poet/R_lib/init_r_lib.R

82 lines
2.3 KiB
R

input <- readRDS("/home/max/Storage/poet/build/apps/out.rds")
grid_def <- matrix(c(2, 3), nrow = 2, ncol = 5)
library(data.table)
pqc_to_grid <- function(pqc_in, grid) {
# Convert the input DataFrame to a data.table
dt <- data.table(pqc_in)
# Flatten the matrix into a vector
id_vector <- as.vector(t(grid))
# Initialize an empty data.table to store the results
result_dt <- data.table()
# Iterate over each ID in the vector
for (id_mat in id_vector) {
# Find the matching row in the data.table
matching_dt <- dt[id == id_mat]
# Append the matching data.table row to the result data.table
result_dt <- rbind(result_dt, matching_dt)
}
# Remove all columns which only contain NaN
# result_dt <- result_dt[, colSums(is.na(result_dt)) != nrow(result_dt)]
res_df <- as.data.frame(result_dt)
return(res_df[, colSums(is.na(res_df)) != nrow(res_df)])
}
pqc_init <- pqc_to_grid(input, grid_def)
test <- pqc_init
modify_module_sizes <- function(mod_sizes, pqc_mat, init_grid) {
# Find all unique IDs in init_grid
unique_ids <- unique(as.vector(init_grid$id))
# remove rows from pqc_mat that are not in init_grid
pqc_mat <- as.data.frame(pqc_mat)
pqc_mat <- pqc_mat[pqc_mat$id %in% unique_ids, ]
# Find the column indices where all rows are NA
na_cols <- which(colSums(is.na(pqc_mat)) == nrow(pqc_mat))
# Build cumsum over mod_sizes
cum_mod_sizes <- cumsum(mod_sizes)
# Find the indices where the value of na_cols is equal to the value of cum_mod_sizes
idx <- which(cum_mod_sizes %in% na_cols)
# Set the value of mod_sizes to 0 at the indices found in the previous step
mod_sizes[idx] <- 0
return(mod_sizes)
}
# mod_sizes <- c(7, 0, 4, 2, 0)
# unique_ids <- unique(as.vector(pqc_init$id))
# tmp <- as.data.frame(input)
# pqc_test <- tmp[tmp$id %in% unique_ids, ]
# na_cols <- which(colSums(is.na(pqc_test)) == nrow(pqc_test))
# cum_mod_sizes <- cumsum(mod_sizes)
# # Get the indices of the columns of cum_mod_sizes where the value of the column is equal to the value of na_cols
# idx <- which(cum_mod_sizes %in% na_cols)
# mod_sizes[idx] <- 0
# idx <- which(na_cols == cum_mod_sizes)
# idx <- which(na_cols[1] >= cum_mod_sizes)
# mod_sizes <- modify_module_sizes(mod_sizes, pqc_init, pqc_init)
# remove column with all NA