poet/src/Chemistry/SurrogateModels/AI_functions.cpp
2025-01-09 21:00:01 +01:00

1236 lines
46 KiB
C++

#include "AI_functions.hpp"
#include "Base/Macros.hpp"
#include "naaice_ap2.h"
#include "poet.hpp"
#include "serializer.hpp"
#include <Eigen/Dense>
#include <Eigen/src/Core/Matrix.h>
#include <Python.h>
#include <Rmath.h>
#include <condition_variable>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <mutex>
#include <numpy/arrayobject.h>
#include <string>
#include <thread>
#include <vector>
using namespace std;
namespace poet {
/**
* @brief Loads the Python interpreter and functions
* @param functions_file_path Path to the Python file where the AI surrogate
* functions are defined
* @return 0 if function was succesful
*/
int Python_Keras_setup(std::string functions_file_path,
std::string cuda_src_dir) {
// Initialize Python functions
Py_Initialize();
// Import numpy functions
_import_array();
PyRun_SimpleString(("cuda_dir = \"" + cuda_src_dir + "\"").c_str());
FILE *fp = fopen(functions_file_path.c_str(), "r");
int py_functions_initialized =
PyRun_SimpleFile(fp, functions_file_path.c_str());
fclose(fp);
if (py_functions_initialized != 0) {
PyErr_Print();
throw std::runtime_error(
std::string("AI surrogate Python functions could not be loaded.") +
"Are tensorflow and numpy installed?");
}
return py_functions_initialized;
}
/**
* @brief Loads the user-supplied Keras model
* @param model_file_path Path to a .keras file that the user must supply as
* a variable "model_file_path" in the R input script
* @return 0 if function was succesful
*/
int Python_Keras_load_model(std::string model, std::string model_reactive,
bool use_clustering) {
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
// Initialize Keras default model
int py_model_loaded =
PyRun_SimpleString(("model = initiate_model(\"" + model + "\")").c_str());
if (py_model_loaded != 0) {
PyErr_Print();
throw std::runtime_error("Keras model could not be loaded from: " + model);
}
if (use_clustering) {
// Initialize second Keras model that will be used for the "reaction"
// cluster
py_model_loaded = PyRun_SimpleString(
("model_reactive = initiate_model(\"" + model_reactive + "\")")
.c_str());
if (py_model_loaded != 0) {
PyErr_Print();
throw std::runtime_error("Keras model could not be loaded from: " +
model_reactive);
}
}
// Release the Python GIL
PyGILState_Release(gstate);
return py_model_loaded;
}
/**
* @brief Converts the std::vector 2D matrix representation of a POET Field
* object to a numpy array for use in the Python AI surrogate functions
* @param field 2D-Matrix with the content of a Field object
* @return Numpy representation of the input vector
*/
PyObject* vector_to_numpy_array(const std::vector<std::vector<double>>& field) {
npy_intp dims[2] = {static_cast<npy_intp>(field.size()), // Zeilenanzahl
static_cast<npy_intp>(field[0].size())}; // Spaltenanzahl
PyObject* np_array = PyArray_SimpleNew(2, dims, NPY_FLOAT64);
double* data = static_cast<double*>(PyArray_DATA((PyArrayObject*)np_array));
// Schreibe die Daten in das Numpy-Array (korrekte Reihenfolge)
for (size_t i = 0; i < field.size(); ++i) {
for (size_t j = 0; j < field[i].size(); ++j) {
data[i * field[0].size() + j] = field[i][j]; // Korrekte Indizes
}
}
return np_array;
}
/**
* @brief Converts a Pyton matrix object to a std::vector vector
* @param py_matrix Pyobject that must be a 2D matrix
* @result Vector that can be used similar to the return value of the Field
* object Field.AsVector() method.
*/
std::vector<double> numpy_array_to_vector(PyObject *py_array) {
std::vector<double> result;
if (!PyArray_Check(py_array)) {
std::cerr << "The model's output is not a numpy array." << std::endl;
return result;
}
// Cast generic PyObject to PyArrayObject
PyArrayObject *np_array = reinterpret_cast<PyArrayObject *>(py_array);
// Get shape
int numDims = PyArray_NDIM(np_array);
npy_intp *shape = PyArray_SHAPE(np_array);
if (numDims != 2) {
std::cerr << "The model's predictions are not a 2D matrix." << std::endl;
return result;
}
// Copy data into std::vector format
double *data = static_cast<double *>(PyArray_DATA(np_array));
npy_intp size = PyArray_SIZE(np_array);
result.resize(size);
std::copy(data, data + size, result.begin());
return result;
}
/**
* @brief Uses the Python Keras functions to calculate predictions from a neural
* network.
