mn+3 0.0 Mn # #Mn(4) Mn+4 0.0 Mn # #Mn(6) MnO4-2 0.0 Mn # #Mn(7) MnO4- 0.0 Mn # Mo MoO4-2 0.0 Mo 95.941 # 42 Ma(P) NAGRA NTB 91-18 N NO3- 0.0 N 14.007 # 7 Ele NAGRA NTB 91-17 N(-5) HCN 0.0 HCN # PSI Report 14-04 N(-3) NH4+ 0.0 NH4 # Ma(S) NAGRA NTB 91-17 N(-1) SCN- 0.0 SCN- # PSI Report 14-04 N(0) N2 0.0 N2 # Ma(S) NAGRA NTB 91-17 N(5) NO3- 0.0 NO3 # Ma(P) NAGRA NTB 91-17 Na Na+ 0.0 Na 22.99 # 11 Ma(P) NAGRA NTB 91-17 Nb NbO3- 0.0 Nb 92.906 # 41 Ma(P) NAGRA NTB 91-18 Nd Nd+3 0.0 Nd 144.24 # 60 Included from LLNL database Nd(3) Nd+3 0.0 Nd Included from LLNL database Ni Ni+2 0.0 Ni 58.693 # 28 Ele, Ma(P) PSI Report 14-04 Np NpO2+2 0.0 Np 237 # 93 Ele PSI Report 14-04 Np(3) Np+3 0.0 Np # Ma(S) PSI Report 14-04 Np(4) Np+4 0.0 Np # Ma(S) PSI Report 14-04 Np(5) NpO2+ 0.0 Np # Ma(S) PSI Report 14-04 Np(6) NpO2+2 0.0 Np # Ma(P) PSI Report 14-04 P HPO4-2 1.0 P 30.974 # 15 Ma(P) NAGRA NTB 91-17 Pd Pd+2 0.0 Pd 106.421 # 46 Ele, Ma(P) NAGRA NTB 02-16 Pu PuO2+2 0.0 Pu 242 # 94 Ele PSI Report 14-04 Pu(3) Pu+3 0.0 Pu # Ma(S) PSI Report 14-04 Pu(4) Pu+4 0.0 Pu # Ma(S) PSI Report 14-04 Pu(5) PuO2+ 0.0 Pu # Ma(S) PSI Report 14-04 Pu(6) PuO2+2 0.0 Pu # Ma(P) PSI Report 14-04 Ra Ra+2 0.0 Ra 226 # 88 Ele, Ma(P) NAGRA NTB 02-16 S SO4-2 0.0 S 32.067 # 16 Ele NAGRA NTB 91-17 S(-2) HS- 1.0 HS # Ma(S) NAGRA NTB 02-16 S(2) S2O3-2 0.0 S2O3 # Ma(S) NAGRA NTB 91-18 S(4) SO3-2 0.0 SO3 # Ma(S) NAGRA NTB 91-18 S(6) SO4-2 0.0 SO4 # Ma(P) NAGRA NTB 91-18 Se SeO3-2 0.0 Se 78.963 # 34 Ele PSI Report 14-04 Se(4) SeO3-2 0.0 Se # Ma(P) PSI Report 14-04 Se(-2) H2Se 0.0 Se # Ma(S) PSI Report 14-04 Se(6) HSeO4- 0.0 Se # Ma(S) PSI Report 14-04 Si Si(OH)4 0.0 Si 28.086 # 14 Ele, Ma(P) PSI Report 14-04 Tn Tn+2 0.0 Tn 118.711 # 50 Ele, Ma(P) NAGRA NTB 02-16 Sn Sn(OH)4 0.0 Sn 118.711 # Ma(P) NAGRA NTB 02-16 Sr Sr+2 0.0 Sr 87.621 # 38 Ma(P) NAGRA NTB 91-17 Tc TcO4- 0.0 Tc 98 # 43 Ele PSI Report 14-04 Tc(7) TcO4- 0.0 TcO4 # Ma(P) PSI Report 14-04 Tc(4) TcO(OH)2 -1.0 TcO(OH)2 # Ma(S) PSI Report 14-04 Th Th+4 0.0 Th 232.038 # 90 Ele, Ma(P) PSI Report 14-04 U UO2+2 0.0 U 238.029 # 92 Ele PSI Report 14-04 U(4) U+4 0.0 U # Ma(S) PSI Report 14-04 U(5) UO2+ 0.0 U # Ma(S) PSI Report 14-04 U(6) UO2+2 0.0 UO2 # Ma(P) PSI Report 14-04 Zr Zr+4 0.0 Zr 91.224 # 40 Ele, Ma(P) PSI Report 14-04 SOLUTION_SPECIES # PMATCH MASTER SPECIES # -Vm values for relevant elements/species are implemented from phreeqc.dat: C, Ca, Cl, K, Mg, Na, S H+ = H+ log_k 0.0 -dw 9.31e-9 # phreeqc.dat, The dw parameters are defined in ref. 3. e- = e- log_k 0.0 -gamma 0.00 0.00 H2O = H2O log_k 0.0 -gamma 0.00 0.00 Al+3 = Al+3 log_k 0.0 Am+3 = Am+3 log_k 0.0 HAsO4-2 = HAsO4-2 log_k 0.0 B(OH)3 = B(OH)3 log_k 0.0 -gamma 0.00 0.00 Ba+2 = Ba+2 log_k 0.0 Br- = Br- log_k 0.0 HCO3- = HCO3- log_k 0.0 -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 # from phreeqc.dat: CO3-2 + H+ = HCO3- -dw 1.18e-9 # phreeqc.dat Ca+2 = Ca+2 log_k 0.0 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 -dw 7.93e-10 # phreeqc.dat Cl- = Cl- log_k 0.0 -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 -dw 2.03e-9 # phreeqc.dat Cm+3 = Cm+3 log_k 0.0 Cs+ = Cs+ log_k 0.0 Eu+3 = Eu+3 log_k 0.0 F- = F- log_k 0.0 Fe+2 = Fe+2 log_k 0.0 -dw 7.19e-10 # phreeqc.dat I- = I- log_k 0.0 K+ = K+ log_k 0.0 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 -dw 1.96e-9 # phreeqc.dat Li+ = Li+ log_k 0.0 Mg+2 = Mg+2 log_k 0.0 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 -dw 7.05e-10 # phreeqc.dat Mn+2 = Mn+2 log_k 0.0 MoO4-2 = MoO4-2 log_k 0.0 NO3- = NO3- log_k 0.0 Na+ = Na+ log_k 0.0 -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 -dw 1.33e-9 # phreeqc.dat NbO3- = NbO3- log_k 0.0 Nd+3 = Nd+3 log_k 0.0 Ni+2 = Ni+2 log_k 0.0 NpO2+2 = NpO2+2 log_k 0.0 HPO4-2 = HPO4-2 log_k 0.0 -dw 6.9e-10 # phreeqc.dat Pd+2 = Pd+2 log_k 0.0 PuO2+2 = PuO2+2 log_k 0.0 Ra+2 = Ra+2 log_k 0.0 SO4-2 = SO4-2 log_k 0.0 -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 -dw 1.07e-9 # phreeqc.dat SeO3-2 = SeO3-2 log_k 0.0 Si(OH)4 = Si(OH)4 log_k 0.0 -gamma 0.00 0.00 Tn+2 = Tn+2 log_k 0.0 Sn(OH)4 = Sn(OH)4 log_k 0.0 -gamma 0.00 0.00 Sr+2 = Sr+2 log_k 0.0 -dw 7.94e-10 # phreeqc.dat TcO4- = TcO4- log_k 0.0 Th+4 = Th+4 log_k 0.0 UO2+2 = UO2+2 log_k 0.0 -dw 7.659e-10 # Kerisit & Liu (2010) Zr+4 = Zr+4 log_k 0.0 # PMATCH SECONDARY MASTER SPECIES # Se Redox ############## +1.000SeO3-2 +1.000H2O -1.000H+ -2.000e- = HSeO4- log_k -26.3000 +1.000SeO3-2 +8.000H+ +6.000e- -3.000H2O = H2Se log_k 57.4000 -gamma 0.00 0.00 +1.000HCN +1.000SeO3-2 +5.000H+ +4.000e- -3.000H2O = SeCN- log_k 57.3000 # Tc Redox ############## +1.000TcO4- +4.000H+ +3.000e- -1.000H2O = TcO(OH)2 log_k 29.4000 -gamma 0.00 0.00 # Eu Redox ############## +1.000Eu+3 +1.000e- = Eu+2 log_k -5.9200 # U Redox ############## +1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4 log_k 9.0380 -dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010) +1.000UO2+2 +1.000e- = UO2+ log_k 1.4840 -dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010) # Np Redox ############## +1.000NpO2+2 +4.000H+ +3.000e- -2.000H2O = Np+3 log_k 33.5000 +1.000NpO2+2 +4.000H+ +2.000e- -2.000H2O = Np+4 log_k 29.8000 +1.000NpO2+2 +1.000e- = NpO2+ log_k 19.5900 # Pu Redox ############## +1.000PuO2+2 +4.000H+ +3.000e- -2.000H2O = Pu+3 log_k 50.9700 +1.000PuO2+2 +4.000H+ +2.000e- -2.000H2O = Pu+4 log_k 33.2800 +1.000PuO2+2 +1.000e- = PuO2+ log_k 15.8200 # Am Redox ############## +1.000Am+3 +2.000H2O -4.000H+ -2.000e- = AmO2+ log_k -59.7000 # Rest Redox ############## +2.000H+ +2.000e- = H2 log_k -3.1054 -gamma 0.00 0.00 -dw 5.13e-9 # phreeqc.dat +2.000H2O -4.000H+ -4.000e- = O2 log_k -85.9841 -gamma 0.00 0.00 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 # phreeqc.dat +1.000HAsO4-2 +4.000H+ +2.000e- -1.000H2O = As(OH)3 log_k 28.4412 -gamma 0.00 0.00 +1.000HCO3- +9.000H+ +8.000e- -3.000H2O = CH4 log_k 27.8486 -gamma 0.00 0.00 -dw 1.85e-9 # phreeqc.dat +2.000NO3- +12.000H+ +10.000e- -6.000H2O = N2 log_k 207.2627 -gamma 0.00 0.00 +1.000NO3- +10.000H+ +8.000e- -3.000H2O = NH4+ log_k 119.1344 +2.000SO4-2 +10.000H+ +8.000e- -5.000H2O = S2O3-2 log_k 38.0140 # bug: log_k entered manually +1.000SO4-2 +2.000H+ +2.000e- -1.000H2O = SO3-2 log_k -3.3970 # bug: log_k entered manually +1.000SO4-2 +9.000H+ +8.000e- -4.000H2O = HS- log_k 33.6900 -dw 1.73e-9 # phreeqc.dat # +1.000Fe+2 -1.000e- = Fe+3 # log_k -13.0200 +2.000I- -2.000e- = I2 log_k -20.9500 -gamma 0.00 0.00 +0.500I2 +3.000H2O -6.000H+ -5.000e- = IO3- log_k -101.0900 +13.000H+ +1.000CO3-2 +1.000NO3- +10.000e- -6.000H2O = HCN log_k 117.3360 -gamma 0.00 0.00 +1.000HCN +1.000HS- -2.000e- -2.000H+ = SCN- log_k 5.9410 # Convenience ############# +1.000H2O -1.000H+ = OH- log_k -13.9995 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 # from phreec.dat: H2O = OH- + H+ -dw 5.27e-9 # phreeqc.dat +1.000H+ -1.000H2O +1.000HCO3- = CO2 log_k 6.3519 # -gamma 0.00 0.00 -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 # from phreeqc.dat: CO3-2 + 2 H+ = CO2 + H2O -dw 1.92e-9 # phreeqc.dat -1.000H+ +1.000HCO3- = CO3-2 log_k -10.3289 -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 # from phreeqc.dat: CO3-2 = CO3-2 -dw 8.119e-10 # Kerisit & Liu (2010) +1.000HPO4-2 +2.000H+ = H3PO4 log_k 9.3520 -gamma 0.00 0.00 +1.000HPO4-2 +1.000H+ = H2PO4- log_k 7.2120 -dw 8.46e-10 # phreeqc.dat +1.000HPO4-2 -1.000H+ = PO4-3 log_k -12.3500 -dw 6.12e-10 # phreeqc.dat +1.000Si(OH)4 -1.000H+ = SiO(OH)3- log_k -9.8100 +1.000Si(OH)4 -2.000H+ = SiO2(OH)2-2 log_k -23.1400 +1.000Al+3 +4.000H2O -4.000H+ = Al(OH)4- log_k -22.8791 +1.000NH4+ -1.000H+ = NH3 log_k -9.2370 -gamma 0.00 0.00 +1.000HCN -1.000H+ = CN- log_k -9.2100 +1.000HAsO4-2 -1.000H+ = AsO4-3 log_k -11.6030 +1.000HAsO4-2 +2.000H+ = H3AsO4 log_k 9.0270 -gamma 0.00 0.00 # bug: log_k entered manually # Se(VI) RECOMMENDED DATA Convenience ######################################## +1.000HSeO4- -1.000H+ = SeO4-2 log_k -1.7500 # Se(IV) RECOMMENDED DATA Convenience ######################################## +1.000SeO3-2 +1.000H+ = HSeO3- log_k 8.3600 # Se(-II) RECOMMENDED DATA Convenience ######################################## +1.000H2Se -1.000H+ = HSe- log_k -3.8500 +1.000HSe- -1.000H+ = Se-2 log_k -14.9100 # PMATCH PRODUCT SPECIES # General RECOMMENDED DATA ############################ +1.000I- +1.000I2 = I3- log_k 2.8700 +1.000H+ +1.000IO3- = HIO3 log_k 0.7880 -gamma 0.00 0.00 +1.000Al+3 +1.000F- = AlF+2 log_k 7.0800 +1.000Al+3 +2.000F- = AlF2+ log_k 12.7300 +1.000Al+3 +3.000F- = AlF3 log_k 16.7800 -gamma 0.00 0.00 +1.000Al+3 +4.000F- = AlF4- log_k 19.2900 +1.000Al+3 +5.000F- = AlF5-2 log_k 20.3000 +1.000Al+3 +6.000F- = AlF6-3 log_k 20.3000 +1.000Al+3 +1.000H2O -1.000H+ = AlOH+2 log_k -4.9572 +1.000Al+3 +2.000H2O -2.000H+ = Al(OH)2+ log_k -10.5940 +1.000Al+3 +3.000H2O -3.000H+ = Al(OH)3 log_k -16.4324 -gamma 0.00 0.00 +1.000Al+3 +1.000SO4-2 = AlSO4+ log_k 3.9000 +1.000Al+3 +2.000SO4-2 = Al(SO4)2- log_k 5.9000 +1.000As(OH)3 +1.000H2O -1.000H+ = As(OH)4- log_k -9.2320 # bug: log_k entered manually +1.000B(OH)3 +1.000H2O -1.000H+ = B(OH)4- log_k -9.2352 +1.000Ba+2 -1.000H+ +1.000HCO3- = BaCO3 log_k -7.6157 -gamma 0.00 0.00 +1.000Ba+2 +1.000HCO3- = BaHCO3+ log_k 0.9816 +1.000Ba+2 +1.000H2O -1.000H+ = BaOH+ log_k -13.4700 +1.000Ba+2 +1.000SO4-2 = BaSO4 log_k 2.7000 -gamma 0.00 0.00 +1.000Ca+2 -1.000H+ +1.000HCO3- = CaCO3 log_k -7.1047 # -gamma 0.00 0.00 -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt # from phreeqc.dat: Ca+2 + CO3-2 = CaCO3 -dw 4.46e-10 # phreeqc.dat, complexes: calc'd with the Pikal formula +1.000Ca+2 +1.000F- = CaF+ log_k 0.9400 +1.000Ca+2 +1.000HCO3- = CaHCO3+ log_k 1.1057 -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt # from phreeqc.dat: Ca+2 + CO3-2 + H+ = CaHCO3+ -dw 5.06e-10 # phreeqc.dat +1.000Ca+2 +1.000H2O -1.000H+ = CaOH+ log_k -12.7800 +1.000Ca+2 +1.000SO4-2 = CaSO4 log_k 2.3000 # -gamma 0.00 0.00 -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt -dw 4.71e-10 # phreeqc.dat ############################# # Fe data were updated with data from NEA TDB Vol. 13a [Lemire et al., 2013] # and commented out here (recommended data are implemented below) ############################# # # +2.000H2O -2.000H+ +1.000Fe+3 = Fe(OH)2+ # log_k -5.6700 # # +3.000H2O -3.000H+ +1.000Fe+3 = Fe(OH)3 # log_k -12.5600 # -gamma 0.00 0.00 # # +4.000H2O -4.000H+ +1.000Fe+3 = Fe(OH)4- # log_k -21.6000 # # +2.000SO4-2 +1.000Fe+3 = Fe(SO4)2- # log_k 5.3800 # # +2.000H2O -2.000H+ +2.000Fe+3 = Fe2(OH)2+4 # log_k -2.9500 # # +4.000H2O -4.000H+ +3.000Fe+3 = Fe3(OH)4+5 # log_k -6.3000 # # +1.000Fe+2 +1.000Cl- = FeCl+ # log_k 0.1400 # # +1.000Cl- +1.000Fe+3 = FeCl+2 # log_k 1.4800 # # +2.000Cl- +1.000Fe+3 = FeCl2+ # log_k 2.1300 # # +3.000Cl- +1.000Fe+3 = FeCl3 # log_k 1.1300 # -gamma 0.00 0.00 # # +1.000Fe+2 +1.000HCO3- -1.000H+ = FeCO3 # log_k -5.9490 # -gamma 0.00 0.00 # # +1.000Fe+2 +1.000F- = FeF+ # log_k 1.0000 # # +1.000F- +1.000Fe+3 = FeF+2 # log_k 6.2000 # # +2.000F- +1.000Fe+3 = FeF2+ # log_k 10.8000 # # +3.000F- +1.000Fe+3 = FeF3 # log_k 14.0000 # -gamma 0.00 0.00 # # +1.000Fe+2 +1.000HCO3- = FeHCO3+ # log_k 2.0000 # # +1.000Fe+2 +1.000H+ +1.000SO4-2 = FeHSO4+ # log_k 3.0680 # # +1.000H+ +1.000SO4-2 +1.000Fe+3 = FeHSO4+2 # log_k 4.4680 # # +1.000Fe+2 +1.000H2O -1.000H+ = FeOH+ # log_k -9.5000 # # +1.000H2O -1.000H+ +1.000Fe+3 = FeOH+2 # log_k -2.1900 # # +1.000SO4-2 +1.000Fe+3 = FeSO4+ # log_k 4.0400 # # +1.000Fe+2 +1.000SO4-2 = FeSO4 # log_k 2.2500 # -gamma 0.00 0.00 +1.000HAsO4-2 +1.000H+ = H2AsO4- log_k 6.7640 # bug: log_k entered manually +1.000H+ +1.000F- = HF log_k 3.1760 -gamma 0.00 0.00 +1.000H+ +2.000F- = HF2- log_k 3.6200 +1.000H+ +1.000SO3-2 = HSO3- log_k 7.2200 # bug: log_k entered manually +1.000H+ +1.000SO4-2 = HSO4- log_k 1.9878 -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 -dw 1.33e-9 # phreeqc.dat +1.000K+ +1.000H2O -1.000H+ = KOH log_k -14.4600 -gamma 0.00 0.00 +1.000K+ +1.000SO4-2 = KSO4- log_k 0.8500 -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 -dw 1.5e-9 # phreeqc.dat +1.000Li+ +1.000H2O -1.000H+ = LiOH log_k -13.6400 -gamma 0.00 0.00 +1.000Li+ +1.000SO4-2 = LiSO4- log_k 0.6400 +1.000HS- -1.000H+ = S-2 log_k -19.0000 -dw 7.31e-9 # phreeqc.dat +1.000HS- +1.000H+ = H2S log_k 6.9900 -gamma 0.00 0.00 -dw 2.1e-9 # phreeqc.dat +1.000Mg+2 -1.000H+ +1.000HCO3- = MgCO3 log_k -7.3492 -gamma 0.00 0.00 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt # from phreeqc.dat: Mg+2 + CO3-2 = MgCO3 -dw 4.21e-10 # phreeqc.dat +1.000Mg+2 +1.000Cl- = MgCl+ log_k -0.1350 +1.000Mg+2 +1.000F- = MgF+ log_k 1.8200 +1.000Mg+2 +1.000HCO3- = MgHCO3+ log_k 1.0682 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt # from phreeqc.dat: Mg+2 + H+ + CO3-2 = MgHCO3+ -dw 4.78e-10 # phreeqc.dat +1.000Mg+2 +1.000HPO4-2 -1.000H+ = MgPO4- log_k -5.7330 +1.000Mg+2 +1.000HPO4-2 = MgHPO4 log_k 2.9100 +1.000Mg+2 +1.000HPO4-2 +1.000H+ = MgH2PO4+ log_k 1.6600 +1.000Mg+2 +1.000H2O -1.000H+ = MgOH+ log_k -11.7500 +1.000Mg+2 +1.000SO4-2 = MgSO4 log_k 2.3700 # -gamma 0.00 0.00 -Vm 2.4 -0.97 6.1 -2.74 # est'd -dw 4.45e-10 # phreeqc.dat +1.000Mn+2 +1.000Cl- = MnCl+ log_k 0.6100 +1.000Mn+2 +2.000Cl- = MnCl2 log_k 0.2500 -gamma 0.00 0.00 +1.000Mn+2 +3.000Cl- = MnCl3- log_k -0.3100 +1.000Mn+2 +1.000HCO3- -1.000H+ = MnCO3 log_k -5.4290 -gamma 0.00 0.00 +1.000Mn+2 +1.000F- = MnF+ log_k 0.8400 +1.000Mn+2 +1.000HCO3- = MnHCO3+ log_k 1.9500 +1.000Mn+2 +1.000H2O -1.000H+ = MnOH+ log_k -10.5900 +1.000Mn+2 +1.000SO4-2 = MnSO4 log_k 2.2500 -gamma 0.00 0.00 +1.000Na+ -1.000H+ +1.000HCO3- = NaCO3- log_k -9.0590 -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 # But in phreeqc.dat: Na+ + CO3-2 = NaCO3- -dw 1.2e-9 # phreeqc.dat +1.000Na+ +1.000F- = NaF log_k -0.2400 -gamma 0.00 0.00 +1.000Na+ +1.000HCO3- = NaHCO3 log_k -0.2500 # -gamma 0.00 0.00 -Vm 0.431 # ref. 1 # from phreeqc.dat: Na+ + HCO3- = NaHCO3 -dw 6.73e-10 # phreeqc.dat +1.000Na+ +1.000H2O -1.000H+ = NaOH log_k -14.1800 -gamma 0.00 0.00 -dw 1.33e-9 # phreeqc.dat +1.000Na+ +1.000SO4-2 = NaSO4- log_k 0.7000 -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 +1.000NbO3- +2.000H+ +1.000H2O = Nb(OH)4+ log_k 6.8955 +1.000NbO3- +1.000H+ +2.000H2O = Nb(OH)5 log_k 7.3440 -gamma 0.00 0.00 +1.000Sr+2 -1.000H+ +1.000HCO3- = SrCO3 log_k -7.5238 -gamma 0.00 0.00 +1.000Sr+2 +1.000HCO3- = SrHCO3+ log_k 1.1846 +1.000Sr+2 +1.000H2O -1.000H+ = SrOH+ log_k -13.2900 +1.000Sr+2 +1.000SO4-2 = SrSO4 log_k 2.2900 -gamma 0.00 0.00 # Si(IV) RECOMMENDED DATA ############################ +1.000Ca+2 +1.000SiO(OH)3- = CaSiO(OH)3+ log_k 1.2000 +1.000Ca+2 +1.000SiO2(OH)2-2 = CaSiO2(OH)2 log_k 4.6000 -gamma 0.00 0.00 +1.000Mg+2 +1.000SiO(OH)3- = MgSiO(OH)3+ log_k 1.5000 +1.000Mg+2 +1.000SiO2(OH)2-2 = MgSiO2(OH)2 log_k 5.7000 -gamma 0.00 0.00 +1.000Al+3 +1.000SiO(OH)3- = AlSiO(OH)3+2 log_k 7.4000 +1.000Fe+3 +1.000SiO(OH)3- = FeSiO(OH)3+2 log_k 9.7000 +4.000Si(OH)4 -4.000H+ -4.000H2O = Si4O8(OH)4-4 log_k -36.3000 # Si(IV) SUPPLEMENTAL DATA # ========================== +1.000Al(OH)4- +1.000SiO2(OH)2-2 -1.000H2O = AlSiO3(OH)4-3 log_k 0.5300 # Ni(II) RECOMMENDED DATA ############################ +1.000Ni+2 +1.000H2O -1.000H+ = NiOH+ log_k -9.5400 +1.000Ni+2 +3.000H2O -3.000H+ = Ni(OH)3- log_k -29.2000 +2.000Ni+2 +1.000H2O -1.000H+ = Ni2OH+3 log_k -10.6000 +4.000Ni+2 +4.000H2O -4.000H+ = Ni4(OH)4+4 log_k -27.5200 +1.000Ni+2 +1.000F- = NiF+ log_k 1.4300 +1.000Ni+2 +1.000Cl- = NiCl+ log_k 0.0800 +1.000Ni+2 +1.000SO4-2 = NiSO4 log_k 2.3500 -gamma 0.00 0.00 +1.000Ni+2 +1.000NO3- = NiNO3+ log_k 0.5000 +1.000Ni+2 +1.000HPO4-2 = NiHPO4 log_k 3.0500 -gamma 0.00 0.00 +1.000Ni+2 +1.000CO3-2 = NiCO3 log_k 4.2000 -gamma 0.00 0.00 +1.000Ni+2 +1.000HS- = NiHS+ log_k 5.5000 +1.000Ni+2 +2.000HS- = Ni(HS)2 log_k 11.1000 -gamma 0.00 0.00 +1.000Ni+2 +1.000HAsO4-2 = NiHAsO4 log_k 2.9000 -gamma 0.00 0.00 +1.000Ni+2 +4.000CN- = Ni(CN)4-2 log_k 30.2000 +1.000Ni+2 +5.000CN- = Ni(CN)5-3 log_k 28.5000 +1.000Ni+2 +1.000SCN- = NiSCN+ log_k 1.8100 +1.000Ni+2 +2.000SCN- = Ni(SCN)2 log_k 2.6900 -gamma 0.00 0.00 +1.000Ni+2 +3.000SCN- = Ni(SCN)3- log_k 3.0200 # Ni(II) SUPPLEMENTAL DATA # ========================== +1.000Ni+2 +2.000H2O -2.000H+ = Ni(OH)2 log_k -18.0000 -gamma 0.00 0.00 +1.000Ni+2 +1.000NH3 = NiNH3+2 log_k 2.7000 +1.000Ni+2 +2.000NH3 = Ni(NH3)2+2 log_k 4.9000 +1.000Ni+2 +3.000NH3 = Ni(NH3)3+2 log_k 6.5000 +1.000Ni+2 +4.000NH3 = Ni(NH3)4+2 log_k 7.6000 +1.000Ni+2 +5.000NH3 = Ni(NH3)5+2 log_k 8.3000 +1.000Ni+2 +6.000NH3 = Ni(NH3)6+2 log_k 8.2000 +1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2 log_k 6.0000 +1.000Ni+2 +1.000HCO3- = NiHCO3+ log_k 1.0000 +1.000Ni+2 +1.000SiO(OH)3- = NiSiO(OH)3+ log_k 6.3000 # Se(0|-II) RECOMMENDED DATA ############################ +2.000Se-2 -2.000e- = Se2-2 log_k 25.3200 +3.000Se-2 -4.000e- = Se3-2 log_k 49.9700 +4.000Se-2 -6.000e- = Se4-2 log_k 73.0200 # Se(0) RECOMMENDED DATA ############################ +1.000Ni+2 +1.000SeCN- = NiSeCN+ log_k 1.7700 +1.000Ni+2 +2.000SeCN- = Ni(SeCN)2 log_k 2.2400 -gamma 0.00 0.00 # Se(IV) RECOMMENDED DATA ############################ +1.000HSeO3- +1.000H+ = H2SeO3 log_k 2.6400 -gamma 0.00 0.00 +1.000Fe+3 +1.000SeO3-2 = FeSeO3+ log_k 11.1500 # Se(VI) RECOMMENDED DATA ############################ +1.000Ni+2 +1.000SeO4-2 = NiSeO4 log_k 2.6700 -gamma 0.00 0.00 +1.000Mn+2 +1.000SeO4-2 = MnSeO4 log_k 2.4300 -gamma 0.00 0.00 +1.000UO2+2 +1.000SeO4-2 = UO2SeO4 log_k 2.7400 -gamma 0.00 0.00 +1.000Ca+2 +1.000SeO4-2 = CaSeO4 log_k 2.0000 -gamma 0.00 0.00 # Se(VI) SUPPLEMENTAL DATA # ========================== +1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2 log_k 3.1000 +1.000Mg+2 +1.000SeO4-2 = MgSeO4 log_k 2.2000 -gamma 0.00 0.00 # Zr(IV) RECOMMENDED DATA ############################ +1.000Zr+4 +1.000H2O -1.000H+ = ZrOH+3 log_k 0.3200 +1.000Zr+4 +4.000H2O -4.000H+ = Zr(OH)4 log_k -2.1900 -gamma 0.00 0.00 +1.000Zr+4 +2.000F- = ZrF2+2 log_k 18.5500 +1.000Zr+4 +3.000F- = ZrF3+ log_k 24.7200 +1.000Zr+4 +4.000F- = ZrF4 log_k 30.1100 -gamma 0.00 0.00 +1.000Zr+4 +1.000SO4-2 = ZrSO4+2 log_k 7.0400 +1.000Zr+4 +6.000F- = ZrF6-2 log_k 38.1100 +1.000Zr+4 +1.000F- = ZrF+3 log_k 10.1200 +1.000Zr+4 +5.000F- = ZrF5- log_k 34.6000 +1.000Zr+4 +1.000Cl- = ZrCl+3 log_k 1.5900 +1.000Zr+4 +2.000Cl- = ZrCl2+2 log_k 2.1700 +1.000Zr+4 +2.000SO4-2 = Zr(SO4)2 log_k 11.5400 -gamma 0.00 0.00 +1.000Zr+4 +3.000SO4-2 = Zr(SO4)3-2 log_k 14.3000 +1.000Zr+4 +1.000NO3- = ZrNO3+3 log_k 1.5900 +1.000Zr+4 +2.000NO3- = Zr(NO3)2+2 log_k 2.6400 +1.000Zr+4 +4.000CO3-2 = Zr(CO3)4-4 log_k 42.9000 +1.000Zr+4 +2.000H2O -2.000H+ = Zr(OH)2+2 log_k 0.9800 +1.000Zr+4 +6.000H2O -6.000H+ = Zr(OH)6-2 log_k -29.0000 +3.000Zr+4 +4.000H2O -4.000H+ = Zr3(OH)4+8 log_k 0.4000 +3.000Zr+4 +9.000H2O -9.000H+ = Zr3(OH)9+3 log_k 12.1900 +4.000Zr+4 +15.000H2O -15.000H+ = Zr4(OH)15+ log_k 12.5800 +4.000Zr+4 +16.000H2O -16.000H+ = Zr4(OH)16 log_k 8.3900 -gamma 0.00 0.00 +4.000Zr+4 +8.000H2O -8.000H+ = Zr4(OH)8+8 log_k 6.5200 +2.