poet/util/data_evaluation/RFun_Eval.R
Max Luebke 0c2597d97f feat: introduce LookupKey and rounding schemes
feat: implement data clustering using PHT

feat: implement interpolation

refactor: use named vector for DHT species definition and significant digits

data: remove unusable input scripts

data: move Phreeqc database to benchmark dir

refactor: rename dolomite benchmark directory

refactor: remove DHT prop type from input script
2023-08-01 18:34:50 +02:00

322 lines
10 KiB
R

## Simple library of functions to assess and visualize the results of the coupled simulations
## Time-stamp: "Last modified 2023-05-29 13:51:21 mluebke"
require(RedModRphree)
require(Rmufits) ## essentially for PlotCartCellData
require(Rcpp)
require(stringr)
curdir <- dirname(sys.frame(1)$ofile) ##path.expand(".")
print(paste("RFun_Eval.R is in ", curdir))
sourceCpp(file = paste0(curdir, "/interpret_keys.cpp"))
# Wrapper around previous sourced Rcpp function
ConvertDHTKey <- function(value) {
rcpp_key_convert(value)
}
ConvertToUInt64 <- function(double_data) {
rcpp_uint64_convert(double_data)
}
## function which reads all simulation results in a given directory
ReadRTSims <- function(dir) {
files_full <- list.files(dir, pattern="iter.*rds", full.names=TRUE)
files_name <- list.files(dir, pattern="iter.*rds", full.names=FALSE)
res <- lapply(files_full, readRDS)
names(res) <- gsub(".rds","",files_name, fixed=TRUE)
return(res[str_sort(names(res), numeric = TRUE)])
}
## function which reads all successive DHT stored in a given directory
ReadAllDHT <- function(dir, new_scheme = TRUE) {
files_full <- list.files(dir, pattern="iter.*dht", full.names=TRUE)
files_name <- list.files(dir, pattern="iter.*dht", full.names=FALSE)
res <- lapply(files_full, ReadDHT, new_scheme = new_scheme)
names(res) <- gsub(".rds","",files_name, fixed=TRUE)
return(res)
}
## function which reads one .dht file and gives a matrix
ReadDHT <- function(file, new_scheme = TRUE) {
conn <- file(file, "rb") ## open for reading in binary mode
if (!isSeekable(conn))
stop("Connection not seekable")
## we first reposition ourselves to the end of the file...
tmp <- seek(conn, where=0, origin = "end")
## ... and then back to the origin so to store the length in bytes
flen <- seek(conn, where=0, origin = "start")
## we read the first 2 integers (4 bytes each) containing dimensions in bytes
dims <- readBin(conn, what="integer", n=2)
## compute dimensions of the data
tots <- sum(dims)
ncol <- tots/8
nrow <- (flen - 8)/tots ## 8 here is 2*sizeof("int")
buff <- readBin(conn, what="double", n=ncol*nrow)
## close connection
close(conn)
res <- matrix(buff, nrow=nrow, ncol=ncol, byrow=TRUE)
if (new_scheme) {
nkeys <- dims[1] / 8
keys <- res[, 1:nkeys - 1]
conv <- apply(keys, 2, ConvertDHTKey)
res[, 1:nkeys - 1] <- conv
}
return(res)
}
## function which reads all successive DHT stored in a given directory
ReadAllPHT <- function(dir, with_info = FALSE) {
files_full <- list.files(dir, pattern="iter.*pht", full.names=TRUE)
files_name <- list.files(dir, pattern="iter.*pht", full.names=FALSE)
res <- lapply(files_full, ReadPHT, with_info = with_info)
names(res) <- gsub(".pht","",files_name, fixed=TRUE)
return(res)
}
## function which reads one .dht file and gives a matrix
ReadPHT <- function(file, with_info = FALSE) {