* @param x 2D-Matrix with the content of a Field object
* @param batch_size size for mini-batches that are used in the Keras
* model.predict() method
* @return Predictions that the neural network made from the input values x. The
* predictions are represented as a vector similar to the representation from
* the Field.AsVector() method
*/
std::vector<double> Python_Keras_predict(std::vector<std::vector<double>> &x,
int batch_size,
std::vector<int> &cluster_labels) {
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
// Prepare data for Python
PyObject *py_df_x = vector_to_numpy_array(x);
// Prepare cluster label vector for Python
PyObject *py_cluster_list = PyList_New(cluster_labels.size());
for (size_t i = 0; i < cluster_labels.size(); i++) {
PyObject *py_int = PyLong_FromLong(cluster_labels[i]);
PyList_SET_ITEM(py_cluster_list, i, py_int);
}
// Get the model and inference function from the global python interpreter
PyObject *py_main_module = PyImport_AddModule("__main__");
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
PyObject *py_keras_model = PyDict_GetItemString(py_global_dict, "model");
PyObject *py_inference_function =
PyDict_GetItemString(py_global_dict, "prediction_step");
// Get secod model if clustering is used
PyObject *py_keras_model_reactive = Py_None;
;
if (cluster_labels.size() > 0) {
py_keras_model_reactive =
PyDict_GetItemString(py_global_dict, "model_reactive");
}
// Build the function arguments as four python objects and an integer
PyObject *args =
Py_BuildValue("(OOOOi)", py_keras_model, py_keras_model_reactive, py_df_x,
py_cluster_list, batch_size);
// Call the Python inference function
PyObject *py_predictions = PyObject_CallObject(py_inference_function, args);
// Check py_rv and return as 2D vector
std::vector<double> predictions = numpy_array_to_vector(py_predictions);
// Clean up
PyErr_Print();
Py_XDECREF(py_df_x);
Py_XDECREF(py_cluster_list);
Py_XDECREF(args);
Py_XDECREF(py_predictions);
// Release the Python GIL
PyGILState_Release(gstate);
return predictions;
}
/**
* @brief Uses Eigen for fast inference with the weights and biases of a neural
* network. This function assumes ReLU activation for each layer.
* @param input_batch Batch of input data that must fit the size of the neural
* networks input layer
* @param model Struct of aligned Eigen vectors that hold the neural networks
* weights and biases. Only supports simple fully connected feed forward
* networks.
* @return The batch of predictions made with the neural network weights and
* biases and the data in input_batch
*/
Eigen::MatrixXd
eigen_inference_batched(const Eigen::Ref<const Eigen::MatrixXd> &input_batch,
const EigenModel &model) {
Eigen::MatrixXd current_layer = input_batch;
// Process all hidden layers
for (size_t layer = 0; layer < model.weight_matrices.size() - 1; ++layer) {
current_layer = (model.weight_matrices[layer] * current_layer);
current_layer = current_layer.colwise() + model.biases[layer];
current_layer = current_layer.array().max(0.0);
}
// Process output layer (without ReLU)
size_t output_layer = model.weight_matrices.size() - 1;
return (model.weight_matrices[output_layer] * current_layer).colwise() +
model.biases[output_layer];
}
/**
* @brief Uses the Eigen representation of the two different Keras model weights
* for fast inference
* @param model The model for the non reactive cluster of the field (label 0)
* @param model_reactive The model for the non reactive cluster of the field
* (label 1)
* @param x 2D-Matrix with the content of a Field object
* @param batch_size size for mini-batches that are used in the Keras
* model.predict() method
* @param Eigen_model_mutex Mutex that locks the model during inference and
* prevents updaties from the training thread
* @param cluster_labels K-Means cluster label dor each row in the field
* @return Predictions that the neural network made from the input values x. The
* predictions are represented as a vector similar to the representation from
* the Field.AsVector() method
*/
std::vector<double> Eigen_predict_clustered(const EigenModel &model,
const EigenModel &model_reactive,
std::vector<std::vector<double>> &x,
int batch_size,
std::mutex *Eigen_model_mutex,
std::vector<int> &cluster_labels) {
const int num_samples = x[0].size();
const int num_features = x.size();
if (num_features != model.weight_matrices[0].cols() ||
num_features != model_reactive.weight_matrices[0].cols()) {
throw std::runtime_error(
"Input data size " + std::to_string(num_features) +
" does not match model input layer sizes" +
std::to_string(model.weight_matrices[0].cols()) + " / " +
std::to_string(model_reactive.weight_matrices[0].cols()));
}
// Convert input data to Eigen matrix
Eigen::MatrixXd full_input_matrix(num_features, num_samples);
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 0; j < num_features; ++j) {
full_input_matrix(j, i) = x[j][i];
}
}
// Create indices for each cluster
std::vector<int> cluster_0_indices, cluster_1_indices;
for (size_t i = 0; i < cluster_labels.size(); ++i) {
if (cluster_labels[i] == 0) {
cluster_0_indices.push_back(i);
} else {
cluster_1_indices.push_back(i);
}
}
// Prepare matrices for each cluster
Eigen::MatrixXd input_matrix(num_features, cluster_0_indices.size());
Eigen::MatrixXd input_matrix_reactive(num_features, cluster_1_indices.size());
// Split data according to cluster labels
for (size_t i = 0; i < cluster_0_indices.size(); ++i) {
input_matrix.col(i) = full_input_matrix.col(cluster_0_indices[i]);
}
for (size_t i = 0; i < cluster_1_indices.size(); ++i) {
input_matrix_reactive.col(i) = full_input_matrix.col(cluster_1_indices[i]);
}
// Process each cluster
std::vector<double> result(num_samples * model.weight_matrices.back().rows());
Eigen_model_mutex->lock();
if (!cluster_0_indices.empty()) {
int num_batches_0 =
std::ceil(static_cast<double>(cluster_0_indices.size()) / batch_size);
for (int batch = 0; batch < num_batches_0; ++batch) {
int start_idx = batch * batch_size;
int end_idx = std::min((batch + 1) * batch_size,
static_cast<int>(cluster_0_indices.size()));
int current_batch_size = end_idx - start_idx;
Eigen::MatrixXd batch_data =
input_matrix.block(0, start_idx, num_features, current_batch_size);
Eigen::MatrixXd batch_result = eigen_inference_batched(batch_data, model);
// Store results in their original positions
for (size_t i = 0; i < current_batch_size; ++i) {
int original_idx = cluster_0_indices[start_idx + i];
for (size_t j = 0; j < batch_result.rows(); ++j) {
