refactor: format all source files to LLVM standard

This commit is contained in:
Max Lübke 2023-09-14 10:24:03 +02:00
parent 81774e72c1
commit 0d34752837
24 changed files with 2413 additions and 2416 deletions

View File

@ -1,48 +1,48 @@
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// **************
// **** GRID ****
// **************
// **************
// **** GRID ****
// **************
// create a linear grid with 20 cells
int cells = 20;
Grid grid = Grid(cells);
// create a linear grid with 20 cells
int cells = 20;
Grid grid = Grid(cells);
MatrixXd concentrations = MatrixXd::Constant(1,20,0);
concentrations(0,0) = 2000;
// TODO add option to set concentrations with a vector in 1D case
grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(1, 20, 0);
concentrations(0, 0) = 2000;
// TODO add option to set concentrations with a vector in 1D case
grid.setConcentrations(concentrations);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// ************************
// **** SIMULATION ENV ****
// ************************
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// set the number of iterations
simulation.setIterations(100);
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// set the number of iterations
simulation.setIterations(100);
// **** RUN SIMULATION ****
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
// run the simulation
simulation.run();
}

View File

@ -1,84 +1,82 @@
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// EASY_PROFILER_ENABLE;
// profiler::startListen();
// **************
// **** GRID ****
// **************
// profiler::startListen();
// create a grid with a 20 x 20 field
int row = 40;
int col = 50;
Grid grid = Grid(row,col);
// EASY_PROFILER_ENABLE;
// profiler::startListen();
// **************
// **** GRID ****
// **************
// profiler::startListen();
// create a grid with a 20 x 20 field
int row = 40;
int col = 50;
Grid grid = Grid(row, col);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(10,10) = 2000;
grid.setConcentrations(concentrations);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(10, 10) = 2000;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
// bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
// bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
// bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
// bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
// VectorXd bc_zero_values = VectorXd::Constant(20,0);
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
// bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
// VectorXd bc_front_values = VectorXd::Constant(20,2000);
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// ************************
// **** SIMULATION ENV ****
// ************************
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
// VectorXd bc_zero_values = VectorXd::Constant(20,0);
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
// bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
// VectorXd bc_front_values = VectorXd::Constant(20,2000);
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// ************************
// **** SIMULATION ENV ****
// ************************
// set the number of iterations
simulation.setIterations(300);
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// **** RUN SIMULATION ****
// set the number of iterations
simulation.setIterations(300);
// run the simulation
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
// **** RUN SIMULATION ****
// run the simulation
// EASY_BLOCK("SIMULATION")
simulation.run();
// EASY_END_BLOCK;
// profiler::dumpBlocksToFile("test_profile.prof");
// profiler::stopListen();
// EASY_BLOCK("SIMULATION")
simulation.run();
// EASY_END_BLOCK;
// profiler::dumpBlocksToFile("test_profile.prof");
// profiler::stopListen();
}

View File

@ -1,24 +1,24 @@
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
int row = 20;
int col = 20;
Grid grid(row, col);
int row = 20;
int col = 20;
Grid grid(row, col);
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(10,10) = 2000;
grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(10, 10) = 2000;
grid.setConcentrations(concentrations);
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
Simulation simulation = Simulation(grid, bc, CRANK_NICOLSON_APPROACH);
simulation.setTimestep(0.1);
simulation.setIterations(50);
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
Simulation simulation = Simulation(grid, bc, CRANK_NICOLSON_APPROACH);
simulation.setTimestep(0.1);
simulation.setIterations(50);
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
simulation.run();
simulation.run();
}

View File

@ -2,46 +2,46 @@
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// **************
// **** GRID ****
// **************
// **************
// **** GRID ****
// **************
// create a linear grid with 20 cells
int cells = 20;
Grid grid = Grid(cells);
// create a linear grid with 20 cells
int cells = 20;
Grid grid = Grid(cells);
MatrixXd concentrations = MatrixXd::Constant(1,20,20);
grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(1, 20, 20);
grid.setConcentrations(concentrations);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 1);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 1);
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 1);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 1);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// ************************
// **** SIMULATION ENV ****
// ************************
// (optional) set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the number of iterations
simulation.setIterations(100);
// (optional) set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// (optional) set the number of iterations
simulation.setIterations(100);
// **** RUN SIMULATION ****
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
// run the simulation
simulation.run();
}

