pqc_to_grid <- function(pqc_in, grid) { # Convert the input DataFrame to a matrix pqc_in <- as.matrix(pqc_in) # Flatten the matrix into a vector id_vector <- as.numeric(t(grid)) # Find the matching rows in the matrix row_indices <- match(id_vector, pqc_in[, "ID"]) # Extract the matching rows from pqc_in to size of grid matrix result_mat <- pqc_in[row_indices, ] # Convert the result matrix to a data frame res_df <- as.data.frame(result_mat) # Remove all columns which only contain NaN res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)] # Remove row names rownames(res_df) <- NULL return(res_df) } resolve_pqc_bound <- function(pqc_mat, transport_spec, id) { df <- as.data.frame(pqc_mat, check.names = FALSE) value <- df[df$ID == id, transport_spec] if (is.nan(value)) { value <- 0 } return(value) } add_column_after_position <- function(df, new_col, pos, new_col_name) { # Split the data frame into two parts df_left <- df[, 1:(pos)] df_right <- df[, (pos + 1):ncol(df)] # Add the new column to the left part df_left[[new_col_name]] <- new_col # Combine the left part, new column, and right part df_new <- cbind(df_left, df_right) return(df_new) } add_missing_transport_species <- function(init_grid, new_names, old_size) { # skip the ID column column_index <- old_size + 1 for (name in new_names) { init_grid <- add_column_after_position(init_grid, rep(0, nrow(init_grid)), column_index, name) column_index <- column_index + 1 } return(init_grid) }