conn <- file(file, "rb") ## open for reading in binary mode
if (!isSeekable(conn))
stop("Connection not seekable")
## we first reposition ourselves to the end of the file...
tmp <- seek(conn, where=0, origin = "end")
## ... and then back to the origin so to store the length in bytes
flen <- seek(conn, where=0, origin = "start")
## we read the first 2 integers (4 bytes each) containing dimensions in bytes
dims <- readBin(conn, what="integer", n=2)
## compute dimensions of the data
tots <- sum(dims)
ncol <- tots/8
nrow <- (flen - 8)/tots ## 8 here is 2*sizeof("int")
buff <- readBin(conn, what="double", n=ncol*nrow)
## close connection
close(conn)
res <- matrix(buff, nrow=nrow, ncol=ncol, byrow=TRUE)
nkeys <- dims[1] / 8
keys <- res[, 1:nkeys - 1]
timesteps <- res[, nkeys]
conv <- apply(keys, 2, ConvertDHTKey)
#res[, 1:nkeys - 1] <- conv
ndata <- dims[2] / 8
fill_rate <- ConvertToUInt64(res[, nkeys + 1])
buff <- c(conv, timesteps, fill_rate)
if (with_info) {
ndata <- dims[2]/8
visit_count <- ConvertToUInt64(res[, nkeys + ndata])
buff <- c(buff, visit_count)
}
res <- matrix(buff, nrow = nrow, byrow = FALSE)
return(res)
}
## Scatter plots of each variable in the iteration
PlotScatter <- function(sam1, sam2, which=NULL, labs=c("NO DHT", "DHT"), pch=".", cols=3, ...) {
if ((!is.data.frame(sam1)) & ("T" %in% names(sam1)))
sam1 <- sam1$C
if ((!is.data.frame(sam2)) & ("T" %in% names(sam2)))
sam2 <- sam2$C
if (is.numeric(which))
inds <- which
else if (is.character(which))
inds <- match(which, colnames(sam1))
else if (is.null(which))
inds <- seq_along(colnames(sam1))
rows <- nrow(matrix(seq_along(inds), ncol=cols))
par(mfrow=c(rows, cols))
a <- lapply(inds, function(x) {
plot(sam1[,x], sam2[,x], main=colnames(sam1)[x], xlab=labs[1], ylab=labs[2], pch=pch, col="red", ...)
abline(0,1, col="grey", cex=1.5)
})
invisible()
}
##### Some metrics for relative comparison
## Using range as norm
RranRMSE <- function(pred, obs)
sqrt(mean((pred - obs)^2))/abs(max(pred) - min(pred))
## Using max val as norm
RmaxRMSE <- function(pred, obs)
sqrt(mean((pred - obs)^2)/abs(max(pred)))
## Using sd as norm
RsdRMSE <- function(pred, obs)
sqrt(mean((pred - obs)^2))/sd(pred)
## Using mean as norm
RmeanRMSE <- function(pred, obs)
sqrt(mean((pred - obs)^2))/mean(pred)
## Using mean as norm
RAEmax <- function(pred, obs)
mean(abs(pred - obs))/max(pred)
## Max absolute error
MAE <- function(pred, obs)
max(abs(pred - obs))
## workhorse function for ComputeErrors and its use with mapply
AppliedFun <- function(a, b, .fun) mapply(.fun, as.list(a$C), as.list(b$C))
## Compute the diffs between two simulation, iter by iter,
## with a given metric (passed in form of function name to this function)
ComputeErrors <- function(sim1, sim2, FUN=RMSE) {
if (length(sim1)!= length(sim2)) {
cat("The simulations do not have the same length, subsetting to the shortest\n")
a <- min(length(sim1), length(sim2))
sim1 <- sim1[1:a]
sim2 <- sim2[1:a]
}
if (!is.function(match.fun(FUN))) {
cat("Invalid function\n")
}
t(mapply(AppliedFun, sim1, sim2, MoreArgs=list(.fun=FUN)))
}
## Function to display the error progress between 2 simulations
ErrorProgress <- function(mat, ignore, colors, metric, ...) {
if (missing(colors))
colors <- sample(rainbow(ncol(mat)))
if (missing(metric))
metric <- "Metric"