View File

@ -1,8 +1,9 @@
/**
* @file FTCS_2D_proto_closed_mdl.cpp
* @author Hannes Signer, Philipp Ungrund, MDL
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
*
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary
* condition; optional command line argument: number of cols and rows
*
*/
#include <cstdlib>
@ -11,75 +12,76 @@
int main(int argc, char *argv[]) {
int row = 64;
int row = 64;
if (argc == 2) {
// no cmd line argument, take col=row=64
row = atoi(argv[1]);
}
int col=row;
if (argc == 2) {
// no cmd line argument, take col=row=64
row = atoi(argv[1]);
}
int col = row;
std::cout << "Nrow =" << row << std::endl;
// **************
// **** GRID ****
// **************
std::cout << "Nrow =" << row << std::endl;
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int n2 = row/2-1;
Grid grid = Grid(row,col);
// create a grid with a 20 x 20 field
int n2 = row / 2 - 1;
Grid grid = Grid(row, col);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(n2,n2) = 1;
concentrations(n2,n2+1) = 1;
concentrations(n2+1,n2) = 1;
concentrations(n2+1,n2+1) = 1;
grid.setConcentrations(concentrations);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(n2, n2) = 1;
concentrations(n2, n2 + 1) = 1;
concentrations(n2 + 1, n2) = 1;
concentrations(n2 + 1, n2 + 1) = 1;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
// create a boundary with constant values
Boundary bc = Boundary(grid);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideClosed(BC_SIDE_LEFT); // side,values
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideClosed(BC_SIDE_LEFT); // side,values
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// ************************
// **** SIMULATION ENV ****
// ************************
// set the timestep of the simulation
simulation.setTimestep(10000); // timestep
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set the number of iterations
simulation.setIterations(100);
// set the timestep of the simulation
simulation.setTimestep(10000); // timestep
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// set the number of iterations
simulation.setIterations(100);
// **** RUN SIMULATION ****
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
// run the simulation
simulation.run();
return 0;
return 0;
}

View File

@ -1,92 +1,88 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
*
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
* approach and constant boundary condition
*
*/
#include <tug/Simulation.hpp>
// #include <easy/profiler.h>
// #define EASY_PROFILER_ENABLE ::profiler::setEnabled(true);
int main(int argc, char *argv[]) {
// EASY_PROFILER_ENABLE;
// profiler::startListen();
// **************
// **** GRID ****
// **************
// profiler::startListen();
// create a grid with a 20 x 20 field
int row = 20;
int col = 20;
Grid grid = Grid(row,col);
// EASY_PROFILER_ENABLE;
// profiler::startListen();
// **************
// **** GRID ****
// **************
// profiler::startListen();
// create a grid with a 20 x 20 field
int row = 20;
int col = 20;
Grid grid = Grid(row, col);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(0,0) = 1999;
grid.setConcentrations(concentrations);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(0, 0) = 1999;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// create a boundary with constant values
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
// VectorXd bc_zero_values = VectorXd::Constant(20,0);
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
// bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
// VectorXd bc_front_values = VectorXd::Constant(20,2000);
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// ************************
// **** SIMULATION ENV ****
// ************************
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
// VectorXd bc_zero_values = VectorXd::Constant(20,0);
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
// bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
// VectorXd bc_front_values = VectorXd::Constant(20,2000);
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// ************************
// **** SIMULATION ENV ****
// ************************
// set the number of iterations
simulation.setIterations(10000);
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
// **** RUN SIMULATION ****
// set the number of iterations
simulation.setIterations(10000);
// run the simulation
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****
// run the simulation
// EASY_BLOCK("SIMULATION")
simulation.run();
// EASY_END_BLOCK;
// profiler::dumpBlocksToFile("test_profile.prof");
// profiler::stopListen();
// EASY_BLOCK("SIMULATION")
simulation.run();
// EASY_END_BLOCK;
// profiler::dumpBlocksToFile("test_profile.prof");
// profiler::stopListen();
}