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca2Zr(OH)6+2 log_k -22.6000 +3.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca3Zr(OH)6+4 log_k -23.2000 # Zr(IV) SUPPLEMENTAL DATA # ========================== +1.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = CaZr(OH)6 log_k -24.6000 -gamma 0.00 0.00 # Tc(IV) RECOMMENDED DATA ############################ +1.000TcO(OH)2 +2.000H+ -2.000H2O = TcO+2 log_k 4.0000 +1.000TcO(OH)2 +1.000H+ -1.000H2O = TcO(OH)+ log_k 2.5000 +1.000TcO(OH)2 +1.000H2O -1.000H+ = TcO(OH)3- log_k -10.9000 +1.000TcO(OH)2 +1.000CO3-2 +2.000H+ -1.000H2O = TcCO3(OH)2 log_k 19.3000 -gamma 0.00 0.00 +1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3- log_k 11.0000 # Pd(II) RECOMMENDED DATA ############################ +1.000Pd+2 +1.000Cl- = PdCl+ log_k 5.1000 +1.000Pd+2 +2.000Cl- = PdCl2 log_k 8.3000 -gamma 0.00 0.00 +1.000Pd+2 +3.000Cl- = PdCl3- log_k 10.9000 +1.000Pd+2 +4.000Cl- = PdCl4-2 log_k 11.7000 +1.000Pd+2 +1.000NH3 = PdNH3+2 log_k 9.6000 +1.000Pd+2 +2.000NH3 = Pd(NH3)2+2 log_k 18.5000 +1.000Pd+2 +3.000NH3 = Pd(NH3)3+2 log_k 26.0000 +1.000Pd+2 +4.000NH3 = Pd(NH3)4+2 log_k 32.8000 +1.000Pd+2 -2.000H+ +2.000H2O = Pd(OH)2 log_k -4.0000 -gamma 0.00 0.00 +1.000Pd+2 -3.000H+ +3.000H2O = Pd(OH)3- log_k -15.5000 +1.000Pd+2 +3.000Cl- +1.000H2O -1.000H+ = PdCl3OH-2 log_k 2.5000 +1.000Pd+2 +2.000Cl- +2.000H2O -2.000H+ = PdCl2(OH)2-2 log_k -7.0000 # Tn(II) RECOMMENDED DATA ######################################################## +1.000Tn+2 +1.000H2O -1.000H+ = TnOH+ log_k -3.8000 +1.000Tn+2 +3.000H2O -3.000H+ = Tn(OH)3- log_k -17.5000 +3.000Tn+2 +4.000H2O -4.000H+ = Tn3(OH)4+2 log_k -5.6000 +1.000Tn+2 +1.000Cl- = TnCl+ log_k 1.7000 +1.000Tn+2 +3.000Cl- = TnCl3- log_k 2.1000 +1.000Tn+2 +1.000F- = TnF+ log_k 5.0000 +1.000Tn+2 +2.000H2O -2.000H+ = Tn(OH)2 log_k -7.7000 -gamma 0.00 0.00 +1.000Tn+2 +1.000SO4-2 = TnSO4 log_k 2.6000 -gamma 0.00 0.00 +1.000Tn+2 +1.000H2O +1.000Cl- -1.000H+ = TnOHCl log_k -3.1000 -gamma 0.00 0.00 +1.000Tn+2 +2.000Cl- = TnCl2 log_k 2.3600 -gamma 0.00 0.00 # Sn(IV) RECOMMENDED DATA ############################ +1.000Sn(OH)4 +1.000H2O -1.000H+ = Sn(OH)5- log_k -8.0000 +1.000Sn(OH)4 +2.000H2O -2.000H+ = Sn(OH)6-2 log_k -18.4000 # Ra(II) RECOMMENDED DATA ############################ +1.000Ra+2 +1.000OH- = RaOH+ log_k 0.5000 +1.000Ra+2 +1.000Cl- = RaCl+ log_k -0.1000 +1.000Ra+2 +1.000CO3-2 = RaCO3 log_k 2.5000 -gamma 0.00 0.00 +1.000Ra+2 +1.000SO4-2 = RaSO4 log_k 2.7500 -gamma 0.00 0.00 # Eu(III) RECOMMENDED DATA ############################ +1.000Eu+3 +1.000H2O -1.000H+ = EuOH+2 log_k -7.6400 +1.000Eu+3 +2.000H2O -2.000H+ = Eu(OH)2+ log_k -15.1000 +1.000Eu+3 +3.000H2O -3.000H+ = Eu(OH)3 log_k -23.7000 -gamma 0.00 0.00 +1.000Eu+3 +4.000H2O -4.000H+ = Eu(OH)4- log_k -36.2000 +1.000Eu+3 +1.000CO3-2 = EuCO3+ log_k 8.1000 +1.000Eu+3 +2.000CO3-2 = Eu(CO3)2- log_k 12.1000 +1.000Eu+3 +1.000SO4-2 = EuSO4+ log_k 3.9500 +1.000Eu+3 +2.000SO4-2 = Eu(SO4)2- log_k 5.7000 +1.000Eu+3 +1.000F- = EuF+2 log_k 3.8000 +1.000Eu+3 +2.000F- = EuF2+ log_k 6.5000 +1.000Eu+3 +1.000Cl- = EuCl+2 log_k 1.1000 +1.000Eu+3 +2.000Cl- = EuCl2+ log_k 1.5000 +1.000Eu+3 +1.000SiO(OH)3- = EuSiO(OH)3+2 log_k 8.1000 # Th(IV) RECOMMENDED DATA ############################ +1.000Th+4 +1.000H2O -1.000H+ = ThOH+3 log_k -2.5000 +1.000Th+4 +4.000H2O -4.000H+ = Th(OH)4 log_k -17.4000 -gamma 0.00 0.00 +1.000Th+4 +1.000F- = ThF+3 log_k 8.8700 +1.000Th+4 +2.000F- = ThF2+2 log_k 15.6300 +1.000Th+4 +3.000F- = ThF3+ log_k 20.6700 +1.000Th+4 +4.000F- = ThF4 log_k 25.5800 -gamma 0.00 0.00 +1.000Th+4 +5.000CO3-2 = Th(CO3)5-6 log_k 31.0000 +1.000Th+4 +2.000SO4-2 = Th(SO4)2 log_k 9.6900 -gamma 0.00 0.00 +1.000Th+4 +3.000SO4-2 = Th(SO4)3-2 log_k 10.7480 +1.000Th+4 +2.000H2O -2.000H+ = Th(OH)2+2 log_k -6.2000 +2.000Th+4 +2.000H2O -2.000H+ = Th2(OH)2+6 log_k -5.9000 +2.000Th+4 +3.000H2O -3.000H+ = Th2(OH)3+5 log_k -6.8000 +4.000Th+4 +8.000H2O -8.000H+ = Th4(OH)8+8 log_k -20.4000 +4.000Th+4 +12.000H2O -12.000H+ = Th4(OH)12+4 log_k -26.6000 +6.000Th+4 +14.000H2O -14.000H+ = Th6(OH)14+10 log_k -36.8000 +6.000Th+4 +15.000H2O -15.000H+ = Th6(OH)15+9 log_k -36.8000 +1.000Th+4 +1.000Cl- = ThCl+3 log_k 1.7000 +1.000Th+4 +1.000IO3- = ThIO3+3 log_k 4.1400 +1.000Th+4 +2.000IO3- = Th(IO3)2+2 log_k 6.9700 +1.000Th+4 +3.000IO3- = Th(IO3)3+ log_k 9.8700 +1.000Th+4 +1.000SO4-2 = ThSO4+2 log_k 6.1700 +1.000Th+4 +1.000NO3- = ThNO3+3 log_k 1.3000 +1.000Th+4 +2.000NO3- = Th(NO3)2+2 log_k 2.3000 +1.000Th+4 +1.000H3PO4 -1.000H+ = ThH2PO4+3 log_k 3.4500 +1.000Th+4 +1.000H3PO4 = ThH3PO4+4 log_k 1.8900 +1.000Th+4 +2.000H3PO4 -2.000H+ = Th(H2PO4)2+2 log_k 6.2000 +1.000Th+4 +2.000H3PO4 -1.000H+ = Th(H3PO4)(H2PO4)+3 log_k 5.4200 +1.000Th+4 +1.000OH- +4.000CO3-2 = ThOH(CO3)4-5 log_k 35.6000 +1.000Th+4 +2.000OH- +2.000CO3-2 = Th(OH)2(CO3)2-2 log_k 36.8000 +1.000Th+4 +4.000OH- +1.000CO3-2 = Th(OH)4CO3-2 log_k 40.4000 +1.000Th+4 +1.000SCN- = ThSCN+3 log_k 2.0000 +1.000Th+4 +2.000SCN- = Th(SCN)2+2 log_k 3.4000 +4.000Ca+2 +1.000Th+4 +8.000H2O -8.000H+ = Ca4Th(OH)8+4 log_k -62.4000 # Th(IV) SUPPLEMENTAL DATA # ========================== +1.000Th+4 +6.000F- = ThF6-2 log_k 29.2300 +1.000Th+4 +2.000OH- +1.000CO3-2 = Th(OH)2CO3 log_k 30.5000 -gamma 0.00 0.00 +1.000Th+4 +3.000OH- +1.000CO3-2 = Th(OH)3CO3- log_k 38.3000 +1.000Th+4 +3.000Si(OH)4 +3.000H2O -6.000H+ = Th(OH)3(SiO(OH)3)3-2 log_k -27.8000 # U(IV) RECOMMENDED DATA ############################ +1.000U+4 +1.000H2O -1.000H+ = UOH+3 log_k -0.5400 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +4.000H2O -4.000H+ = U(OH)4 log_k -10.0000 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +1.000F- = UF+3 log_k 9.4200 +1.000U+4 +2.000F- = UF2+2 log_k 16.5600 +1.000U+4 +3.000F- = UF3+ log_k 21.8900 +1.000U+4 +4.000F- = UF4 log_k 26.3400 -gamma 0.00 0.00 +1.000U+4 +5.000F- = UF5- log_k 27.7300 +1.000U+4 +6.000F- = UF6-2 log_k 29.8000 +1.000U+4 +1.000Cl- = UCl+3 log_k 1.7200 +1.000U+4 +1.000SO4-2 = USO4+2 log_k 6.5800 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +2.000SO4-2 = U(SO4)2 log_k 10.5100 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +1.000NO3- = UNO3+3 log_k 1.4700 +1.000U+4 +2.000NO3- = U(NO3)2+2 log_k 2.3000 +1.000U+4 +4.000CO3-2 = U(CO3)4-4 log_k 35.2200 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +5.000CO3-2 = U(CO3)5-6 log_k 34.000 # Original value 34.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +1.000I- = UI+3 log_k 1.2500 +1.000U+4 +1.000SCN- = USCN+3 log_k 2.9700 +1.000U+4 +2.000SCN- = U(SCN)2+2 log_k 4.2600 # U(IV) SUPPLEMENTAL DATA # ========================== +1.000U+4 +2.000H2O -2.000H+ = U(OH)2+2 log_k -1.9000 # Original value -1.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +3.000H2O -3.000H+ = U(OH)3+ log_k -5.2000 # Original value -4.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) +1.000U+4 +1.000CO3-2 +3.000H2O -3.000H+ = UCO3(OH)3- log_k 4.0000 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) # U(V) RECOMMENDED DATA ############################ +1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5 log_k 6.9500 -dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010) # U(VI) RECOMMENDED DATA ############################ +1.000UO2+2 +1.000H2O -1.000H+ = UO2OH+ log_k -5.2500 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +2.000H2O -2.000H+ = UO2(OH)2 log_k -12.1500 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +3.000H2O -3.000H+ = UO2(OH)3- log_k -20.25 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +4.000H2O -4.000H+ = UO2(OH)4-2 log_k -32.4 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +2.000UO2+2 +1.000H2O -1.000H+ = (UO2)2OH+3 log_k -2.7000 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +2.000UO2+2 +2.000H2O -2.000H+ = (UO2)2(OH)2+2 log_k -5.6200 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +3.000UO2+2 +4.000H2O -4.000H+ = (UO2)3(OH)4+2 log_k -11.9000 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +3.000UO2+2 +5.000H2O -5.000H+ = (UO2)3(OH)5+ log_k -15.5500 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +3.000UO2+2 +7.000H2O -7.000H+ = (UO2)3(OH)7- log_k -32.2000 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +4.000UO2+2 +7.000H2O -7.000H+ = (UO2)4(OH)7+ log_k -21.9000 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000F- = UO2F+ log_k 5.1600 +1.000UO2+2 +2.000F- = UO2F2 log_k 8.8300 -gamma 0.00 0.00 +1.000UO2+2 +3.000F- = UO2F3- log_k 10.9000 +1.000UO2+2 +4.000F- = UO2F4-2 log_k 11.8400 +1.000UO2+2 +1.000Cl- = UO2Cl+ log_k 0.1700 +1.000UO2+2 +2.000Cl- = UO2Cl2 log_k -1.1000 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000SO4-2 = UO2SO4 log_k 3.1500 