result[original_idx * batch_result.rows() + j] = batch_result(j, i);
}
}
}
}
// Process cluster 1
if (!cluster_1_indices.empty()) {
int num_batches_1 =
std::ceil(static_cast<double>(cluster_1_indices.size()) / batch_size);
for (int batch = 0; batch < num_batches_1; ++batch) {
int start_idx = batch * batch_size;
int end_idx = std::min((batch + 1) * batch_size,
static_cast<int>(cluster_1_indices.size()));
int current_batch_size = end_idx - start_idx;
Eigen::MatrixXd batch_data = input_matrix_reactive.block(
0, start_idx, num_features, current_batch_size);
Eigen::MatrixXd batch_result =
eigen_inference_batched(batch_data, model_reactive);
// Store results in their original positions
for (size_t i = 0; i < current_batch_size; ++i) {
int original_idx = cluster_1_indices[start_idx + i];
for (size_t j = 0; j < batch_result.rows(); ++j) {
result[original_idx * batch_result.rows() + j] = batch_result(j, i);
}
}
}
}
Eigen_model_mutex->unlock();
return result;
}
/**
* @brief Uses the Eigen representation of the tKeras model weights for fast
* inference
* @param model The model weights and biases
* @param x 2D-Matrix with the content of a Field object
* @param batch_size size for mini-batches that are used in the Keras
* model.predict() method
* @param Eigen_model_mutex Mutex that locks the model during inference and
* prevents updaties from the training thread
* @return Predictions that the neural network made from the input values x. The
* predictions are represented as a vector similar to the representation from
* the Field.AsVector() method
*/
std::vector<double> Eigen_predict(const EigenModel &model,
std::vector<std::vector<double>> x,
int batch_size,
std::mutex *Eigen_model_mutex) {
// Convert input data to Eigen matrix
const int num_samples = x[0].size();
const int num_features = x.size();
Eigen::MatrixXd full_input_matrix(num_features, num_samples);
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 0; j < num_features; ++j) {
full_input_matrix(j, i) = x[j][i];
}
}
std::vector<double> result;
result.reserve(num_samples * num_features);
if (num_features != model.weight_matrices[0].cols()) {
throw std::runtime_error("Input data size " + std::to_string(num_features) +
" does not match model input layer of size " +
std::to_string(model.weight_matrices[0].cols()));
}
int num_batches = std::ceil(static_cast<double>(num_samples) / batch_size);
Eigen_model_mutex->lock();
for (int batch = 0; batch < num_batches; ++batch) {
int start_idx = batch * batch_size;
int end_idx = std::min((batch + 1) * batch_size, num_samples);
int current_batch_size = end_idx - start_idx;
// Extract the current input data batch
Eigen::MatrixXd batch_data(num_features, current_batch_size);
batch_data =
full_input_matrix.block(0, start_idx, num_features, current_batch_size);
// Predict
batch_data = eigen_inference_batched(batch_data, model);
result.insert(result.end(), batch_data.data(),
batch_data.data() + batch_data.size());
}
Eigen_model_mutex->unlock();
return result;
}
/**
* @brief Appends data from one matrix (column major
* std::vector<std::vector<double>>) to another
* @param training_data_buffer Matrix that the values are appended to
* @param new_values Matrix that is appended
*/
void training_data_buffer_append(
std::vector<std::vector<double>> &training_data_buffer,
std::vector<std::vector<double>> &new_values) {
// Initialize training data buffer if empty
if (training_data_buffer.size() == 0) {
training_data_buffer = new_values;
} else { // otherwise append
for (size_t col = 0; col < training_data_buffer.size(); col++) {
training_data_buffer[col].insert(training_data_buffer[col].end(),
new_values[col].begin(),
new_values[col].end());
}
}
}
/**
* @brief Appends data from one int vector to another based on a mask vector
* @param labels Vector that the values are appended to
* @param new_labels Values that are appended
* @param validity Mask vector that defines how many and which values are
* appended
*/
void cluster_labels_append(std::vector<int> &labels_buffer,
std::vector<int> &new_labels,
std::vector<int> validity) {
// Calculate new buffer size from number of valid elements in mask
int n_invalid = validity.size();
for (size_t i = 0; i < validity.size(); i++) {
n_invalid -= validity[i];
}
// Resize label vector to hold non valid elements
int end_index = labels_buffer.size();
int new_size = end_index + n_invalid;
labels_buffer.resize(new_size);
// Iterate over mask to transfer cluster labels
for (size_t i = 0; i < validity.size(); ++i) {
// Append only the labels of invalid rows
if (!validity[i]) {
labels_buffer[end_index] = new_labels[i];
end_index++;
}
}
}
/**
* @brief Uses the Python environment with Keras' default functions to train the
* model
* @param x Training data features
* @param y Training data targets
* @param params Global runtime paramters
*/
void Python_Keras_train(std::vector<std::vector<double>> &x,
std::vector<std::vector<double>> &y, int train_cluster,
std::string model_name,
const RuntimeParameters &params) {
// Prepare data for python
PyObject *py_df_x = vector_to_numpy_array(x);
PyObject *py_df_y = vector_to_numpy_array(y);
// Make sure that model output file name .keras file
std::string model_path = params.save_model_path;
if (!model_path.empty()) {
if (model_path.length() >= 6 &&
model_path.substr(model_path.length() - 6) != ".keras") {
model_path += ".keras";
}
}
// Choose the correct model to train if clustering is used
if (train_cluster == 1) {
if (!model_path.empty()) {
model_path.insert(model_path.length() - 6, "_reaction");
std::cout << "MODEL SAVED AS:" << model_path << std::endl;
}
}
// Get the model and training function from the global python interpreter
PyObject *py_main_module = PyImport_AddModule("__main__");
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
PyObject *py_keras_model =
PyDict_GetItemString(py_global_dict, model_name.c_str());
PyObject *py_training_function =
PyDict_GetItemString(py_global_dict, "training_step");
// Build the function arguments as four python objects and an integer
PyObject *args = Py_BuildValue("(OOOiis)", py_keras_model, py_df_x, py_df_y,
params.batch_size, params.training_epochs,
model_path.c_str());
// Call the Python training function
PyObject *py_rv = PyObject_CallObject(py_training_function, args);
// Clean up
PyErr_Print();
Py_DECREF(py_df_x);
Py_DECREF(py_df_y);
Py_DECREF(args);
}
/**
* @brief Function for threadsafe parallel training and weight updating.
