DATABASE ########################### SOLUTION_MASTER_SPECIES H H+ -1 H 1.008 # phreeqc/ H(0) H2 0 H # phreeqc/ H(1) H+ -1 0.0 # phreeqc/ E e- 0 0.0 0.0 # phreeqc/ O H2O 0 O 16.0 # phreeqc/ O(0) O2 0 O # phreeqc/ O(-2) H2O 0 0.0 # phreeqc/ Na Na+ 0 Na 22.9898 # phreeqc/ Ba Ba+2 0 Ba 137.34 # phreeqc/ Sr Sr+2 0 Sr 87.62 # phreeqc/ Cl Cl- 0 Cl 35.453 # phreeqc/ S SO4-2 0 SO4 32.064 # phreeqc/ S(6) SO4-2 0 SO4 # phreeqc/ S(-2) HS- 1 S # phreeqc/ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -dw 9.31e-09 # source: phreeqc e- = e- # source: phreeqc H2O = H2O # source: phreeqc Na+ = Na+ -gamma 4.08 0.082 -dw 1.33e-09 -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -0.00333 0.566 # source: phreeqc Ba+2 = Ba+2 -gamma 4 0.153 -dw 8.48e-10 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -0.00835 1 # source: phreeqc Sr+2 = Sr+2 -gamma 5.26 0.121 -dw 7.94e-10 -Vm -0.0157 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -0.0041 1.97 # source: phreeqc Cl- = Cl- -gamma 3.63 0.017 -dw 2.03e-09 -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # source: phreeqc SO4-2 = SO4-2 -gamma 5 -0.04 -dw 1.07e-09 -Vm 8 2.3 -46.04 6.245 3.82 0 0 0 0 1 # source: phreeqc H2O = OH- + H+ -analytical_expression 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-05 -gamma 3.5 0 -dw 5.27e-09 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 # source: phreeqc 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal -dw 2.35e-09 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # source: phreeqc 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -dw 5.13e-09 -Vm 6.52 0.78 0.12 # source: phreeqc SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytical_expression -56.889 0.006473 2307.9 19.8858 -dw 1.33e-09 -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # source: phreeqc HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5 0 -dw 7.31e-10 # source: phreeqc SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.140 kcal -gamma 3.5 0 -dw 1.73e-09 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # source: phreeqc HS- + H+ = H2S -log_k 6.994 -delta_h -5.30 kcal -analytical_expression -11.17 0.02386 3279 -dw 2.1e-09 -Vm 7.81 2.96 -0.46 # source: phreeqc Na+ + OH- = NaOH -log_k -10 # source: phreeqc Na+ + SO4-2 = NaSO4- -log_k 0.7 -delta_h 1.120 kcal -gamma 5.4 0 -dw 1.33e-09 -Vm 1e-05 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # source: phreeqc Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5 0 # source: phreeqc Ba+2 + SO4-2 = BaSO4 -log_k 2.7 # source: phreeqc Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 # source: phreeqc Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.791 -0.9666 6.13 -2.739 -0.001 # source: phreeqc PHASES Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -0.08972 5822 113.08 -Vm 52.9 # source: phreeqc # comment: Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -analytical_expression -7.14 0.00611 75 0 0 -1.79e-05 -Vm 46.4 # source: phreeqc # comment: RATES Celestite # Palandri & Kharaka 2004<--------------------------------change me # PARM(1): reactive surface area # am: acid mechanism, nm: neutral mechanism, bm: base mechanism -start 10 sr_i = SR("Celestite") # saturation ratio, (-)<----------change me 20 moles = 0 # init target variable, (mol) 30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310 40 sa = PARM(1) # reactive surface area, (m2) 100 r = 8.314462 # gas constant, (J K-1 mol-1) 110 dTi = (1 / TK) - (1 / 298.15) # (K-1) 120 ea_am = 23800 # activation energy am, (J mol-1)<-----------change me 130 ea_nm = 0 # activation energy nm, (J mol-1)<-----------change me 140 ea_bm = 0 # activation energy bm, (J mol-1)<-----------change me 150 log_k_am = -5.66 # reaction constant am<-------------------change me rem log_k_nm = -99 # reaction constant nm<-------------------change me rem log_k_bm = -99 # reaction constant bm<-------------------change me 180 n_am = 0.109 # H+ reaction order am<-----------------------change me rem n_bm = 0 # H+ reaction order bm<-----------------------change me 200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am rem nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r) rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm 300 moles = sa * (am) * (1 - sr_i) 310 save moles * time -end Barite # Palandri & Kharaka 2004<-----------------------------------change me # PARM(1): reactive surface area # am: acid mechanism, nm: neutral mechanism, bm: base mechanism -start 10 sr_i = SR("Barite") # saturation ratio, (-)<----------change me 20 moles = 0 # init target variable, (mol) 30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310 40 sa = PARM(1) # reactive surface area, (m2) 100 r = 8.314462 # gas constant, (J K-1 mol-1) 110 dTi = (1 / TK) - (1 / 298.15) # (K-1) 120 ea_am = 30800 # activation energy am, (J mol-1)<---------change me 130 ea_nm = 30800 # activation energy nm, (J mol-1)<---------change me rem ea_bm = 0 # activation energy bm, (J mol-1)<---------change me 150 log_k_am = -6.90 # reaction constant am<-----------------change me 160 log_k_nm = -7.90 # reaction constant nm<-----------------change me rem log_k_bm = -99 # reaction constant bm<-------------------change me 180 n_am = 0.22 # H+ reaction order am<----------------------change me rem n_bm = 0 # H+ reaction order bm<-----------------------change me 200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am 210 nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r) rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm 300 moles = sa * (am + nm) * (1 - sr_i) 310 save moles * time -end END