poet/bench/barite/barite_het.pqi

80 lines
1.8 KiB
Plaintext

## Initial: everywhere equilibrium with Celestite NB: The aqueous
## solution *resulting* from this calculation is to be used as initial
## state everywhere in the domain
SOLUTION 1
units mol/kgw
water 1
temperature 25
pH 7
pe 4
S(6) 1e-12
Sr 1e-12
Ba 1e-12
Cl 1e-12
PURE 1
Celestite 0.0 1
SAVE SOLUTION 2 # <- phreeqc keyword to store and later reuse these results
END
RUN_CELLS
-cells 1
COPY solution 1 2-3
## Here a 5x2 domain:
|---+---+---+---+---|
-> | 2 | 2 | 2 | 2 | 2 |
4 |---+---+---+---+---|
-> | 3 | 3 | 3 | 3 | 3 |
|---+---+---+---+---|
## East boundary: "injection" of solution 4. North, W, S boundaries: closed
## Here the two distinct zones: nr 2 with kinetics Celestite (initial
## amount is 0, is then allowed to precipitate) and nr 3 with kinetic
## Celestite and Barite (both initially > 0) where the actual
## replacement takes place
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
KINETICS 2
Celestite
-m 0 # Allowed to precipitate
-parms 10.0
-tol 1e-9
END
#USE SOLUTION 2 <- PHREEQC keyword to reuse the results from previous calculation
KINETICS 3
Barite
-m 0.001
-parms 50.
-tol 1e-9
Celestite
-m 1
-parms 10.0
-tol 1e-9
END
## A BaCl2 solution (nr 4) is "injected" from the left boundary:
SOLUTION 4
units mol/kgw
pH 7
water 1
temp 25
Ba 0.1
Cl 0.2
END
## NB: again, the *result* of the SOLUTION 4 script defines the
## concentration of all elements (+charge, tot H, tot O)
## Ideally, in the initial state SOLUTION 1 we should not have to
## define the 4 elemental concentrations (S(6), Sr, Ba and Cl) but
## obtain them having run once the scripts with the aqueous solution
## resulting from SOLUTION 1 once with KINETICS 2 and once with
## KINETICS 3.
RUN_CELLS
-cells 2-4