* The function waits conditionally until the training data buffer is full.
* It then clears the buffer and starts training, after training it writes the
* new weights to the Eigen model.
* @param Eigen_model Pointer to the EigenModel struct that will be updates with
* new weights
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
* struct
* @param training_data_buffer Pointer to the Training data struct with which
* the model is trained
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
* training data struct
* @param training_data_buffer_full Conditional waiting variable with wich the
* main thread signals when a training run can start
* @param start_training Conditional waiting predicate to mitigate against
* spurious wakeups
* @param end_training Signals end of program to wind down thread gracefully
* @param params Global runtime paramters
* @return 0 if function was succesful
*/
void parallel_training(EigenModel *Eigen_model,
EigenModel *Eigen_model_reactive,
std::mutex *Eigen_model_mutex,
TrainingData *training_data_buffer,
std::mutex *training_data_buffer_mutex,
std::condition_variable *training_data_buffer_full,
bool *start_training, bool *end_training,
const RuntimeParameters &params) {
while (true) {
// Conditional waiting:
// - Sleeps until a signal arrives on training_data_buffer_full
// - Releases the lock on training_data_buffer_mutex while sleeping
// - Lambda function with start_training checks if it was a spurious wakeup
// - Reaquires the lock on training_data_buffer_mutex after waking up
// - If start_training has been set to true while the thread was active, it
// does NOT
// wait for a signal on training_data_buffer_full but starts the next
// round immediately.
// n_cluster_reactive: number of elements in the reactive cluster
// buffer_size: size of the whole buffer of training data
// params.training_data_size: number of elements required to start online training
std::unique_lock<std::mutex> lock(*training_data_buffer_mutex);
training_data_buffer_full->wait(
lock, [start_training] { return *start_training; });
// Return if program is about to end
if (*end_training) {
return;
}
// Get the necessary training data
std::cout << "AI: Training thread: Getting training data" << std::endl;
// Initialize training data input and targets
std::vector<std::vector<double>> inputs(
training_data_buffer->x.size(),
std::vector<double>(params.training_data_size));
std::vector<std::vector<double>> targets(
training_data_buffer->x.size(),
std::vector<double>(params.training_data_size));
int buffer_size = training_data_buffer->x[0].size();
// If clustering is used, check the current cluster
int n_cluster_reactive = 0;
int train_cluster =
-1; // Default value for non clustered training (all data is used)
if (params.use_clustering) {
for (size_t i = 0; i < buffer_size; i++) {
n_cluster_reactive += training_data_buffer->cluster_labels[i];
}
train_cluster = n_cluster_reactive >= params.training_data_size;
}
int buffer_row = 0;
int copied_row = 0;
while (copied_row < params.training_data_size) {
if ((train_cluster == -1) ||
(train_cluster == training_data_buffer->cluster_labels[buffer_row])) {
for (size_t col = 0; col < training_data_buffer->x.size(); col++) {
// Copy and remove from training data buffer
inputs[col][copied_row] = training_data_buffer->x[col][buffer_row];
targets[col][copied_row] = training_data_buffer->y[col][buffer_row];
training_data_buffer->x[col].erase(
training_data_buffer->x[col].begin() + buffer_row);
training_data_buffer->y[col].erase(
training_data_buffer->y[col].begin() + buffer_row);
}
// Remove from cluster label buffer
if (params.use_clustering) {
training_data_buffer->cluster_labels.erase(
training_data_buffer->cluster_labels.begin() + buffer_row);
}
copied_row++;
} else {
buffer_row++;
}
}
// Set the waiting predicate to immediately continue training if enough
// elements of any cluster remain
if (train_cluster == 1) {
*start_training =
// if clustering is active, check if after one training run still
// enough enough data of at least one cluster is left
((n_cluster_reactive - params.training_data_size) >=
params.training_data_size) ||
((buffer_size - n_cluster_reactive) >= params.training_data_size);
} else {
*start_training =
// if no clustering is active, check if there are still
// enough data for another training run
(buffer_size - n_cluster_reactive - params.training_data_size) >=
params.training_data_size;
}
// update number of training runs
training_data_buffer->n_training_runs += 1;
// Unlock the training_data_buffer_mutex
lock.unlock();
std::string model_name = "model";
if (train_cluster == 1) {
model_name = "model_reactive";
}
std::cout << "AI: Training thread: Start training " << model_name
<< std::endl;
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
// Start training
Python_Keras_train(inputs, targets, train_cluster, model_name, params);
if (!params.use_Keras_predictions) {
std::cout << "AI: Training thread: Update shared model weights"
<< std::endl;
std::vector<std::vector<std::vector<double>>> cpp_weights =