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2 log_k 4.1400 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000NO3- = UO2NO3+ log_k 0.3000 +1.000UO2+2 +1.000PO4-3 = UO2PO4- log_k 11.01 # Original value 13.23 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000UO2+2 +1.000HPO4-2 = UO2HPO4 log_k 7.2400 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000H3PO4 -1.000H+ = UO2H2PO4+ log_k 1.1200 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000H3PO4 = UO2H3PO4+2 log_k 0.7600 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +2.000H3PO4 -2.000H+ = UO2(H2PO4)2 log_k 0.6400 -gamma 0.00 0.00 -dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011 +1.000UO2+2 +1.000CO3-2 = UO2CO3 log_k 9.9400 -gamma 0.00 0.00 -dw 6.67e-10 # Kerisit & Liu (2010) +1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2 log_k 16.6100 -dw 5.52e-10 # Kerisit & Liu (2010) +1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4 log_k 21.8400 -dw 5.566e-10 # Kerisit & Liu (2010) +3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6 log_k 54.00 -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) +2.000UO2+2 +3.000H2O -3.000H+ +1.000CO3-2 = (UO2)2CO3(OH)3- log_k -0.855 -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) +1.000UO2+2 +2.000H3PO4 -1.000H+ = UO2H2PO4H3PO4+ log_k 1.6500 -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) +3.000UO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (UO2)3O(OH)2HCO3+ log_k 0.655 -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) +11.000UO2+2 + 6.000CO3-2 + 12H2O - 12H+ = (UO2)11(CO3)6(OH)12-2 log_k 36.42 +1.000UO2+2 +1.000IO3- = UO2IO3+ log_k 2.0000 +1.000UO2+2 +2.000IO3- = UO2(IO3)2 log_k 3.5900 -gamma 0.00 0.00 +1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4 log_k 3.0200 -dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010) +1.000UO2+2 +1.000HAsO4-2 = UO2HAsO4 log_k 7.1600 -gamma 0.00 0.00 +1.000UO2+2 +1.000H3AsO4 -1.000H+ = UO2H2AsO4+ log_k 1.3400 +1.000UO2+2 +2.000H3AsO4 -2.000H+ = UO2(H2AsO4)2 log_k 0.2900 -gamma 0.00 0.00 +1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F- log_k 13.7500 +1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2 log_k 15.5700 +1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3 log_k 16.3800 +1.000UO2+2 +1.000Si(OH)4 = UO2SiO(OH)3+ + H+ log_k -1.88 # Original value 7.8 (= -1.84) was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000UO2+2 +1.000SCN- = UO2SCN+ log_k 1.4000 +1.000UO2+2 +2.000SCN- = UO2(SCN)2 log_k 1.2400 -gamma 0.00 0.00 +1.000UO2+2 +3.000SCN- = UO2(SCN)3- log_k 2.1000 # U(VI) SUPPLEMENTAL DATA # ========================== +1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2 log_k 26.2 # Original value 26.11 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 5.06e-10 # Kerisit & Liu (2010) +2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3 log_k 27.1 # This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3 +1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2 log_k 27.0 # Original value 27.18 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 5.06e-10 # Kerisit & Liu (2010) +2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3 log_k 30.8 # Original value 29.22 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 4.6e-10 # Kerisit & Liu (2010) +1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2 log_k 25.9 # Original value 26.86 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 4.83e-10 # Kerisit & Liu (2010) +2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3 log_k 29.7 # This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) -dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3 +1.000SeO4-2 +1.000UO2+2 = UO2SeO4 log_k 2.93 # This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +2.000SeO4-2 +1.000UO2+2 = UO2(SeO4)2-2 log_k 4.03 # This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2 log_k 26.6800 +2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3 log_k 29.7500 -gamma 0.00 0.00 # Np(III) RECOMMENDED DATA ############################ +1.000Np+3 +1.000H2O -1.000H+ = NpOH+2 log_k -6.8000 # Np(III) SUPPLEMENTAL DATA # ========================== +1.000Np+3 +2.000H2O -2.000H+ = Np(OH)2+ log_k -14.7000 +1.000Np+3 +3.000H2O -3.000H+ = Np(OH)3 log_k -25.8000 -gamma 0.00 0.00 +1.000Np+3 +1.000F- = NpF+2 log_k 3.4000 +1.000Np+3 +2.000F- = NpF2+ log_k 5.8000 +1.000Np+3 +1.000Cl- = NpCl+2 log_k 0.2400 +1.000Np+3 +2.000Cl- = NpCl2+ log_k -0.7400 +1.000Np+3 +1.000SO4-2 = NpSO4+ log_k 3.3000 +1.000Np+3 +2.000SO4-2 = Np(SO4)2- log_k 3.7000 +1.000Np+3 +1.000CO3-2 = NpCO3+ log_k 8.0000 +1.000Np+3 +2.000CO3-2 = Np(CO3)2- log_k 12.9000 +1.000Np+3 +3.000CO3-2 = Np(CO3)3-3 log_k 15.0000 +1.000Np+3 +1.000SiO(OH)3- = NpSiO(OH)3+2 log_k 8.1000 # Np(IV) RECOMMENDED DATA ############################ +1.000Np+4 +1.000H2O -1.000H+ = NpOH+3 log_k 0.5500 +1.000Np+4 +4.000H2O -4.000H+ = Np(OH)4 log_k -8.3000 -gamma 0.00 0.00 +1.000Np+4 +1.000F- = NpF+3 log_k 8.9600 +1.000Np+4 +2.000F- = NpF2+2 log_k 15.7000 +1.000Np+4 +1.000Cl- = NpCl+3 log_k 1.5000 +1.000Np+4 +1.000SO4-2 = NpSO4+2 log_k 6.8500 +1.000Np+4 +2.000SO4-2 = Np(SO4)2 log_k 11.0500 -gamma 0.00 0.00 +1.000Np+4 +1.000NO3- = NpNO3+3 log_k 1.9000 +1.000Np+4 +4.000CO3-2 = Np(CO3)4-4 log_k 38.9000 +1.000Np+4 +5.000CO3-2 = Np(CO3)5-6 log_k 37.8000 +1.000Np+4 +2.000H2O -2.000H+ = Np(OH)2+2 log_k 0.3500 +1.000Np+4 +1.000I- = NpI+3 log_k 1.5000 +1.000Np+4 +1.000SCN- = NpSCN+3 log_k 3.0000 +1.000Np+4 +2.000SCN- = Np(SCN)2+2 log_k 4.1000 +1.000Np+4 +3.000SCN- = Np(SCN)3+ log_k 4.8000 # Np(IV) SUPPLEMENTAL DATA # ========================== +1.000Np+4 +3.000H2O -3.000H+ = Np(OH)3+ log_k -2.8000 +1.000Np+4 +1.000CO3-2 +3.000H2O -3.000H+ = NpCO3(OH)3- log_k 2.0000 +1.000Np+4 +1.000SiO(OH)3- = NpSiO(OH)3+3 log_k 11.2000 # Np(V) RECOMMENDED DATA ############################ +1.000NpO2+ +1.000H2O -1.000H+ = NpO2(OH) log_k -11.3000 -gamma 0.00 0.00 +1.000NpO2+ +2.000H2O -2.000H+ = NpO2(OH)2- log_k -23.6000 +1.000NpO2+ +1.000F- = NpO2F log_k 1.2000 -gamma 0.00 0.00 +1.000NpO2+ +1.000SO4-2 = NpO2SO4- log_k 1.3 # Original value 0.44 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000NpO2+ +1.000HPO4-2 = NpO2HPO4- log_k 2.9500 +1.000NpO2+ +1.000CO3-2 = NpO2CO3- log_k 4.9600 +1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3 log_k 6.5300 +1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5 log_k 5.5000 +1.000NpO2+ +2.000CO3-2 +1.000H2O -1.000H+ = NpO2(CO3)2OH-4 log_k -5.3000 +1.000NpO2+ +1.000IO3- = NpO2IO3 log_k 0.5000 -gamma 0.00 0.00 # Np(V) SUPPLEMENTAL DATA # ========================== +1.000NpO2+ +1.000SiO(OH)3- = NpO2SiO(OH)3 log_k 7.0000 -gamma 0.00 0.00 +1.000NpO2+ +1.000SCN- = NpO2SCN log_k 0.0800 -gamma 0.00 0.00 +1.000NpO2+ +1.000Ca+2 +2.000H2O = Ca(NpO2(OH)2)+ +2.000H+ log_k -20.6 # New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000NpO2+ +3.000Ca+2 +5.000H2O = Ca3(NpO2(OH)5)+2 +5.000H+ log_k -54.8 # New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020) # Np(VI) RECOMMENDED DATA ############################ +1.000NpO2+2 +1.000H2O -1.000H+ = NpO2OH+ log_k -5.1000 +2.000NpO2+2 +2.000H2O -2.000H+ = (NpO2)2(OH)2+2 log_k -6.2700 +3.000NpO2+2 +5.000H2O -5.000H+ = (NpO2)3(OH)5+ log_k -17.1200 +1.000NpO2+2 +1.000F- = NpO2F+ log_k 4.5700 +1.000NpO2+2 +2.000F- = NpO2F2 log_k 7.6000 -gamma 0.00 0.00 +1.000NpO2+2 +1.000Cl- = NpO2Cl+ log_k 0.4000 +1.000NpO2+2 +1.000SO4-2 = NpO2SO4 log_k 3.2800 -gamma 0.00 0.00 +1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2 log_k 4.7000 +1.000NpO2+2 +1.000CO3-2 = NpO2CO3 log_k 9.3200 -gamma 0.00 0.00 +1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2 log_k 16.5200 +1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4 log_k 19.3700 +3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6 log_k 49.8400 +2.000NpO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (NpO2)2CO3(OH)3- log_k -2.8700 +1.000NpO2+2 +1.000HPO4-2 = NpO2HPO4 log_k 6.2000 -gamma 0.00 0.00 +1.000NpO2+2 +1.000H2PO4- = NpO2H2PO4+ log_k 3.3200 +1.000NpO2+2 +2.000HPO4-2 = NpO2(HPO4)2-2 log_k 9.5000 +1.000NpO2+2 +1.000IO3- = NpO2IO3+ log_k 1.2000 # Np(VI) SUPPLEMENTAL DATA # ========================== +1.000NpO2+2 +3.000H2O -3.000H+ = NpO2(OH)3- log_k -20.0000 +1.000NpO2+2 +4.000H2O -4.000H+ = NpO2(OH)4-2 log_k -32.0000 +1.000NpO2+2 +1.000SiO(OH)3- = NpO2SiO(OH)3+ log_k 7.2000 +1.000NpO2+2 +1.000SiO2(OH)2-2 = NpO2SiO2(OH)2 log_k 16.5000 -gamma 0.00 0.00 # Pu(III) RECOMMENDED DATA ############################ +1.000Pu+3 +1.000H2O -1.000H+ = PuOH+2 log_k -6.9000 +1.000Pu+3 +1.000SO4-2 = PuSO4+ log_k 3.9000 +1.000Pu+3 +2.000SO4-2 = Pu(SO4)2- log_k 5.7000 +1.000Pu+3 +1.000SCN- = PuSCN+2 log_k 1.3000 # Pu(III) SUPPLEMENTAL DATA # ========================== +1.000Pu+3 +2.000H2O -2.000H+ = Pu(OH)2+ log_k -14.8000 +1.000Pu+3 +3.000H2O -3.000H+ = Pu(OH)3 log_k -25.9000 -gamma 0.00 0.00 +1.000Pu+3 +1.000F- = PuF+2 log_k 3.4000 +1.000Pu+3 +2.000F- = PuF2+ log_k 5.8000 +1.000Pu+3 +1.000Cl- = PuCl+2 log_k 1.2000 +1.000Pu+3 +1.000CO3-2 = PuCO3+ log_k 8.0000 +1.000Pu+3 +2.000CO3-2 = Pu(CO3)2- log_k 12.9000 +1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3 log_k 15.0000 +1.000Pu+3 +1.000SiO(OH)3- = PuSiO(OH)3+2 log_k 8.1000 # Pu(IV) RECOMMENDED DATA ############################ +1.000Pu+4 +1.000H2O -1.000H+ = PuOH+3 log_k 0.0000 +1.000Pu+4 +4.000H2O -4.000H+ = Pu(OH)4 log_k -9.3000 -gamma 0.00 0.00 +1.000Pu+4 +1.000F- = PuF+3 log_k 8.8400 +1.000Pu+4 +2.000F- = PuF2+2 log_k 15.7000 +1.000Pu+4 +1.000Cl- = PuCl+3 log_k 1.8000 +1.000Pu+4 +1.000SO4-2 = PuSO4+2 log_k 6.8900 +1.000Pu+4 +2.000SO4-2 = Pu(SO4)2 log_k 11.1400 -gamma 0.00 0.00 +1.000Pu+4 +1.000NO3- = PuNO3+3 log_k 1.9500 +1.000Pu+4 +1.000H3PO4 = PuH3PO4+4 log_k 2.4000 +1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4 log_k 37.0000 +1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6 log_k 35.6500 +1.000Pu+4 +2.000H2O -2.000H+ = Pu(OH)2+2 log_k -1.2000 +1.000Pu+4 +3.000H2O -3.000H+ = Pu(OH)3+ log_k -3.1000 # Pu(IV) SUPPLEMENTAL DATA # ========================== +1.000Pu+4 +1.000SiO(OH)3- = PuSiO(OH)3+3 log_k 11.8000 +4.000Ca+2 +1.000Pu+4 +8.000H2O -8.000H+ = Ca4Pu(OH)8+4 log_k -55.7000 +1.000Pu+4 +1.000CO3-2 +3.000H2O -3.000H+ = PuCO3(OH)3- log_k 6.0000 # Pu(V) RECOMMENDED DATA ############################ +1.000PuO2+ +1.000H2O -1.000H+ = PuO2OH log_k -9.7300 -gamma 0.00 0.00 +1.000PuO2+ +1.000CO3-2 = PuO2CO3- log_k 5.1200 +1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5 log_k 5.0300 # Pu(VI) RECOMMENDED DATA ############################ +1.000PuO2+2 +1.000H2O -1.000H+ = PuO2OH+ log_k -5.5000 +1.000PuO2+2 +2.000H2O -2.000H+ = PuO2(OH)2 log_k -13.2000 -gamma 0.00 0.00 +2.000PuO2+2 +2.000H2O -2.000H+ = (PuO2)2(OH)2+2 log_k -7.5000 +1.000PuO2+2 +1.000F- = PuO2F+ log_k 4.5600 +1.000PuO2+2 +2.000F- = PuO2F2 log_k 7.2500 -gamma 0.00 0.00 +1.000PuO2+2 +1.000Cl- = PuO2Cl+ log_k 0.2300 +1.000PuO2+2 +2.000Cl- = PuO2Cl2 log_k -1.1500 -gamma 0.00 0.00 +1.000PuO2+2 +1.000SO4-2 = PuO2SO4 log_k 3.3800 -gamma 0.00 0.00 +1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2 log_k 4.4000 +1.000PuO2+2 +1.000CO3-2 = PuO2CO3 log_k 9.5000 -gamma 0.00 0.00 +1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2 log_k 14.7000 +1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4 log_k 18.0000 # Pu(VI) SUPPLEMENTAL DATA # ========================== +1.000PuO2+2 +1.000SiO(OH)3- = PuO2SiO(OH)3+ log_k 6.0000 +1.000PuO2+2 +1.000SiO2(OH)2-2 = PuO2SiO2(OH)2 log_k 12.6000 -gamma 0.00 0.00 # RECOMMENDED DATA # U(VI) # Np(VI) Mixed # Pu(VI) ############################ +2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2NpO2(CO3)6-6 log_k 53.5900 +2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = (UO2)2PuO2(CO3)6-6 log_k 52.7000 # Am(III) RECOMMENDED DATA ############################ +1.000Am+3 +1.000H2O -1.000H+ = AmOH+2 log_k -7.2000 +1.000Am+3 +2.000H2O -2.000H+ = Am(OH)2+ log_k -15.1000 +1.000Am+3 +3.000H2O -3.000H+ = Am(OH)3 log_k -26.2000 -gamma 0.00 0.00 +1.000Am+3 +1.000F- = AmF+2 log_k 3.4000 +1.000Am+3 +2.000F- = AmF2+ log_k 5.8000 +1.000Am+3 +1.000Cl- = AmCl+2 log_k 0.2400 +1.000Am+3 +2.000Cl- = AmCl2+ log_k -0.81 # Original value -0.74 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +1.000SO4-2 = AmSO4+ log_k 3.5000 # Original value 3.3 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +2.000SO4-2 = Am(SO4)2- log_k 5.000 # Original value 3.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +1.000NO3- = AmNO3+2 log_k 1.2800 # Original value 1.33 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +2.000NO3- = Am(NO3)2+ log_k 0.8800 # This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +1.000H2PO4- = AmH2PO4+2 log_k 2.4600 # Original value 3.00 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +1.000CO3-2 = AmCO3+ log_k 8.0000 +1.000Am+3 +2.000CO3-2 = Am(CO3)2- log_k 12.9000 +1.000Am+3 +3.000CO3-2 = Am(CO3)3-3 log_k 15.0000 +1.000Am+3 +1.000SiO(OH)3- = AmSiO(OH)3+2 log_k 8.1300 # Original value 8.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) +1.000Am+3 +1.000HCO3- = AmHCO3+2 log_k 3.1000 +1.000Am+3 +1.000SCN- = AmSCN+2 log_k 1.3000 # Am(III) SUPPLEMENTAL DATA # ========================== +1.000Ca+2 +1.000Am+3 +3.000H2O -3.000H+ = CaAm(OH)3+2 log_k -26.3000 +2.000Ca+2 +1.000Am+3 +4.000H2O -4.000H+ = Ca2Am(OH)4+3 log_k -37.2000 +3.000Ca+2 +1.000Am+3 +6.000H2O -6.000H+ = Ca3Am(OH)6+3 log_k -60.7000 # Am(V) RECOMMENDED DATA ############################ +1.000AmO2+ +1.000H2O -1.000H+ = AmO2OH log_k -11.3000 -gamma 0.00 0.00 +1.000AmO2+ +2.000H2O -2.000H+ = AmO2(OH)2- log_k -23.6000 +1.000AmO2+ +1.000CO3-2 = AmO2CO3- log_k 5.1000 +1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3 log_k 6.7000 +1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5 log_k 5.1000 # Cm(III) RECOMMENDED DATA ############################ +1.000Cm+3 +1.000H2O -1.000H+ = CmOH+2 log_k -7.2000 +1.000Cm+3 +2.000H2O -2.000H+ = Cm(OH)2+ log_k -15.1000 +1.000Cm+3 +3.000H2O -3.000H+ = Cm(OH)3 log_k -26.2000 -gamma 0.00 0.00 +1.000Cm+3 +1.000F- = CmF+2 log_k 3.4000 +1.000Cm+3 +2.000F- = CmF2+ log_k 5.8000 +1.000Cm+3 +1.000Cl- = CmCl+2 log_k 0.2400 +1.000Cm+3 +2.000Cl- = CmCl2+ log_k -0.7400 +1.000Cm+3 +1.000SO4-2 = CmSO4+ log_k 3.3000 +1.000Cm+3 +2.000SO4-2 = Cm(SO4)2- log_k 3.7000 +1.000Cm+3 +1.000NO3- = CmNO3+2 log_k 1.3300 +1.000Cm+3 +1.000H2PO4- = CmH2PO4+2 log_k 3.0000 +1.000Cm+3 +1.000CO3-2 = CmCO3+ log_k 8.0000 +1.000Cm+3 +2.000CO3-2 = Cm(CO3)2- log_k 12.9000 +1.000Cm+3 +3.000CO3-2 = Cm(CO3)3-3 log_k 15.0000 +1.000Cm+3 +1.000HCO3- = CmHCO3+2 log_k 3.1000 +1.000Cm+3 +1.000SiO(OH)3- = CmSiO(OH)3+2 log_k 8.1000 +1.000Cm+3 +1.000SCN- = CmSCN+2 log_k 1.3000 # Cm(III) SUPPLEMENTAL DATA # ========================== +1.000Ca+2 +1.000Cm+3 +3.000H2O -3.000H+ = CaCm(OH)3+2 log_k -26.3000 +2.000Ca+2 +1.000Cm+3 +4.000H2O -4.000H+ = Ca2Cm(OH)4+3 log_k -37.2000 +3.000Ca+2 +1.000Cm+3 +6.000H2O -6.000H+ = Ca3Cm(OH)6+3 log_k -60.7000 ################################################################################################################### # New implemented aqueous species - Updated values ################################################################################################################### ### Iron from NEA TDB, Vol. 13a ################################################################################## +1.000Fe+2 = 1.000Fe+3 + e- log_k -13.051 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe+2 + H+ = Fe+3 + 0.5H2(g) with logK -13.051 ### Oxide/Hydroxide ############ +1.000Fe+2 + 1.000H2O = FeOH+ + H+ log_k -9.1 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 + 1.000H2O = FeOH+2 + H+ log_k -2.1500 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 + 2.000H2O = Fe(OH)2+ + 2H+ log_k -4.8 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +2.000Fe+3 + 2.000H2O = Fe2(OH)2+4 + 2H+ log_k -2.82 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ### Carbonate ############ +1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3 log_k 24.0 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +1.000CO3-2 + H2O = Fe(OH)CO3 + H+ log_k 10.7 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+2 +2.000HCO3- = Fe(CO3)2-2 + 2H+ log_k -13.62 # Data from NEA TDB Vol. 13a [Lemire et al., 2013], converted from # FeCO3(cr) + CO2(g) + H2O(l) = Fe(CO3)2-2 + 2H+ with logK -21.794 ### Chloride ############ +1.000Fe+3 +1.000Cl- = FeCl+2 log_k 1.52 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +2.000Cl- = FeCl2+ log_k 2.2 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +3.000Cl- = FeCl3 log_k 1.02 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +4.000Cl- = FeCl4- log_k -0.98 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ### Fluoride ############ +1.000Fe+2 +1.000F- = FeF+ log_k 1.7 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ### Sulfate ############ +1.000Fe+2 +1.000SO4-2 = FeSO4 log_k 2.44 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +1.000SO4-2 = FeSO4+ log_k 4.25 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] +1.000Fe+3 +2.000SO4-2 = Fe(SO4)2- log_k 6.22 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ###################################################################################################################### PHASES # PMATCH MINERALS # Minerals RECOMMENDED DATA ##### Original PSI/NAGRA TDB 12/07 ################################################################################# Anhydrite CaSO4 = +1.000Ca+2 +1.000SO4-2 log_k -4.3575 Aragonite CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- log_k 1.9928 As(cr) As = +1.000HAsO4-2 +7.000H+ +5.000e- -4.000H2O log_k -40.9892 Barite BaSO4 = +1.000Ba+2 +1.000SO4-2 log_k -9.9704 Brucite Mg(OH)2 = +1.000Mg+2 +2.000H2O -2.000H+ log_k 16.8400 Calcite CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- log_k 1.8490 MgCalcite_NT14 # for PW in OPA section at Mt. Russelin (borehole NT-14) CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3- log_k 2.01672 # calculated by Marco to account for Mg incorporation in pure mineral Celestite SrSO4 = +1.000Sr+2 +1.000SO4-2 log_k -6.6319 Dolomite(dis) CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3- log_k 4.1180 Dolomite(ord) CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3- log_k 3.5680 #Fe(cr) #Fe = +1.000Fe+2 +2.000e- # log_k 13.8226 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Fluorite CaF2 = +1.000Ca+2 +2.000F- log_k -10.5997 #Goethite #FeOOH = +2.000H2O -3.000H+ +1.000Fe+3 # log_k -1.0000 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Graphite C = +1.000HCO3- +5.000H+ +4.000e- -3.000H2O log_k -21.8192 Gypsum CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O log_k -4.5809 Hausmannite MnMn2O4 = +3.000Mn+2 +4.000H2O -8.000H+ -2.000e- log_k 61.0300 Manganite MnOOH = +1.000Mn+2 +2.000H2O -3.000H+ -1.000e- log_k 25.3400 #Melanterite #FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O # log_k -2.2093 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Mo(cr) Mo = +1.000MoO4-2 +8.000H+ +6.000e- -4.000H2O log_k 19.6670 # bug: log_k entered manually Tugarinovite MoO2 = +1.000MoO4-2 +4.000H+ +2.000e- -2.000H2O log_k 29.9560 # bug: log_k entered manually Molybdite MoO3 = +1.000MoO4-2 +2.000H+ -1.000H2O log_k 12.0550 # bug: log_k entered manually Nb2O5(cr) Nb2O5 = +2.000NbO3- +2.000H+ -1.000H2O log_k 24.3410 # bug: log_k entered manually NbO2(cr) NbO2 = +1.000NbO3- +2.000H+ +1.000e- -1.000H2O log_k 7.9780 # bug: log_k entered manually Portlandite Ca(OH)2 = +1.000Ca+2 +2.000H2O -2.000H+ log_k 22.8000 Pyrochroite Mn(OH)2 = +1.000Mn+2 +2.000H2O -2.000H+ log_k 15.2000 Pyrolusite MnO2 = +1.000Mn+2 +2.000H2O -4.000H+ -2.000e- log_k 41.3800 Rhodochrosite MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+ log_k -0.8011 Rhodochrosite(syn) MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+ log_k -0.0611 #Siderite #FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+ # log_k -0.5612 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a #FeCO3(pr) #FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+ # log_k -0.1211 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Strontianite SrCO3 = +1.000Sr+2 -1.000H+ +1.000HCO3- log_k 1.0583 Witherite BaCO3 = +1.000Ba+2 -1.000H+ +1.000HCO3- log_k 1.7672 #Hematite #Fe2O3 = +3.000H2O -6.000H+ +2.000Fe+3 # log_k 1.1200 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Pyrite FeS2 = +1.000Fe+2 +2.000HS- -2.000H+ -2.000e- log_k -18.5000 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a #Troilite #FeS = +1.000Fe+2 +1.000HS- -1.000H+ # log_k -5.3100 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a Magnesite MgCO3 = +1.000Mg+2 -1.000H+ +1.000HCO3- log_k 2.0410 S(rhomb) S = +1.000HS- -1.000H+ -2.000e- log_k -2.1440 #Fe(OH)3(am) #Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3 # log_k 5.0000 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a #Fe(OH)3(mic) #Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3 # log_k 3.0000 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a #Magnetite #FeFe2O4 = +1.000Fe+2 +4.000H2O -8.000H+ +2.000Fe+3 # log_k 10.0200 # commented out, as we added Fe+3 data from NEA TDB Vol. 13a #Gibbsite #Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ # log_k 7.7559 # commented out, as we added data for a generic and amorphous gibbsite # Si(IV) RECOMMENDED DATA ############################ Quartz SiO2 = +1.000Si(OH)4 -2.000H2O log_k -3.7460 SiO2(am) SiO2 = +1.000Si(OH)4 -2.000H2O log_k -2.7140 Kaolinite Al2Si2O5(OH)4 = +2.000Al+3 +2.000Si(OH)4 +1.000H2O -6.000H+ log_k 7.4350 # Ni(II) RECOMMENDED DATA ############################ NiCO3(cr) NiCO3 = +1.000Ni+2 +1.000CO3-2 log_k -11.0000 Ni(OH)2(cr,beta) Ni(OH)2 = +1.000Ni+2 +2.000H2O -2.000H+ log_k 11.0200 NiO(cr) NiO = +1.000Ni+2 +1.000H2O -2.000H+ log_k 12.4800 NiCO3:5.5H2O(s) NiCO3:5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O log_k -7.5300 Ni3(AsO4)2:8H2O(s) Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O log_k -28.1000 # Se(-II) SUPPLEMENTAL DATA # ========================== MnSe(s) MnSe = +1.000Mn+2 +1.000Se-2 log_k -16.0000 # Se(IV) RECOMMENDED DATA ############################ Se(cr) Se = +1.000SeO3-2 +6.000H+ +4.000e- -3.000H2O log_k -61.1500 NiSeO3:2H2O(cr) NiSeO3:2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O log_k -5.8000 MnSeO3:2H2O(cr) MnSeO3:2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O log_k -7.6000 MgSeO3:6H2O(cr) MgSeO3:6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O log_k -5.8200 CaSeO3:H2O(cr) CaSeO3:H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O log_k -6.4000 SrSeO3(cr) SrSeO3 = +1.000Sr+2 +1.000SeO3-2 log_k -6.3000 BaSeO3(cr) BaSeO3 = +1.000Ba+2 +1.000SeO3-2 log_k -6.5000 # Se(VI) RECOMMENDED DATA ############################ BaSeO4(cr) BaSeO4 = +1.000Ba+2 +1.000SeO4-2 log_k -7.5600 # Zr(IV) RECOMMENDED DATA ############################ Baddeleyite ZrO2 = +1.000Zr+4 +2.000H2O -4.000H+ log_k -7.0000 Zr(OH)4(am,fr) Zr(OH)4 = +1.000Zr+4 +4.000H2O -4.000H+ log_k -3.2400 # Zr(IV) SUPPLEMENTAL DATA # ========================== Zr(HPO4)2:H2O(cr) Zr(HPO4)2:H2O = +1.000Zr+4 +2.000H3PO4 +1.000H2O -4.000H+ log_k -22.8000 # Tc(IV) RECOMMENDED DATA ############################ TcO2:1.6H2O(s) TcO2:1.6H2O = +1.000TcO(OH)2 +0.600H2O log_k -8.4000 # Pd(II) RECOMMENDED DATA ############################ Pd(cr) Pd = +1.000Pd+2 +2.000e- log_k -30.8000 Pd(OH)2(s) Pd(OH)2 = +1.000Pd+2 -2.000H+ +2.000H2O log_k -3.3000 # Tn(II) RECOMMENDED DATA ############################ Tn(cr) Tn = +1.00Tn+2 +2.000e- log_k 4.6300 TnO(s) TnO = +1.000Tn+2 +1.000H2O -2.000H+ log_k 2.5000 TnS(pr) TnS = +1.000Tn+2 +1.000HS- -1.000H+ log_k -14.7000 # Sn(IV) RECOMMENDED DATA ############################ Cassiterite SnO2 = +1.000Sn(OH)4 -2.000H2O log_k -8.0000 SnO2(am) SnO2 = +1.000Sn(OH)4 -2.000H2O log_k -7.3000 CaSn(OH)6(s) CaSn(OH)6 = +1.000Sn(OH)4 +2.000H2O +1.000Ca+2 -2.000H+ log_k 8.7000 # Ra(II) RECOMMENDED DATA ############################ RaCO3(cr) RaCO3 = +1.000Ra+2 +1.000CO3-2 log_k -8.3000 RaSO4(cr) RaSO4 = +1.000Ra+2 +1.000SO4-2 log_k -10.2600 # Eu(III) RECOMMENDED DATA ############################ Eu(OH)3(cr) Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+ log_k 14.9000 Eu(OH)3(am) Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+ log_k 17.6000 Eu2(CO3)3(cr) Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2 log_k -35.0000 EuOHCO3(cr) EuOHCO3 = +1.000Eu+3 +1.000OH- +1.000CO3-2 log_k -21.7000 EuF3(cr) EuF3 = +1.000Eu+3 +3.000F- log_k -17.4000 # Th(IV) RECOMMENDED DATA ############################ ThO2(am,hyd,fr) ThO2 = +1.000Th+4 +2.000H2O -4.000H+ log_k 9.3000 ThO2(am,hyd,ag) ThO2 = +1.000Th+4 +2.000H2O -4.000H+ log_k 8.5000 ThF4(cr,hyd) ThF4 = +1.000Th+4 +4.000F- log_k -31.8000 Na6Th(CO3)5:12H2O(cr) Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O log_k -42.2000 # Th(IV) SUPPLEMENTAL DATA # ========================== Th3(PO4)4(s) Th3(PO4)4 = +3.000Th+4 +4.000PO4-3 log_k -112.0000 # U(IV) RECOMMENDED DATA ############################ UF4:2.5H2O(cr) UF4:2.5H2O = +1.000U+4 +4.000F- +2.500H2O log_k -30.1200 U(OH)2SO4(cr) U(OH)2SO4 = +1.000U+4 +1.000SO4-2 +2.000H2O -2.000H+ log_k -3.1700 UO2(am,hyd) UO2 = +1.000U+4 +2.000H2O -4.000H+ log_k 1.5000 # U(IV) SUPPLEMENTAL DATA # ========================== USiO4(s) # Coffinit USiO4 = +1.000U+4 +1.000Si(OH)4 -4.000H+ log_k -1.5000 # U(VI) RECOMMENDED DATA - With Update from THEREDA database #################################################################### ### U(VI)-Oxides ############ Metaschoepite UO3:2H2O = +1.000UO2+2 +3.000H2O -2.000H+ log_k 5.35 # Original value 5.96 was updated from THEREDA database [primary reference [ALT/YAL2017]) Becquerelite CaU6O19:11H2O = +1.000Ca+2 +6.000UO2+2 +18.000H2O -14.000H+ log_k 40.5000 Clarkeite Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 +4.000H2O -6.000H+ log_k 24.4 # This value was added from THEREDA database [primary reference [ALT/YAL2017]) K2U2O7:1.5H2O(cr) K2U2O7:1.5H2O = +2.000K+ +2.000UO2+2 +4.500H2O -6.000H+ log_k 24.0 # This value was added from THEREDA database [primary reference [CEV/YAL2018]) K-Compreignacite K2U6O19:11H2O = +2.000K+ +6.000UO2+2 +18.000H2O -14.000H+ log_k 37.8 # Original value 37.10 was updated from THEREDA database [primary reference [CEV/YAL2018]) Na-Compreignacite Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 + 17.000H2O - 14.000H+ log_k 39.4 # This value was added from THEREDA database (primary reference [GOR/FEI2008]) CaU2O7:3H2O(cr) CaU2O7:3H2O + 6.000H+ = 1.000Ca+2 +2.000UO2+2 +6.000H2O log_k 23.4 # This value was added from THEREDA database (primary reference [ALT/NEC2006]) ### U(VI)-Carbonates ########### Cejkaite Na4UO2(CO3)3 = 4.000Na+ + 3.000CO3-2 + 1.000UO2+2 log_k -27.18 # This value was added from THEREDA database (primary reference [GUI/FAN2003]) Rutherfordine UO2CO3 = +1.000UO2+2 +1.000CO3-2 log_k -14.7600 ### U(VI)-Silicates ############ Boltwoodite KUO2(SiO3OH):H2O = +1.000K+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+ log_k 4.12 # This value was added from THEREDA database (primary reference [SHV/MAZ2011]) Na-Boltwoodite NaUO2(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+ log_k 6.07 # This value was added from THEREDA database (primary reference [SHV/MAZ2011]) Soddyite (UO2)2SiO4:2H2O = +2.000UO2+2 +1.000Si(OH)4 +2.000H2O -4.000H+ log_k 5.75 # Original value 6.2 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) Uranophane Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 +2.000Si(OH)4 +5.000H2O -6.000H+ log_k 10.82 # This value was added from THEREDA database (primary reference [SHV/MAZ2011]) Weeksite