pqc_to_grid <- function(pqc_in, grid) { # Convert the input DataFrame to a matrix pqc_in <- as.matrix(pqc_in) # Flatten the matrix into a vector id_vector <- as.numeric(t(grid)) # Find the matching rows in the matrix row_indices <- match(id_vector, pqc_in[, "ID"]) # Extract the matching rows from pqc_in to size of grid matrix result_mat <- pqc_in[row_indices, ] # Convert the result matrix to a data frame res_df <- as.data.frame(result_mat) # Remove all columns which only contain NaN res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)] # Remove row names rownames(res_df) <- NULL return(res_df) } resolve_pqc_bound <- function(pqc_mat, transport_spec, id) { df <- as.data.frame(pqc_mat, check.names = FALSE) value <- df[df$ID == id, transport_spec] if (is.nan(value)) { value <- 0 } return(value) } add_missing_transport_species <- function(init_grid, new_names) { # add 'ID' to new_names front, as it is not a transport species but required new_names <- c("ID", new_names) sol_length <- length(new_names) new_grid <- data.frame(matrix(0, nrow = nrow(init_grid), ncol = sol_length)) names(new_grid) <- new_names matching_cols <- intersect(names(init_grid), new_names) # Copy matching columns from init_grid to new_grid new_grid[, matching_cols] <- init_grid[, matching_cols] # Add missing columns to new_grid append_df <- init_grid[, !(names(init_grid) %in% new_names)] new_grid <- cbind(new_grid, append_df) return(new_grid) }