Python_Keras_get_weights(model_name);
Eigen_model_mutex->lock();
if (train_cluster == 1) {
update_weights(Eigen_model_reactive, cpp_weights);
} else {
update_weights(Eigen_model, cpp_weights);
}
Eigen_model_mutex->unlock();
}
// Release the Python GIL
PyGILState_Release(gstate);
std::cout << "AI: Training thread: Finished training, waiting for new data"
<< std::endl;
}
}
void naa_training(EigenModel *Eigen_model, EigenModel *Eigen_model_reactive,
std::mutex *Eigen_model_mutex,
TrainingData *training_data_buffer,
std::mutex *training_data_buffer_mutex,
std::condition_variable *training_data_buffer_full,
bool *start_training, bool *end_training,
const RuntimeParameters &params, naa_handle *handle){
fprintf(stdout, "In naa_training\n");
// initialize models with weights from pretrained keras model
// declare memory regions for model weights, training and target data
PyGILState_STATE gstate = PyGILState_Ensure();
Eigen_model_mutex->lock();
std::vector<std::vector<std::vector<double>>> modelWeight =
Python_Keras_get_weights("model");
std::vector<std::vector<std::vector<double>>> modelWeightReactive;
update_weights(Eigen_model, modelWeight);
if(params.use_clustering == true){
modelWeightReactive = Python_Keras_get_weights("model_reactive"); // ? correct
update_weights(Eigen_model_reactive, modelWeightReactive);
}
Eigen_model_mutex->unlock();
PyGILState_Release(gstate);
// Initialize training data input and targets
std::vector<std::vector<double>> inputs(
Eigen_model->biases[Eigen_model->biases.size()-1].size(), // number of species
std::vector<double>(params.training_data_size));
std::vector<std::vector<double>> targets(
Eigen_model->biases[Eigen_model->biases.size()-1].size(),
std::vector<double>(params.training_data_size));
// determine size for required memory regions
size_t modelSize = calculateStructSize(Eigen_model, 'E');
size_t modelSizeReactive = calculateStructSize(Eigen_model_reactive, 'E');
modelSize = modelSize > modelSizeReactive ? modelSize : modelSizeReactive;
size_t trainingDataSize = calculateStructSize(&inputs, 'T');
size_t targetDataSize = calculateStructSize(&targets, 'T');
std::cout << "model size: " << modelSize << std::endl;
std::cout << "training data size: " << trainingDataSize << std::endl;
std::cout << "target data size: " << targetDataSize << std::endl;
char *serializedModel = (char *)calloc(modelSize, sizeof(char));
if (serializedModel == NULL) {
exit(EXIT_FAILURE);
}
char *serializedTrainingData = (char *)calloc(trainingDataSize, sizeof(char));
if (serializedTrainingData == NULL) {
exit(EXIT_FAILURE);
}
char *serializedTargetData = (char *)calloc(targetDataSize, sizeof(char));
if (serializedTargetData == NULL) {
exit(EXIT_FAILURE);
}
// create memory regions
struct naa_param_t input_regions[] = {
{(void *)serializedModel, modelSize},
{(void *)serializedTrainingData, trainingDataSize},
{(void *)serializedTargetData, targetDataSize}};
struct naa_param_t output_regions[] = {{(void *)serializedModel, modelSize}};
printf("-- Setting Up Connection --\n");
// function code encode the used ai model
if (naa_create(1, input_regions, 3, output_regions, 1, handle)) {
fprintf(stderr, "Error during naa_create. Exiting.\n");
exit(EXIT_FAILURE);
}
while(true){
std::unique_lock<std::mutex> lock(*training_data_buffer_mutex);
training_data_buffer_full->wait(
lock, [start_training] { return *start_training; });
// Return if program is about to end
if (*end_training) {
return;
}
// Get the necessary training data
std::cout << "AI: Training thread: Getting training data" << std::endl;
int buffer_size = training_data_buffer->x[0].size();
// If clustering is used, check the current cluster
int n_cluster_reactive = 0;
int train_cluster =
-1; // Default value for non clustered training (all data is used)
if (params.use_clustering) {
for (size_t i = 0; i < buffer_size; i++) {
n_cluster_reactive += training_data_buffer->cluster_labels[i];
}
train_cluster = n_cluster_reactive >= params.training_data_size;
}
int buffer_row = 0;
int copied_row = 0;
while (copied_row < params.training_data_size) {
if ((train_cluster == -1) ||
(train_cluster == training_data_buffer->cluster_labels[buffer_row])) {
for (size_t col = 0; col < training_data_buffer->x.size(); col++) {
// Copy and remove from training data buffer
inputs[col][copied_row] = training_data_buffer->x[col][buffer_row];
targets[col][copied_row] = training_data_buffer->y[col][buffer_row];
training_data_buffer->x[col].erase(
training_data_buffer->x[col].begin() + buffer_row);
training_data_buffer->y[col].erase(
training_data_buffer->y[col].begin() + buffer_row);
}
// Remove from cluster label buffer
if (params.use_clustering) {
training_data_buffer->cluster_labels.erase(
training_data_buffer->cluster_labels.begin() + buffer_row);
}
copied_row++;
} else {
buffer_row++;
}
}
// Set the waiting predicate to immediately continue training if enough
// elements of any cluster remain
if (train_cluster == 1) {
*start_training =
// if clustering is active, check if after one training run still