View File

@ -1,77 +1,78 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
*
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
* approach and constant boundary condition
*
*/
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row/2-1;
Grid grid = Grid(row,col);
// **************
// **** GRID ****
// **************
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row / 2 - 1;
Grid grid = Grid(row, col);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(n2,n2) = 1;
concentrations(n2,n2+1) = 1;
concentrations(n2+1,n2) = 1;
concentrations(n2+1,n2+1) = 1;
grid.setConcentrations(concentrations);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(n2, n2) = 1;
concentrations(n2, n2 + 1) = 1;
concentrations(n2 + 1, n2) = 1;
concentrations(n2 + 1, n2 + 1) = 1;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
// create a boundary with constant values
Boundary bc = Boundary(grid);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0); // side,values
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0); // side,values
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// ************************
// **** SIMULATION ENV ****
// ************************
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
// (optional) set the number of iterations
simulation.setIterations(5);
// (optional) set the number of iterations
simulation.setIterations(5);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
// run the simulation
simulation.run();
return 0;
return 0;
}

View File

@ -1,67 +1,66 @@
#include <chrono>
#include <fstream>
#include <iostream>
#include <string>
#include <tug/Simulation.hpp>
#include <iostream>
#include <fstream>
#include <chrono>
int main(int argc, char *argv[]) {
int n[] = {2000};
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int iterations[1] = {1};
int repetition = 10;
int n[] = {2000};
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int iterations[1] = {1};
int repetition = 10;
for(int l=0; l<size(threads); l++){
//string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
for (int l = 0; l < size(threads); l++) {
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
ofstream myfile;
myfile.open("speedup_1000.csv", std::ios::app);
myfile << "Number threads: " << threads[l] << endl;
for (int i = 0; i < size(n); i++){
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
//myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
for(int j = 0; j < size(iterations); j++){
cout << "Iterations: " << iterations[j] << endl;
//myfile << "Iterations: " << iterations[j] << endl;
for (int k = 0; k < repetition; k++){
cout << "Wiederholung: " << k << endl;
Grid grid = Grid(n[i], n[i]);
grid.setDomain(1, 1);
for (int i = 0; i < size(n); i++) {
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
// myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
for (int j = 0; j < size(iterations); j++) {
cout << "Iterations: " << iterations[j] << endl;
// myfile << "Iterations: " << iterations[j] << endl;
for (int k = 0; k < repetition; k++) {
cout << "Wiederholung: " << k << endl;
Grid grid = Grid(n[i], n[i]);
grid.setDomain(1, 1);
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
concentrations(n[i]/2,n[i]/2) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
concentrations(n[i] / 2, n[i] / 2) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
Boundary bc = Boundary(grid);
Boundary bc = Boundary(grid);
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
if(argc == 2){
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
}
else{
sim.setNumberThreads(threads[l]);
}
if (argc == 2) {
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
} else {
sim.setNumberThreads(threads[l]);
}
sim.setTimestep(0.01);
sim.setIterations(iterations[j]);
sim.setOutputCSV(CSV_OUTPUT_OFF);
sim.setTimestep(0.01);
sim.setIterations(iterations[j]);
sim.setOutputCSV(CSV_OUTPUT_OFF);
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
myfile << milliseconds.count() << endl;
}
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end -
begin);
myfile << milliseconds.count() << endl;
}
cout << endl;
myfile << endl;
}
cout << endl;
myfile << endl;
}
myfile.close();
}
}
}

