poet/R_lib/init_r_lib.R
2024-11-07 14:22:51 +01:00

113 lines
3.5 KiB
R

### Copyright (C) 2018-2024 Marco De Lucia, Max Luebke (GFZ Potsdam, University of Potsdam)
###
### POET is free software; you can redistribute it and/or modify it under the
### terms of the GNU General Public License as published by the Free Software
### Foundation; either version 2 of the License, or (at your option) any later
### version.
###
### POET is distributed in the hope that it will be useful, but WITHOUT ANY
### WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
### A PARTICULAR PURPOSE. See the GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License along with
### this program; if not, write to the Free Software Foundation, Inc., 51
### Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##' @param pqc_mat matrix, containing IDs and PHREEQC outputs
##' @param grid matrix, zonation referring to pqc_mat$ID
##' @return a data.frame
# pqc_to_grid <- function(pqc_mat, grid) {
# # Convert the input DataFrame to a matrix
# pqc_mat <- as.matrix(pqc_mat)
# # Flatten the matrix into a vector
# id_vector <- as.integer(t(grid))
# # Find the matching rows in the matrix
# row_indices <- match(id_vector, pqc_mat[, "ID"])
# # Extract the matching rows from pqc_mat to size of grid matrix
# result_mat <- pqc_mat[row_indices, ]
# # Convert the result matrix to a data frame
# res_df <- as.data.frame(result_mat)
# # Remove all columns which only contain NaN
# res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
# # Remove row names
# rownames(res_df) <- NULL
# return(res_df)
# }
##' @param pqc_mat matrix, containing IDs and PHREEQC outputs
##' @param grid matrix, zonation referring to pqc_mat$ID
##' @return a data.frame
pqc_to_grid <- function(pqc_mat, grid) {
# Convert the input DataFrame to a matrix
pqc_mat <- as.matrix(pqc_mat)
# Flatten the matrix into a vector
id_vector <- as.integer(t(grid))
# Find the matching rows in the matrix
row_indices <- match(id_vector, pqc_mat[, "ID"])
# Extract the matching rows from pqc_mat to size of grid matrix
result_mat <- pqc_mat[row_indices, ]
# Convert the result matrix to a data frame
res_df <- as.data.frame(result_mat)
# Remove all columns which only contain NaN
# res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
# Remove row names
rownames(res_df) <- NULL
return(res_df)
}
##' @param pqc_mat matrix,
##' @param transport_spec column name of species in pqc_mat
##' @param id
##' @title
##' @return
resolve_pqc_bound <- function(pqc_mat, transport_spec, id) {
df <- as.data.frame(pqc_mat, check.names = FALSE)
value <- df[df$ID == id, transport_spec]
if (is.nan(value)) {
value <- 0
}
return(value)
}
##' @title
##' @param init_grid
##' @param new_names
##' @return
add_missing_transport_species <- function(init_grid, new_names) {
# add 'ID' to new_names front, as it is not a transport species but required
new_names <- c("ID", new_names)
sol_length <- length(new_names)
new_grid <- data.frame(matrix(0, nrow = nrow(init_grid), ncol = sol_length))
names(new_grid) <- new_names
matching_cols <- intersect(names(init_grid), new_names)
# Copy matching columns from init_grid to new_grid
new_grid[, matching_cols] <- init_grid[, matching_cols]
# Add missing columns to new_grid
append_df <- init_grid[, !(names(init_grid) %in% new_names)]
new_grid <- cbind(new_grid, append_df)
return(new_grid)
}