// enough enough data of at least one cluster is left
((n_cluster_reactive - params.training_data_size) >=
params.training_data_size) ||
((buffer_size - n_cluster_reactive) >= params.training_data_size);
} else {
*start_training =
// if no clustering is active, check if there are still
// enough data for another training run
(buffer_size - n_cluster_reactive - params.training_data_size) >=
params.training_data_size;
}
// update number of training runs
training_data_buffer->n_training_runs += 1;
// Unlock the training_data_buffer_mutex
lock.unlock();
// initialize models with weights from pretrained keras model
std::string model_name = "model";
if (train_cluster == 1) {
model_name = "model_reactive";
}
std::cout << "AI: Training thread: Start training " << model_name
<< std::endl;
// data serializatoin
// three memory regions: model weights, predicted data, true data
// model weight region is an input and output memory region
if(train_cluster == 1){
int res = serializeModelWeights(Eigen_model_reactive, serializedModel);
} else {
int res = serializeModelWeights(Eigen_model, serializedModel);
}
// checksum serializeModel
double checksum_model = 0;
for(size_t i = 0; i < Eigen_model->weight_matrices.size(); i++){
checksum_model += Eigen_model->weight_matrices[i].sum();
}
for(size_t j=0; j<Eigen_model->biases.size(); j++){
checksum_model += Eigen_model->biases[j].sum();
}
fprintf(stdout, "Checksum model: %f\n", checksum_model);
int res1 = serializeTrainingData(&inputs, serializedTrainingData);
int res2 = serializeTrainingData(&targets, serializedTargetData);
// std::vector<std::vector<double>> deserializedTrainingData = deserializeTrainingData(serializedTrainingData);
// std::vector<std::vector<double>> deserializedTargetData = deserializeTrainingData(serializedTargetData);
// calculate checksum of inputs
// double checksum_inputs = 0;
// for (size_t i = 0; i < inputs.size(); i++) {
// for (size_t j = 0; j < inputs[i].size(); j++) {
// checksum_inputs += inputs[i][j];
// // fprintf(stdout, "inputs: %f\n", inputs[i][j]);
// }
// }
// // calculate checksum of inputs
// double checksum_targets = 0;
// for (size_t i = 0; i < targets.size(); i++) {
// for (size_t j = 0; j < targets[i].size(); j++) {
// checksum_targets += targets[i][j];
// // fprintf(stdout, "inputs: %f\n", inputs[i][j]);
// }
// }
// double checksum_training = 0;
// for (size_t i = 0; i < deserializedTrainingData.size(); i++) {
// for (size_t j = 0; j < deserializedTrainingData[i].size(); j++) {
// checksum_training += deserializedTrainingData[i][j];
// // fprintf(stdout, "inputs: %f\n", deserializedTrainingData[i][j]);
// }
// }
// double checksum_testing = 0;
// for (size_t i = 0; i < deserializedTargetData.size(); i++) {
// for (size_t j = 0; j < deserializedTargetData[i].size(); j++) {
// checksum_testing += deserializedTargetData[i][j];
// // fprintf(stdout, "inputs: %f\n", deserializedTrainingData[i][j]);
// }
// }
// fprintf(stdout, "Checksum inputs: %f\n", checksum_inputs);
// fprintf(stdout, "Checksum training: %f\n", checksum_training);
// fprintf(stdout, "Checksum targets: %f\n", checksum_targets);
// fprintf(stdout, "Checksum testing: %f\n", checksum_testing);
printf("-- RPC Invocation --\n");
if (naa_invoke(handle)) {
fprintf(stderr, "Error during naa_invoke. Exiting.\n");
exit(EXIT_FAILURE);
}
// naa_wait with new weights
naa_status status;
if (naa_wait(handle, &status)) {
fprintf(stderr, "Error occurred during naa_wait. Exiting.\n");
exit(EXIT_FAILURE);
}
printf("Bytes received: %d, RPC Return code: %d\n",
status.bytes_received, status.naa_error);
// update model weights with received weights
EigenModel deserializedModel =
deserializeModelWeights(serializedModel, modelSize);
Eigen_model_mutex->lock();
Eigen_model->weight_matrices = deserializedModel.weight_matrices;
Eigen_model->biases = deserializedModel.biases;
Eigen_model_mutex->unlock();
std::vector<std::vector<std::vector<double>>> cpp_weights =
Python_Keras_get_weights(model_name);
fprintf(stdout, "size of cpp weights: %zu\n", cpp_weights.size());
for(size_t i = 0; i<cpp_weights.size(); i++){
fprintf(stdout, "size of cpp weights: %zu\n", cpp_weights[i].size());
fprintf(stdout, "size of cpp weights: %zu\n", cpp_weights[i][0].size());
}
Python_keras_set_weights(model_name, cpp_weights);
// for (int i = 0; i < Eigen_model->weight_matrices[0].rows(); i++) {
// for (int j = 0; j < Eigen_model->weight_matrices[0].cols(); j++) {
// fprintf(stdout, "model: %f, deserializedModel: %f\n",
// Eigen_model->weight_matrices[0](i, j),
// deserializedModel.weight_matrices[0](i, j));
// }
// }
}
printf("-- Cleaning Up --\n");
naa_finalize(handle);
free(serializedModel);
free(serializedTrainingData);
free(serializedTargetData);
}
std::thread python_train_thread;
std::thread naa_train_thread;
/**
* @brief Starts a thread for parallel training and weight updating. This
* Wrapper function ensures, that the main POET program can be built without
* pthread support if the AI surrogate functions are disabled during
* compilation.