View File

@ -1,67 +1,66 @@
#include <chrono>
#include <fstream>
#include <iostream>
#include <string>
#include <tug/Simulation.hpp>
#include <iostream>
#include <fstream>
#include <chrono>
int main(int argc, char *argv[]) {
int n[] = {2000};
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int iterations[1] = {1};
int repetition = 10;
int n[] = {2000};
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int iterations[1] = {1};
int repetition = 10;
for(int l=0; l<size(threads); l++){
//string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
for (int l = 0; l < size(threads); l++) {
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
ofstream myfile;
myfile.open("speedup_1000.csv", std::ios::app);
myfile << "Number threads: " << threads[l] << endl;
for (int i = 0; i < size(n); i++){
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
//myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
for(int j = 0; j < size(iterations); j++){
cout << "Iterations: " << iterations[j] << endl;
//myfile << "Iterations: " << iterations[j] << endl;
for (int k = 0; k < repetition; k++){
cout << "Wiederholung: " << k << endl;
Grid grid = Grid(n[i], n[i]);
grid.setDomain(1, 1);
for (int i = 0; i < size(n); i++) {
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
// myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
for (int j = 0; j < size(iterations); j++) {
cout << "Iterations: " << iterations[j] << endl;
// myfile << "Iterations: " << iterations[j] << endl;
for (int k = 0; k < repetition; k++) {
cout << "Wiederholung: " << k << endl;
Grid grid = Grid(n[i], n[i]);
grid.setDomain(1, 1);
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
concentrations(n[i]/2,n[i]/2) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
concentrations(n[i] / 2, n[i] / 2) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
Boundary bc = Boundary(grid);
Boundary bc = Boundary(grid);
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
if(argc == 2){
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
}
else{
sim.setNumberThreads(threads[l]);
}
if (argc == 2) {
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
} else {
sim.setNumberThreads(threads[l]);
}
sim.setTimestep(0.01);
sim.setIterations(iterations[j]);
sim.setOutputCSV(CSV_OUTPUT_OFF);
sim.setTimestep(0.01);
sim.setIterations(iterations[j]);
sim.setOutputCSV(CSV_OUTPUT_OFF);
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
myfile << milliseconds.count() << endl;
}
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end -
begin);
myfile << milliseconds.count() << endl;
}
cout << endl;
myfile << endl;
}
cout << endl;
myfile << endl;
}
myfile.close();
}
}
}

View File

@ -1,55 +1,51 @@
#include <tug/Simulation.hpp>
#include "Eigen/Core"
#include <iostream>
#include <tug/Simulation.hpp>
using namespace std;
int main(int argc, char *argv[]) {
int row = 50;
int col = 50;
int domain_row = 10;
int domain_col = 10;
int row = 50;
int col = 50;
int domain_row = 10;
int domain_col = 10;
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(5, 5) = 1;
grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(5,5) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 6; j++) {
alpha(i, j) = 0.01;
}
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 6; j++) {
alpha(i, j) = 0.01;
}
for (int i = 0; i < 5; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.001;
}
}
for (int i = 0; i < 5; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.001;
}
for (int i = 5; i < 11; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.1;
}
}
for (int i = 5; i < 11; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.1;
}
grid.setAlpha(alpha, alpha);
}
grid.setAlpha(alpha, alpha);
// Boundary
Boundary bc = Boundary(grid);
// Boundary
Boundary bc = Boundary(grid);
// Simulation
Simulation sim = Simulation(grid, bc, FTCS_APPROACH);
sim.setTimestep(0.001);
sim.setIterations(10000);
sim.setOutputCSV(CSV_OUTPUT_OFF);
sim.setOutputConsole(CONSOLE_OUTPUT_OFF);
// Simulation
Simulation sim = Simulation(grid, bc, FTCS_APPROACH);
sim.setTimestep(0.001);
sim.setIterations(10000);
sim.setOutputCSV(CSV_OUTPUT_OFF);
sim.setOutputConsole(CONSOLE_OUTPUT_OFF);
// RUN
sim.run();
// RUN
sim.run();
}