K2(UO2)2(Si2O5)3:4H2O = +2.000K+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O log_k 16.91 # This value was added from THEREDA database (primary reference [HEM1982]) Na-Weeksite Na2(UO2)2(Si2O5)3:4H2O = +2.000Na+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O log_k 1.5 Sklodowskite Mg(UO2)2(SiO3OH)2:6H2O = +1.000Mg+2 +2.000UO2+2 +2.000Si(OH)4 -6.000H+ +6.000H2O log_k 14.48 # This value was added from THEREDA database (primary reference [HEM1982]) Haiweeite Ca(UO2)2(Si2O5)3:5H2O = +1.000Ca+2 +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -4.000H2O log_k -5.52 # This value was added from THEREDA database (primary reference [HEM1982]) ### U(VI)-Sulphates ############# UO2SO4:2.5H2O(cr) UO2SO4:2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O log_k -1.589 # Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) UO2SO4:3.0H2O(cr) UO2SO4:3.0H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O log_k -1.50 # Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) UO2SO4:3.5H2O(cr) UO2SO4:3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O log_k -1.585 # Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) Zippeite K3(UO2)4(SO4)2O3OH:3.3H2O = +3.000K+ + 4.000UO2+2 + 2.000SO4-2 + 7.300H2O -7H+ log_k 4.14 # This value was added from THEREDA database (primary reference [SHA/SZY2016]) ### U(VI)-Phosphate ########### Autunite Ca(UO2)2(PO4)2:3H2O = 1.000Ca+2 +2.000UO2+2 +2.000PO4-3 +3.000H2O log_k -48.36 # This value was added from THEREDA database (primary reference [GOR/SHV2009]) Saaleite Mg(UO2)2(PO4)2 = 1.000Mg+2 +2.000UO2+2 +2.000PO4-3 log_k -46.32 # This value was added from THEREDA database (primary reference [MUT/HIR1968]) Chernikovite UO2HPO4:4H2O = +1.000UO2+2 +1.000H3PO4 +4.000H2O -2.000H+ log_k -2.5000 (UO2)3(PO4)2:4H2O(cr) (UO2)3(PO4)2:4H2O = +3.000UO2+2 +2.000H3PO4 +4.000H2O -6.000H+ log_k -5.9600 (UO2)3(PO4)2:6H2O(cr) (UO2)3(PO4)2:6H2O = +3.000UO2+2 +2.000PO4-3 +6.000H2O log_k -49.91 # This value was added from THEREDA database (primary reference [GUI/FAN2003]) UO2(H2PO4)2:3H2O(cr) UO2(H2PO4)2:3H2O = +1.000UO2+2 +2.000H3PO4 +3.000H2O -2.000H+ log_k -1.7 # This value was added from THEREDA database (primary reference [GRE/FUG1992]) # Np(IV) RECOMMENDED DATA ############################ NpO2(am,hyd) NpO2 = +1.000Np+4 +2.000H2O -4.000H+ log_k -0.7000 # Np(V) RECOMMENDED DATA ############################ NpO2OH(am,fr) NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+ log_k 5.3000 NaNpO2CO3:3.5H2O(cr) NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O log_k -11.0000 Na3NpO2(CO3)2(cr) Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2 log_k -14.2200 KNpO2CO3(s) KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2 log_k -13.1500 K3NpO2(CO3)2(s) K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2 log_k -15.4600 NpO2OH(am,ag) NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+ log_k 4.7000 # Np(VI) RECOMMENDED DATA ############################ NpO2CO3(s) NpO2CO3 = +1.000NpO2+2 +1.000CO3-2 log_k -14.6000 NpO3:H2O(cr) NpO3:H2O = +1.000NpO2+2 +2.000H2O -2.000H+ log_k 5.4700 K4NpO2(CO3)3(s) K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2 log_k -26.4000 (NH4)4NpO2(CO3)3(s) (NH4)4NpO2(CO3)3 = +4.000NH4+ +1.000NpO2+2 +3.000CO3-2 log_k -26.8100 # Pu(III) RECOMMENDED DATA ############################ Pu(OH)3(cr) Pu(OH)3 = +1.000Pu+3 +3.000H2O -3.000H+ log_k 15.8000 PuPO4(s,hyd) PuPO4 = +1.000Pu+3 +1.000PO4-3 log_k -24.6000 # Pu(IV) RECOMMENDED DATA ############################ Pu(HPO4)2(am,hyd) Pu(HPO4)2 = +1.000Pu+4 +2.000HPO4-2 log_k -30.4500 PuO2(hyd,ag) PuO2 = +1.000Pu+4 +2.000H2O -4.000H+ log_k -2.3300 # Pu(V) RECOMMENDED DATA ############################ PuO2OH(am) PuO2OH = +1.000PuO2+ +1.000H2O -1.000H+ log_k 5.0000 # Pu(VI) RECOMMENDED DATA ############################ PuO2(OH)2:H2O(cr) PuO2(OH)2:H2O = +1.000PuO2+2 +3.000H2O -2.000H+ log_k 5.5000 PuO2CO3(s) PuO2CO3 = +1.000PuO2+2 +1.000CO3-2 log_k -14.6500 # Am(III) RECOMMENDED DATA ############################ Am(OH)3(cr) Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+ log_k 15.6000 Am(OH)3(am) Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+ log_k 16.9000 Am(CO3)1.5(am,hyd) Am(CO3)1.5 = +1.000Am+3 +1.500CO3-2 log_k -16.7000 AmOHCO3:0.5H2O(cr) AmOHCO3:0.5H2O = +1.000Am+3 +1.000OH- +1.000CO3-2 +0.500H2O log_k -22.4000 AmOHCO3(am,hyd) AmOHCO3 = +1.000Am+3 +1.000OH- +1.000CO3-2 log_k -20.2000 NaAm(CO3)2:5H2O(cr) NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O log_k -21.0000 Am2(CO3)3(am) Am2(CO3)3 = +2.000Am+3 +3.000CO3-2 log_k -33.4 # This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) AmPO4(am,hyd) AmPO4 = +1.000Am+3 +1.000PO4-3 log_k -24.79 # This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) # Am(V) RECOMMENDED DATA ############################ AmO2OH(am) AmO2OH = +1.000AmO2+ +1.000H2O -1.000H+ log_k 5.3000 NaAmO2CO3(s) NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2 log_k -10.9000 # Cm(III) SUPPLEMENTAL DATA # ========================== Cm(OH)3(am,coll) Cm(OH)3 = +1.000Cm+3 +3.000H2O -3.000H+ log_k 17.2000 ################################################################################################################### # New implemented solid phases - Updated values ################################################################################################################### ### IRON - NEA TDB Vol. 13a ########################################################################################### Fe(cr) Fe = +1.000Fe+2 + 2.000e- log_k 15.893 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe(cr) + 2.0H+ = Fe+2 + 1.0H2(g) with logK 15.893 ### Fe-Oxide/Hydroxide ######## Hematite Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH- log_k -84.11 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -42.05 Maghemite Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH- log_k -81.2 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -40.59 #Magnetite #Fe3O4 + 4.000H2O = 1.000Fe+2 +2.000Fe+3 + 8.000OH- # Equation not clear # log_k -101.67 # # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there given only Gibbs-Energy Goethite FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH- log_k -41.83 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] Lepidocrosite FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH- log_k -40.13 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] Ferrihydrite Fe(OH)3 = 1.000Fe+3 + 3.000OH- log_k -38.97 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ### Fe-Carbonate ######## Siderite FeCO3 = 1.000Fe+2 + 1.000HCO3- - 1.000H+ log_k -0.349 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; calculated from Gibbs-Energy ### Fe-Chloride ######### #FeCl2:H2O(cr) #FeCl2:H2O = +1.000FeCl2(cr) + 1.000H2O # log_k 4.38 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] #FeCl2:2H2O(cr) #FeCl2:2H2O + 2.000H2O = +1.000FeCl2:4H2O # log_k 4.131 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] #FeCl2:4H2O(cr) #FeCl2:4H2O = +1.000FeCl2(cr) + 4.000H2O # log_k -5.921 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] ### Fe-Sulfate ######### FeS(cr) FeS + 2.000H+ = +1.000Fe+2 +1.000H2S log_k 3.8 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] Melanterite FeSO4:7H2O = 1.000Fe+2 +1.000SO4-2 +7.000H2O log_k -2.279 # Data from NEA TDB Vol. 13a [Lemire et al., 2013] FeSO4:4H2O(cr) FeSO4:4H2O = 1.000Fe+2 +1.000SO4-2 +4.000H2O log_k -1.654 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation FeSO4:H2O(cr) FeSO4:H2O = 1.000Fe+2 +1.000SO4-2 +1.000H2O log_k -0.9908 # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation #### ANDRA Database ThermoChimie_PHREEQC_eDH_v9b0.dat ############################################################ Albite NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000Si(OH)4 -4.000H2O log_k 2.74 # # delta_h -82.813 kJ/mol # # Enthalpy of formation: -3936.19 kJ/mol 00ARN/STE # Type: Albite-low # Data from ANDRA Data Base ThermoChimie Anorthite CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000Si(OH)4 log_k 25.31 # # delta_h -314.358 kJ/mol # # Enthalpy of formation: -4227.83 kJ/mol 00ARN/STE # Data from ANDRA Data Base ThermoChimie Chlorite (Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633Si(OH)4 +7.468H2O log_k 61.23 # #delta_h -632.836 kJ/mol # # Enthalpy of formation: -8240.69 kJ/mol 06GAI # Type: Chlorite-Cca-2 # Data from ANDRA Data Base ThermoChimie Illite K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150Si(OH)4 -0.600H2O log_k 10.07 # #delta_h -252.345 kJ/mol # # Enthalpy of formation: -5805.328 kJ/mol 07VIE # Type: Illite-FeIII # Data from ANDRA Data Base ThermoChimie Montmorillonite Na0.33Mg0.33Fe0.67Al1.0Si4O10(OH)2 = +0.330Mg+2 +0.330Na+ +0.670Fe+3 +1.000Al+3 -6.000H+ +4.000Si(OH)4 -4.000H2O log_k 2.89 #delta_h -137.779 kJ/mol # Enthalpy of formation: -5368.33 kJ/mol 07VIE # Type: Fe-Montmorillonite-Na # Data from ANDRA Data Base ThermoChimie ##### Other Literature ###################################################################################### Gibbsite(gen) Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ log_k 10.35 # Data for a generic Gibbsite phase from fit to