* @param Eigen_model Pointer to the EigenModel struct that will be updates with
* new weights
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
* struct
* @param training_data_buffer Pointer to the Training data struct with which
* the model is trained
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
* training data struct
* @param training_data_buffer_full Conditional waiting variable with wich the
* main thread signals when a training run can start
* @param start_training Conditional waiting predicate to mitigate against
* spurious wakeups
* @param end_training Signals end of program to wind down thread gracefully
* @param params Global runtime paramters
* @return 0 if function was succesful
*/
int Python_Keras_training_thread(
EigenModel *Eigen_model, EigenModel *Eigen_model_reactive,
std::mutex *Eigen_model_mutex, TrainingData *training_data_buffer,
std::mutex *training_data_buffer_mutex,
std::condition_variable *training_data_buffer_full, bool *start_training,
bool *end_training, const RuntimeParameters &params, naa_handle *handle) {
MSG("In Python_Keras_training_thread");
PyThreadState *_save = PyEval_SaveThread(); // ?
// check if naa is activated and if so, we use training on naa server
if(params.use_naa){
if (!(handle == NULL)) {
MSG("NAA Accelerator is used for online training");
naa_train_thread = std::thread(
naa_training, Eigen_model, Eigen_model_reactive, Eigen_model_mutex,
training_data_buffer, training_data_buffer_mutex,
training_data_buffer_full, start_training, end_training, params, handle);
}
} else{
python_train_thread = std::thread(
parallel_training, Eigen_model, Eigen_model_reactive, Eigen_model_mutex,
training_data_buffer, training_data_buffer_mutex,
training_data_buffer_full, start_training, end_training, params);
}
fprintf(stdout, "End of Python_Keras_training_thread\n");
return 0;
}
/**
* @brief Updates the EigenModels weigths and biases from the weight vector
* @param model Pointer to an EigenModel struct
* @param weights Vector of model weights from keras as returned by
* Python_Keras_get_weights()
*/
// ? check if updating was successful -> hash about values?
void update_weights(
EigenModel *model,
const std::vector<std::vector<std::vector<double>>> &weights) {
MSG("In update_weights");
size_t num_layers =
weights.size() / 2; // half length because it contains weights and biases
for (size_t i = 0; i < weights.size(); i += 2) {
// Fill current weight matrix
size_t rows = weights[i][0].size();
size_t cols = weights[i].size();
for (size_t j = 0; j < cols; ++j) {
for (size_t k = 0; k < rows; ++k) {
model->weight_matrices[i / 2](k, j) = weights[i][j][k];
}
}
// Fill bias vector
size_t bias_size = weights[i + 1][0].size();
for (size_t j = 0; j < bias_size; ++j) {
model->biases[i / 2](j) = weights[i + 1][0][j];
}
}
}
/**
* @brief Converts the weights and biases from the Python Keras model to C++
* vectors
* @return A vector containing the model weights and biases
*/
std::vector<std::vector<std::vector<double>>>
Python_Keras_get_weights(std::string model_name) {
// Acquire the Python GIL
fprintf(stdout, "In Python_Keras_get_weights\n");
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject *py_main_module = PyImport_AddModule("__main__");
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
PyObject *py_keras_model =
PyDict_GetItemString(py_global_dict, model_name.c_str());
PyObject *py_get_weights_function =
PyDict_GetItemString(py_global_dict, "get_weights");
PyObject *args = Py_BuildValue("(O)", py_keras_model);
// Call Python function
PyObject *py_weights_list =
PyObject_CallObject(py_get_weights_function, args);
if (!py_weights_list) {
PyErr_Print();
throw std::runtime_error("Failed to get weights from Keras model");
}
// Container for the extracted weights
std::vector<std::vector<std::vector<double>>> cpp_weights;
// Iterate through the layers (weights and biases)
Py_ssize_t num_layers = PyList_Size(py_weights_list);
for (Py_ssize_t i = 0; i < num_layers; ++i) {
PyObject *py_weight_array = PyList_GetItem(py_weights_list, i);
if (!PyArray_Check(py_weight_array)) {
throw std::runtime_error("Weight is not a NumPy array.");
}
PyArrayObject *weight_np =
reinterpret_cast<PyArrayObject *>(py_weight_array);
int dtype = PyArray_TYPE(weight_np);
// If array is 2D it's a weight matrix
if (PyArray_NDIM(weight_np) == 2) {
int num_rows = PyArray_DIM(weight_np, 0);
int num_cols = PyArray_DIM(weight_np, 1);
std::vector<std::vector<double>> weight_matrix(
num_rows, std::vector<double>(num_cols));
// Handle different precision settings
if (dtype == NPY_FLOAT32) {