View File

@ -1,37 +1,29 @@
/**
* @file Boundary.hpp
* @brief API of Boundary class, that holds all information for each boundary condition
* at the edges of the diffusion grid.
*
* @brief API of Boundary class, that holds all information for each boundary
* condition at the edges of the diffusion grid.
*
*/
#ifndef BOUNDARY_H_
#define BOUNDARY_H_
#include <cstddef>
#include "Grid.hpp"
#include <cstddef>
using namespace std;
using namespace Eigen;
/**
* @brief Enum defining the two implemented boundary conditions.
*
* @brief Enum defining the two implemented boundary conditions.
*
*/
enum BC_TYPE {
BC_TYPE_CLOSED,
BC_TYPE_CONSTANT
};
enum BC_TYPE { BC_TYPE_CLOSED, BC_TYPE_CONSTANT };
/**
* @brief Enum defining all 4 possible sides to a 1D and 2D grid.
*
* @brief Enum defining all 4 possible sides to a 1D and 2D grid.
*
*/
enum BC_SIDE {
BC_SIDE_LEFT,
BC_SIDE_RIGHT,
BC_SIDE_TOP,
BC_SIDE_BOTTOM
};
enum BC_SIDE { BC_SIDE_LEFT, BC_SIDE_RIGHT, BC_SIDE_TOP, BC_SIDE_BOTTOM };
/**
* This class defines the boundary conditions of individual boundary elements.
@ -39,177 +31,184 @@ enum BC_SIDE {
* The class serves as an auxiliary class for structuring the Boundary class.
*/
class BoundaryElement {
public:
/**
* @brief Construct a new Boundary Element object for the closed case.
* The boundary type is here automatically set to the type
* BC_TYPE_CLOSED, where the value takes -1 and does not hold any
* physical meaning.
*/
BoundaryElement();
public:
/**
* @brief Construct a new Boundary Element object for the closed case.
* The boundary type is here automatically set to the type
* BC_TYPE_CLOSED, where the value takes -1 and does not hold any
* physical meaning.
*/
BoundaryElement();
/**
* @brief Construct a new Boundary Element object for the constant case.
* The boundary type is automatically set to the type
* BC_TYPE_CONSTANT.
*
* @param value Value of the constant concentration to be assumed at the
* corresponding boundary element.
*/
BoundaryElement(double value);
/**
* @brief Construct a new Boundary Element object for the constant case.
* The boundary type is automatically set to the type
* BC_TYPE_CONSTANT.
*
* @param value Value of the constant concentration to be assumed at the
* corresponding boundary element.
*/
BoundaryElement(double value);
/**
* @brief Allows changing the boundary type of a corresponding
* BoundaryElement object.
*
* @param type Type of boundary condition. Either BC_TYPE_CONSTANT or
BC_TYPE_CLOSED.
*/
void setType(BC_TYPE type);
/**
* @brief Sets the value of a boundary condition for the constant case.
*
* @param value Concentration to be considered constant for the
* corresponding boundary element.
*/
void setValue(double value);
/**
* @brief Allows changing the boundary type of a corresponding
* BoundaryElement object.
*
* @param type Type of boundary condition. Either BC_TYPE_CONSTANT or
BC_TYPE_CLOSED.
*/
void setType(BC_TYPE type);
/**
* @brief Return the type of the boundary condition, i.e. whether the
* boundary is considered closed or constant.
*
* @return BC_TYPE Type of boundary condition, either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*/
BC_TYPE getType();
/**
* @brief Sets the value of a boundary condition for the constant case.
*
* @param value Concentration to be considered constant for the
* corresponding boundary element.
*/
void setValue(double value);
/**
* @brief Return the concentration value for the constant boundary condition.
*
* @return double Value of the concentration.
*/
double getValue();
/**
* @brief Return the type of the boundary condition, i.e. whether the
* boundary is considered closed or constant.
*
* @return BC_TYPE Type of boundary condition, either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*/
BC_TYPE getType();
private:
BC_TYPE type;
double value;
/**
* @brief Return the concentration value for the constant boundary condition.
*
* @return double Value of the concentration.
*/
double getValue();
private:
BC_TYPE type;
double value;
};
/**
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
*/
class Boundary {
public:
/**
* @brief Creates a boundary object based on the passed grid object and
* initializes the boundaries as closed.
*
* @param grid Grid object on the basis of which the simulation takes place
* and from which the dimensions (in 2D case) are taken.
*/
Boundary(Grid grid);
public:
/**
* @brief Creates a boundary object based on the passed grid object and
* initializes the boundaries as closed.
*
* @param grid Grid object on the basis of which the simulation takes place
* and from which the dimensions (in 2D case) are taken.
*/
Boundary(Grid grid);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition closed.
*
* @param side Side to be set to closed, e.g. BC_SIDE_LEFT.
*/
void setBoundarySideClosed(BC_SIDE side);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition closed.
*
* @param side Side to be set to closed, e.g. BC_SIDE_LEFT.
*/
void setBoundarySideClosed(BC_SIDE side);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition constant. Thereby the concentration values of the
* boundaries are set to the passed value.
*
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
