mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-15 12:28:22 +01:00
91 lines
3.4 KiB
R
91 lines
3.4 KiB
R
## Time-stamp: "Last modified 2024-05-30 13:27:06 delucia"
|
|
|
|
## load a pretrained model from tensorflow file
|
|
## Use the global variable "ai_surrogate_base_path" when using file paths
|
|
## relative to the input script
|
|
initiate_model <- function() {
|
|
require(keras3)
|
|
require(tensorflow)
|
|
init_model <- normalizePath(paste0(ai_surrogate_base_path,
|
|
"barite_50ai_all.keras"))
|
|
Model <- keras3::load_model(init_model)
|
|
msgm("Loaded model:")
|
|
print(str(Model))
|
|
return(Model)
|
|
}
|
|
|
|
scale_min_max <- function(x, min, max, backtransform) {
|
|
if (backtransform) {
|
|
return((x * (max - min)) + min)
|
|
} else {
|
|
return((x - min) / (max - min))
|
|
}
|
|
}
|
|
|
|
minmax <- list(min = c(H = 111.012433592824, O = 55.5062185549492, Charge = -3.1028354471876e-08,
|
|
Ba = 1.87312878574393e-141, Cl = 0, `S(6)` = 4.24227510643685e-07,
|
|
Sr = 0.00049382996130541, Barite = 0.000999542409828586, Celestite = 0.244801877115968),
|
|
max = c(H = 111.012433679682, O = 55.5087003521685, Charge = 5.27666636082035e-07,
|
|
Ba = 0.0908849779513762, Cl = 0.195697626449355, `S(6)` = 0.000620774752665846,
|
|
Sr = 0.0558680070692722, Barite = 0.756779139057097, Celestite = 1.00075422160624
|
|
))
|
|
|
|
preprocess <- function(df) {
|
|
if (!is.data.frame(df))
|
|
df <- as.data.frame(df, check.names = FALSE)
|
|
|
|
as.data.frame(lapply(colnames(df),
|
|
function(x) scale_min_max(x=df[x],
|
|
min=minmax$min[x],
|
|
max=minmax$max[x],
|
|
backtransform=FALSE)),
|
|
check.names = FALSE)
|
|
}
|
|
|
|
postprocess <- function(df) {
|
|
if (!is.data.frame(df))
|
|
df <- as.data.frame(df, check.names = FALSE)
|
|
|
|
as.data.frame(lapply(colnames(df),
|
|
function(x) scale_min_max(x=df[x],
|
|
min=minmax$min[x],
|
|
max=minmax$max[x],
|
|
backtransform=TRUE)),
|
|
check.names = FALSE)
|
|
}
|
|
|
|
mass_balance <- function(predictors, prediction) {
|
|
dBa <- abs(prediction$Ba + prediction$Barite -
|
|
predictors$Ba - predictors$Barite)
|
|
dSr <- abs(prediction$Sr + prediction$Celestite -
|
|
predictors$Sr - predictors$Celestite)
|
|
return(dBa + dSr)
|
|
}
|
|
|
|
validate_predictions <- function(predictors, prediction) {
|
|
epsilon <- 1E-7
|
|
mb <- mass_balance(predictors, prediction)
|
|
msgm("Mass balance mean:", mean(mb))
|
|
msgm("Mass balance variance:", var(mb))
|
|
ret <- mb < epsilon
|
|
msgm("Rows where mass balance meets threshold", epsilon, ":",
|
|
sum(ret))
|
|
return(ret)
|
|
}
|
|
|
|
training_step <- function(model, predictor, target, validity) {
|
|
msgm("Starting incremental training:")
|
|
|
|
## x <- as.matrix(predictor)
|
|
## y <- as.matrix(target[colnames(x)])
|
|
|
|
history <- model %>% keras3::fit(x = data.matrix(predictor),
|
|
y = data.matrix(target),
|
|
epochs = 10, verbose=1)
|
|
|
|
keras3::save_model(model,
|
|
filepath = paste0(out_dir, "/current_model.keras"),
|
|
overwrite=TRUE)
|
|
return(model)
|
|
}
|