## if the optional argument "ignore" (a character vector) is
## passed, we remove the matching column names
if (!missing(ignore)) {
to_remove <- match(ignore, colnames(mat))
mat <- mat[, -to_remove]
colors <- colors[-to_remove]
}
yc <- mat[nrow(mat),]
par(mar=c(5,4,2,6))
matplot(mat, type="l", lty=1, lwd=2, col=colors, xlab="iteration", ylab=metric, ...)
mtext(colnames(mat), side = 4, line = 2, outer = FALSE, at = yc, adj = 0.5, col = colors, las=2)
}
## Function which exports all simulations to ParaView's .vtu Requires
## package RcppVTK
ExportToParaview <- function(vtu, nameout, results) {
require(RcppVTK)
n <- length(results)
vars <- colnames(results[[1]])
## strip eventually present ".vtu" from nameout
nameout <- sub(".vtu", "", nameout, fixed=TRUE)
namesteps <- paste0(nameout, ".", sprintf("%04d",seq(1,n)), ".vtu")
for (step in seq_along(results)) {
file.copy(from=vtu, to=namesteps[step], overwrite = TRUE)
cat(paste("Saving step ", step, " in file ", namesteps[step], "\n"))
ret <- ExportMatrixToVTU (fin=vtu, fout=namesteps[step], names=colnames(results[[step]]), mat=results[[step]])
}
invisible(ret)
}
## Version of Rmufits::PlotCartCellData with the ability to fix the
## "breaks" for color coding of 2D simulations
Plot2DCellData <- function (data, grid, nx, ny, contour = TRUE,
nlevels = 12, breaks, palette = "heat.colors",
rev.palette = TRUE, scale = TRUE, plot.axes=TRUE, ...) {
if (!missing(grid)) {
xc <- unique(sort(grid$cell$XCOORD))
yc <- unique(sort(grid$cell$YCOORD))
nx <- length(xc)
ny <- length(yc)
if (!length(data) == nx * ny)
stop("Wrong nx, ny or grid")
} else {
xc <- seq(1, nx)
yc <- seq(1, ny)
}
z <- matrix(round(data, 6), ncol = nx, nrow = ny, byrow = TRUE)
pp <- t(z[rev(seq(1, nrow(z))), ])
if (missing(breaks)) {
breaks <- pretty(data, n = nlevels)
}
breakslen <- length(breaks)
colors <- do.call(palette, list(n = breakslen - 1))
if (rev.palette)
colors <- rev(colors)
if (scale) {
par(mfrow = c(1, 2))
nf <- layout(matrix(c(1, 2), 1, 2, byrow = TRUE), widths = c(4,
1))
}
par(las = 1, mar = c(5, 5, 3, 1))
image(xc, yc, pp, xlab = "X [m]", ylab = "Y[m]", las = 1, asp = 1,
breaks = breaks, col = colors, axes = FALSE, ann=plot.axes,
...)
if (plot.axes) {
axis(1)
axis(2)
}
if (contour)
contour(unique(sort(xc)), unique(sort(yc)), pp, breaks = breaks,
add = TRUE)
if (scale) {
par(las = 1, mar = c(5, 1, 5, 5))
PlotImageScale(data, breaks = breaks, add.axis = FALSE,
axis.pos = 4, col = colors)
axis(4, at = breaks)
}
invisible(pp)
}
PlotAsMP4 <- function(data, nx, ny, to_plot, out_dir, name,
contour = FALSE, scale = FALSE, framerate = 30) {
sort_data <- data[str_sort(names(data), numeric = TRUE)]
plot_data <- lapply(sort_data, function(x) x$C[[to_plot]])
pad_size <- ceiling(log10(length(plot_data)))
dir.create(out_dir, showWarnings = FALSE)
output_files <- paste0(out_dir, "/", name, "_%0", pad_size, "d.png")
output_mp4 <- paste0(out_dir, "/", name, ".mp4")
png(output_files,
width = 297, height = 210, units = "mm",
res = 100
)
for (i in 1:length(plot_data)) {
Rmufits::PlotCartCellData(plot_data[[i]], nx = nx, ny = ny, contour = contour, scale = scale)
}
dev.off()
ffmpeg_command <- paste(
"ffmpeg -framerate", framerate, "-i", output_files,
"-c:v libx264 -crf 22", output_mp4
)
unlink(output_mp4)
system(ffmpeg_command)
}