* @param value Concentration to be set for all elements of the specified page.
*/
void setBoundarySideConstant(BC_SIDE side, double value);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition constant. Thereby the concentration values of the
* boundaries are set to the passed value.
*
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
* @param value Concentration to be set for all elements of the specified
* page.
*/
void setBoundarySideConstant(BC_SIDE side, double value);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition closed.
*
* @param side Side in which an element is to be defined as closed.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
*/
void setBoundaryElementClosed(BC_SIDE side, int index);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition closed.
*
* @param side Side in which an element is to be defined as closed.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
*/
void setBoundaryElementClosed(BC_SIDE side, int index);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition constant with the
given concentration value.
*
* @param side Side in which an element is to be defined as constant.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @param value Concentration value to which the boundary element should be set.
*/
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition constant with the
given concentration value.
*
* @param side Side in which an element is to be defined as constant.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
side.
* @param value Concentration value to which the boundary element should be
set.
*/
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
/**
* @brief Returns the boundary condition of a specified side as a vector
* of BoundarsElement objects.
*
* @param side Boundary side from which the boundary conditions are to be returned.
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
*/
const vector<BoundaryElement> getBoundarySide(BC_SIDE side);
/**
* @brief Returns the boundary condition of a specified side as a vector
* of BoundarsElement objects.
*
* @param side Boundary side from which the boundary conditions are to be
* returned.
* @return vector<BoundaryElement> Contains the boundary conditions as
* BoundaryElement objects.
*/
const vector<BoundaryElement> getBoundarySide(BC_SIDE side);
/**
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some specific
boundary is closed.
*
* @param side Boundary side for which the values are to be returned.
* @return VectorXd Vector with values as doubles.
*/
VectorXd getBoundarySideValues(BC_SIDE side);
/**
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some
specific boundary is closed.
*
* @param side Boundary side for which the values are to be returned.
* @return VectorXd Vector with values as doubles.
*/
VectorXd getBoundarySideValues(BC_SIDE side);
/**
* @brief Returns the boundary condition of a specified element on a given side.
*
* @param side Boundary side in which the boundary condition is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BoundaryElement Boundary condition as a BoundaryElement object.
*/
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
/**
* @brief Returns the boundary condition of a specified element on a given
* side.
*
* @param side Boundary side in which the boundary condition is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
* @return BoundaryElement Boundary condition as a BoundaryElement object.
*/
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
/**
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*
* @param side Boundary side in which the boundary condition type is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
*/
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
/**
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED
or BC_TYPE_CONSTANT.
*
* @param side Boundary side in which the boundary condition type is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
side.
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
*/
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
/**
* @brief Returns the concentration value of a corresponding
* BoundaryElement object if it is a constant boundary condition.
*
* @param side Boundary side in which the boundary condition value is
* located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
* @return double Concentration of the corresponding BoundaryElement object.
*/
double getBoundaryElementValue(BC_SIDE side, int index);
/**
* @brief Returns the concentration value of a corresponding
* BoundaryElement object if it is a constant boundary condition.
*
* @param side Boundary side in which the boundary condition value is
* located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
* @return double Concentration of the corresponding BoundaryElement object.
*/
double getBoundaryElementValue(BC_SIDE side, int index);
private:
Grid grid; // Boundary is directly dependent on the dimensions of a predefined
vector<vector<BoundaryElement>> boundaries; // Vector with Boundary Element information
private:
Grid grid; // Boundary is directly dependent on the dimensions of a predefined
vector<vector<BoundaryElement>>
boundaries; // Vector with Boundary Element information
};
#endif