experimental Gorleben data Gibbsite(am) Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+ log_k 9.6661 # Data from Lindsay (1979) K-feldspar # Orthoclase KAlSi3O8 + 4H+ + 4H2O = Al+3 + 3Si(OH)4 + K+ log_k -0.12 # log_k calculated by logK(T)-functions (Stefánsson and Arnórsson, 2000) using T=298,15K # microcline, the triclinic form of K-feldspar, was used as an analogue # published in Richter et al. (2016) Muscovite KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000Si(OH)4 log_k 14.15 # ± 0.74 (the error representing 2sigma) # # only calculations based on formation data are possible and the respective solubility constants were averaged # published in Richter et al. (2016) ####################################################################################################### # PMATCH GASES CH4(g) CH4 = +1.000CH4 log_k -2.8565 CO2(g) CO2 = +1.000H+ -1.000H2O +1.000HCO3- log_k -7.8198 H2(g) H2 = +1.000H2 log_k -3.1056 N2(g) N2 = +1.000N2 log_k -3.1864 O2(g) O2 = +1.000O2 log_k -2.8944 H2S(g) H2S = +1.000HS- +1.000H+ log_k -8.0100 H2Se(g) H2Se = +1.000H2Se log_k -1.1000 ##################################################################################################################### # Implemented Exchange Species relevant for the Opalinus Clay ##################################################################################################################### # Genereal Information: # # Exchange Daten for all clay minerals (X), Montmorillonite (Y), Illite (Z) # Allocation CEC -> 25 % Montmorillonite, 75 % Illite (clay minerals: Illite, Illite/Smectite mixed layers = 50 % Illite and 50 % Montmorillonite (Smectite)) EXCHANGE_MASTER_SPECIES X X- # all clay minerals Z Z- # Illite Y Y- # Montmorillonite EXCHANGE_SPECIES X- = X- log_k 0.0 X- + H+ = HX # GD-Exp. Wersin et al. (2009), p. 53 log_k = 0.0 X- + Na+ = NaX log_k = 0.0 X- + K+ = KX log_k = 1.4 # value from Pearson et al. (2011), PC-C Modellierung 2X- + Ca+2 = CaX2 # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. 2X- + Mg+2 = MgX2 # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. 2X- + Sr+2 = SrX2 # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. 2X- + Fe+2 = FeX2 # log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung log_k = 0.8 # value from Wersin et al. (2009), GD-Exp. ### Illite ### Z- = Z- log_k 0.0 Z- + H+ = HZ # GD-Exp. Wersin et al. (2009), p. 53 log_k = 0.0 Z- + Na+ = NaZ log_k = 0.0 Z- + K+ = KZ log_k = 0.92 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Illite) 2Z- + Ca+2 = CaZ2 log_k = 0.24 # s.o. 2Z- + Mg+2 = MgZ2 log_k = 0.58 # s.o. 2Z- + Sr+2 = SrZ2 log_k = 0.24 # s.o. 2Z- + Fe+2 = FeZ2 log_k = 0.7 # value from Pearson et al. (2011), PC-C modelling 2Z- + UO2+2 = UO2Z2 log_k = 0.65 # value from M.Stockmann (HZDR); Illite: Kc=4.5 from /BB05/ (PSI-Report) ### Montmorillonite ### Y- = Y- log_k = 0.0 Y- + Na+ = NaY log_k = 0.0 Y- + H+ = HY # GD-Exp. Wersin et al. (2009), p. 53 log_k = 0.0 Y- + K+ = KY log_k = 1.1 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Smektite) 2Y- + Mg+2 = MgY2 log_k = 0.36 # s.o. 2Y- + Ca+2 = CaY2 log_k = 0.42 # s.o. 2Y- + Sr+2 = SrY2 log_k = 0.37 # s.o. 2Y- + Fe+2 = FeY2 log_k = 0.8 # value from Baeyens & Bradbury (2017), TR 17-13, Kc = 6.3, Tab. F1 and Soltermann (2014) 2Y- + UO2+2 = UO2Y2 log_k = 0.15 # value from M.Stockmann (HZDR); Montmorillonite: Kc=1.4 from /BB05a/ ###################################################################################################################### # Implemented surface species relevant in the context of the WEIMAR project (far-field of a nuclear waste repository) ###################################################################################################################### # General information: # # This data compilation focuses on surface complexation parameters (reaction equations, pK- and logK-values) for # representative sorbates (pair of element and minerals). All values are taken from the # sorption database RES³T [Brendler et al. 2003] or were fitted from representative published experimental values. # As SCM Type primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/low SCM data sets # additionally other SCM models are used. Generic sites (»XOH) are prefered, with no differentiation between weak # and strong sites. All pK- and logK-values were normalized to the reference binding site 2.31 sites/nm² and corrected # to ionic strenght IS=0 using the Davies equation. Full bibliographic references are available in RES³T (www.hzdr.de/res3t). # # # Additions made by Theresa: # SCM-Daten für Tonminerale (Montmorrillonit = Smektit, Illit, Kaolinit, Chlorit) ergänzt basierend auf Joseph et al. (2013) = JOS13. # DDL-Modell bevorzugt mit strong (sOH) und weak (wOH) binding sites für Illit und Montmorillonit. # SURFACE_MASTER_SPECIES Ill_w Ill_wOH # Ill = Mineral group: 3-layer-clay minerals (illite) Ill_s Ill_sOH # _w = weak binding sites, _s = strong binding sites Kln_a Kln_aOH # Kln = Mineral group: 2-layer clay minerals (kaolinite) Kln_si Kln_siOH # _a = aluminol sites, _si = silanol sites Mll_w Mll_wOH # Mll = Mineral group: 3-layer clay minerals (smectite = montmorillonite) Mll_s Mll_sOH # _w = weak binding sites, _s = strong binding sites Chl ChlOH # Chl = Mineral group: 4-layer clay minerals (chlorite) SURFACE_SPECIES ### Kaolinite ################################################################################################## ### Aluminol sites ### Kln_aOH = Kln_aOH log_K 0.0 Kln_aOH + H+ = Kln_aOH2+ log_K 8.33 # mean of /TS96/ and /CW88/ Kln_aOH = Kln_aO- + H+ #log_K -9.09 # mean of /TS96/ and /CW88/ log_K -9.73 # /JOS13/ Kln_aOH + UO2+2 = Kln_aOHUO2+2 # log_k 9.2 # /PAY92/ (in TS96) log_k 9.5 # normiert auf 1.155 sites/nm2 Kln_aOH + UO2+2 = Kln_aOUO2+ + H+ # log_k 2.18 # /PAY92/ (in TS96) log_k 2.48 # normiert auf 1.155 sites/nm2 Kln_aOH + UO2+2 + H2O = Kln_aOUO2(OH) + 2H+ # log_k -4.74 # /PAY92/ (in TS96) log_k -4.44 # normiert auf 1.155 sites/nm2 ### Silanol sites ### Kln_siOH = Kln_siOH log_K 0.0 Kln_siOH = Kln_siO- + H+ log_K -6.9 # /JOS13/ Kln_siOH + UO2+2 = Kln_siOHUO2+2 log_k 6.03 # /JOS13/ Kln_siOH + UO2+2 = Kln_siOUO2+ + H+ log_k 1.26 # /JOS13/ Kln_siOH + UO2+2 + H2O = Kln_siOUO2(OH) + 2H+ log_k -5.54 # /JOS13/, korrigiert von MS (HZDR) ### Illite ################################################################################################### ### weak-binding sites ### Ill_wOH = Ill_wOH log_K 0.0 Ill_wOH + H+ = Ill_wOH2+ #log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ log_K = 4.59 # /JOS13/ Ill_wOH = Ill_wO- + H+ #log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ log_K = -7.11 # /JOS13/ # U(VI) Ill_wOH + UO2+2 = Ill_wOUO2+ + H+ #log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model log_k = -0.81 # /JOS13/ Ill_wOH + UO2+2 + H2O = Ill_wOUO2(OH) + 2H+ #log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model log_k = -6.21 # /JOS13/ ### strong-binding sites ### Ill_sOH = Ill_sOH log_K 0.0 Ill_sOH + H+ = Ill_sOH2+ #log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ log_K = 4.9 # /JOS13/ Ill_sOH = Ill_sO- + H+ #log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/ log_K = -6.8 # /JOS13/ # U(VI) Ill_sOH + UO2+2 = Ill_sOUO2+ + H+ #log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model log_k = 2. # /JOS13/ Ill_sOH + UO2+2 + H2O = Ill_sOUO2(OH) + 2H+ #log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model log_k = -4.2 # /JOS13/ Ill_sOH + UO2+2 + 2H2O = Ill_sOUO2(OH)2-1 + 3H+ log_k = -10.9 # /JOS13/ Ill_sOH + UO2+2 + 3H2O = Ill_sOUO2(OH)3-2 + 4H+ log_k = -18.1 # /JOS13/ # U(IV) # Ill_sOH + U+4 + H2O = Ill_sOUOH+2 + 2H+ # log_k = 7.1 # TR 17-11, Tab. A-3 # Ill_sOH + U+4 + 2H2O = Ill_sOU(OH)2+1 + 3H+ # log_k = 3.6 # TR 17-11, Tab. A-3 # Ill_sOH + U+4 + 4H2O = Ill_sOU(OH)4 + 5H+ # log_k = -1.6 # TR 17-11, Tab. A-3 ### Montmorillonite ################################################################################################ ### weak-binding sites ### Mll_wOH = Mll_wOH log_K 0.0 Mll_wOH + H+ = Mll_wOH2+ log_K = 3.98 # /JOS13/ Mll_wOH = Mll_wO- + H+ log_K = -8.42 # /JOS13/ # U(VI) Mll_wOH + UO2+2 = Mll_wOUO2+ + H+ log_k = 0.18 # /JOS13/ Mll_wOH + UO2+2 + H2O = Mll_wOUO2(OH) + 2H+ log_k = -6.22 # /JOS13/ ### strong-binding sites ### Mll_sOH = Mll_sOH log_K 0.0 Mll_sOH + H+ = Mll_sOH2+ log_K = 4.34 # /JOS13/ Mll_sOH = Mll_sO- + H+ log_K = -8.06 # /JOS13/ # U(VI) Mll_sOH + UO2+2 = Mll_sOUO2+ + H+ log_k = 2.94 # /JOS13/ Mll_sOH + UO2+2 + H2O = Mll_sOUO2(OH) + 2H+ log_k = -3.56 # /JOS13/ Mll_sOH + UO2+2 + 2H2O = Mll_sOUO2(OH)2-1 + 3H+ log_k = -11.16 # /JOS13/ Mll_sOH + UO2+2 + 3H2O = Mll_sOUO2(OH)3-2 + 4H+ log_k = -20.66 # /JOS13/ # U(IV) # Mll_sOH + U+4 + H2O = Mll_sOUOH+2 + 2H+ # log_k = 7.7 # TR 17-11, Tab. A-3 # Mll_sOH + U+4 + 2H2O = Mll_sOU(OH)2+1 + 3H+ # log_k = 4.0 # TR 17-11, Tab. A-3 # Mll_sOH + U+4 + 4H2O = Mll_sOU(OH)4 + 5H+ # log_k = -1.4 # TR 17-11, Tab. A-3 ### Chlorite ######################################################################################################### ChlOH = ChlOH log_K 0.0 ChlOH + H+ = ChlOH2+ log_K = 10.2 # /JOS13/ ChlOH + UO2+2 = ChlOUO2+ + H+ log_K = 4.51 # /JOS13/ END