//
float *weight_data_float =
static_cast<float *>(PyArray_DATA(weight_np));
for (size_t r = 0; r < num_rows; ++r) {
for (size_t c = 0; c < num_cols; ++c) {
weight_matrix[r][c] =
static_cast<double>(weight_data_float[r * num_cols + c]);
}
}
} else if (dtype == NPY_DOUBLE) {
double *weight_data_double =
static_cast<double *>(PyArray_DATA(weight_np));
for (size_t r = 0; r < num_rows; ++r) {
for (size_t c = 0; c < num_cols; ++c) {
weight_matrix[r][c] = weight_data_double[r * num_cols + c];
}
}
} else {
throw std::runtime_error("Unsupported data type for weights. Must be "
"NPY_FLOAT32 or NPY_DOUBLE.");
}
cpp_weights.push_back(weight_matrix);
// If array is 1D it's a bias vector
} else if (PyArray_NDIM(weight_np) == 1) {
int num_elements = PyArray_DIM(weight_np, 0);
std::vector<std::vector<double>> bias_vector(
1, std::vector<double>(num_elements));
// Handle different precision settings
if (dtype == NPY_FLOAT32) {
float *bias_data_float = static_cast<float *>(PyArray_DATA(weight_np));
for (size_t j = 0; j < num_elements; ++j) {
bias_vector[0][j] = static_cast<double>(bias_data_float[j]);
}
} else if (dtype == NPY_DOUBLE) {
double *bias_data_double =
static_cast<double *>(PyArray_DATA(weight_np));
for (size_t j = 0; j < num_elements; ++j) {
bias_vector[0][j] = bias_data_double[j];
}
} else {
throw std::runtime_error("Unsupported data type for biases. Must be "
"NPY_FLOAT32 or NPY_DOUBLE.");
}
cpp_weights.push_back(bias_vector);
}
}
// Clean up
Py_DECREF(py_weights_list);
Py_DECREF(args);
// Release Python GIL
PyGILState_Release(gstate);
return cpp_weights;
}
int Python_keras_set_weights(std::string model_name, std::vector<std::vector<std::vector<double>>> weights){
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject* py_weights = PyList_New(weights.size());
for(size_t i = 0; i < weights.size(); i++){
PyObject* numpy_array = vector_to_numpy_array(weights[i]);
PyList_SetItem(py_weights, i, numpy_array);
}
// Iterate over py_weights and print the shape of each numpy array
for (Py_ssize_t i = 0; i < PyList_Size(py_weights); ++i) {
PyObject* numpy_array = PyList_GetItem(py_weights, i);
// Use numpy's shape attribute to get the shape
PyObject* shape = PyObject_GetAttrString(numpy_array, "shape");
PyObject* shape_str = PyObject_Repr(shape); // Get a string representation of the shape
PyObject* shape_utf8 = PyUnicode_AsEncodedString(shape_str, "utf-8", "strict");
const char* shape_bytes = PyBytes_AS_STRING(shape_utf8);
// Print the shape
std::cout << "Shape of numpy array at index " << i << ": " << shape_bytes << std::endl;
// Clean up
Py_DECREF(shape);
Py_DECREF(shape_str);
Py_DECREF(shape_utf8);
}
fprintf(stdout, "In Python_Keras_set_weights\n");
PyObject *py_main_module = PyImport_AddModule("__main__");
PyObject *py_global_dict = PyModule_GetDict(py_main_module);
PyObject *py_keras_model =
PyDict_GetItemString(py_global_dict, model_name.c_str());
PyObject *py_set_weights_function =
PyDict_GetItemString(py_global_dict, "set_weights");
PyObject *args = Py_BuildValue("(OO)", py_keras_model, py_weights);
PyObject *py_set_weights = PyObject_CallObject(py_set_weights_function, args);
if (!py_set_weights) {
PyErr_Print(); // Gibt den Python-Fehler aus
std::cerr << "Error: Failed to call set_weights function." << std::endl;
}
Py_XDECREF(py_weights);
Py_DECREF(args);
Py_XDECREF(py_set_weights);
PyGILState_Release(gstate);
return 0;
}
/**
* @brief Joins the training thread and winds down the Python environment
* gracefully
* @param Eigen_model_mutex Mutex to ensure threadsafe access to the EigenModel
* struct
* @param training_data_buffer_mutex Mutex to ensure threadsafe access to the
* training data struct
* @param training_data_buffer_full Conditional waiting variable with wich the
* main thread signals when a training run can start
* @param start_training Conditional waiting predicate to mitigate against
* spurious wakeups
* @param end_training Signals end of program to wind down thread gracefully */
void Python_finalize(std::mutex *Eigen_model_mutex,
std::mutex *training_data_buffer_mutex,
std::condition_variable *training_data_buffer_full,
bool *start_training, bool *end_training) {
training_data_buffer_mutex->lock();
// Define training as over
*end_training = true;
// Wake up and join training thread
*start_training = true;
training_data_buffer_mutex->unlock();
training_data_buffer_full->notify_one();
if (python_train_thread.joinable()) {
python_train_thread.join();
}
// Acquire the Python GIL
PyGILState_STATE gstate = PyGILState_Ensure();
// Finalize Python
Py_FinalizeEx();
}
} // namespace poet