poet/R_lib/init_r_lib.R

123 lines
3.3 KiB
R

has_foreach <- require(foreach)
has_doParallel <- require(doParallel)
seq_pqc_to_grid <- function(pqc_in, grid) {
# Convert the input DataFrame to a matrix
pqc_in <- as.matrix(pqc_in)
# Flatten the matrix into a vector
id_vector <- as.numeric(t(grid))
# Initialize an empty matrix to store the results
# result_mat <- matrix(NA, nrow = length(id_vector), ncol = ncol(pqc_in))
row_indices <- match(id_vector, pqc_in[, "ID"])
result_mat <- pqc_in[row_indices, ]
# Iterate over each ID in the vector
# for (i in seq_along(id_vector)) {
# # Find the matching row in the matrix
# # matching_row <- pqc_in[pqc_in[, "ID"] == i, ]
# # Append the matching row to the result matrix
# result_mat[i, ] <- pqc_in[pqc_in[, "ID"] == i, ]
# }
# Convert the result matrix to a data frame
res_df <- as.data.frame(result_mat)
# Remove all columns which only contain NaN
res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
# Remove row names
rownames(res_df) <- NULL
return(res_df)
}
par_pqc_to_grid <- function(pqc_in, grid) {
# Convert the input DataFrame to a matrix
dt <- as.matrix(pqc_in)
# Flatten the matrix into a vector
id_vector <- as.vector(t(grid))
# Initialize an empty matrix to store the results
# result_mat <- matrix(nrow = 0, ncol = ncol(dt))
# Set up parallel processing
num_cores <- detectCores()
cl <- makeCluster(num_cores)
registerDoParallel(cl)
# Iterate over each ID in the vector in parallel
result_mat <- foreach(id_mat = id_vector, .combine = rbind) %dopar% {
# Find the matching row in the matrix
matching_row <- dt[dt[, "ID"] == id_mat, ]
# Return the matching row
matching_row
}
# Stop the parallel processing
stopCluster(cl)
# Convert the result matrix to a data frame
res_df <- as.data.frame(result_mat)
# Remove all columns which only contain NaN
res_df <- res_df[, colSums(is.na(res_df)) != nrow(res_df)]
# Remove row names
rownames(res_df) <- NULL
return(res_df)
}
pqc_to_grid <- function(pqc_in, grid) {
# if (has_doParallel && has_foreach) {
# print("Using parallel grid creation")
# return(par_pqc_to_grid(pqc_in, grid))
# } else {
print("Using sequential grid creation")
return(seq_pqc_to_grid(pqc_in, grid))
# }
}
resolve_pqc_bound <- function(pqc_mat, transport_spec, id) {
df <- as.data.frame(pqc_mat, check.names = FALSE)
value <- df[df$ID == id, transport_spec]
if (is.nan(value)) {
value <- 0
}
return(value)
}
add_column_after_position <- function(df, new_col, pos, new_col_name) {
# Split the data frame into two parts
df_left <- df[, 1:(pos)]
df_right <- df[, (pos + 1):ncol(df)]
# Add the new column to the left part
df_left[[new_col_name]] <- new_col
# Combine the left part, new column, and right part
df_new <- cbind(df_left, df_right)
return(df_new)
}
add_missing_transport_species <- function(init_grid, new_names, old_size) {
# skip the ID column
column_index <- old_size + 1
for (name in new_names) {
init_grid <- add_column_after_position(init_grid, rep(0, nrow(init_grid)), column_index, name)
column_index <- column_index + 1
}
return(init_grid)
}