View File

@ -1,8 +1,8 @@
/**
* @file Grid.hpp
* @brief API of Grid class, that holds a matrix with concenctrations and a
* respective matrix/matrices of alpha coefficients.
*
* @brief API of Grid class, that holds a matrix with concenctrations and a
* respective matrix/matrices of alpha coefficients.
*
*/
#include <Eigen/Core>
@ -11,165 +11,166 @@
using namespace Eigen;
class Grid {
public:
public:
/**
* @brief Constructs a new 1D-Grid object of a given length, which holds a
* matrix with concentrations and a respective matrix of alpha coefficients.
* The domain length is per default the same as the length. The
* concentrations are all 20 by default and the alpha coefficients are 1.
*
* @param length Length of the 1D-Grid. Must be greater than 3.
*/
Grid(int length);
/**
* @brief Constructs a new 1D-Grid object of a given length, which holds a matrix
* with concentrations and a respective matrix of alpha coefficients.
* The domain length is per default the same as the length. The concentrations
* are all 20 by default and the alpha coefficients are 1.
*
* @param length Length of the 1D-Grid. Must be greater than 3.
*/
Grid(int length);
/**
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a
* matrix with concentrations and the respective matrices of alpha coefficient
* for each direction. The domain in x- and y-direction is per default equal
* to the col length and row length, respectively. The concentrations are all
* 20 by default across the entire grid and the alpha coefficients 1 in both
* directions.
*
* @param row Length of the 2D-Grid in y-direction. Must be greater than 3.
* @param col Length of the 2D-Grid in x-direction. Must be greater than 3.
*/
Grid(int row, int col);
/**
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a matrix
* with concentrations and the respective matrices of alpha coefficient for
* each direction. The domain in x- and y-direction is per default equal to
* the col length and row length, respectively.
* The concentrations are all 20 by default across the entire grid and the
* alpha coefficients 1 in both directions.
*
* @param row Length of the 2D-Grid in y-direction. Must be greater than 3.
* @param col Length of the 2D-Grid in x-direction. Must be greater than 3.
*/
Grid(int row, int col);
/**
* @brief Sets the concentrations matrix for a 1D or 2D-Grid.
*
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix
* must have correct dimensions as defined in row and col. (Or length, in 1D
* case).
*/
void setConcentrations(MatrixXd concentrations);
/**
* @brief Sets the concentrations matrix for a 1D or 2D-Grid.
*
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix must
* have correct dimensions as defined in row and col. (Or length,
* in 1D case).
*/
void setConcentrations(MatrixXd concentrations);
/**
* @brief Gets the concentrations matrix for a Grid.
*
* @return MatrixXd An Eigen3 matrix holding the concentrations and having the
* same dimensions as the grid.
*/
const MatrixXd getConcentrations();
/**
* @brief Gets the concentrations matrix for a Grid.
*
* @return MatrixXd An Eigen3 matrix holding the concentrations and having the
* same dimensions as the grid.
*/
const MatrixXd getConcentrations();
/**
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one
* dimensional.
*
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients.
* Matrix columns must have same size as length of grid.
*/
void setAlpha(MatrixXd alpha);
/**
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one dimensional.
*
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients. Matrix
* columns must have same size as length of grid.
*/
void setAlpha(MatrixXd alpha);
/**
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two
* dimensional.
*
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in
* x-direction. Matrix must be of same size as the grid.
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in
* y-direction. Matrix must be of same size as the grid.
*/
void setAlpha(MatrixXd alphaX, MatrixXd alphaY);
/**
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two dimensional.
*
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in x-direction.
* Matrix must be of same size as the grid.
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in y-direction.
* Matrix must be of same size as the grid.
*/
void setAlpha(MatrixXd alphaX, MatrixXd alphaY);
/**
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one
* dimensional.
*
* @return MatrixXd A matrix with 1 row holding the alpha coefficients.
*/
const MatrixXd getAlpha();
/**
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one dimensional.
*
* @return MatrixXd A matrix with 1 row holding the alpha coefficients.
*/
const MatrixXd getAlpha();
/**
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid.
* Grid must be two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in x-direction.
*/
const MatrixXd getAlphaX();
/**
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid. Grid must be
* two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in x-direction.
*/
const MatrixXd getAlphaX();
/**
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid.
* Grid must be two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in y-direction.
*/
const MatrixXd getAlphaY();
/**
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid. Grid must be
* two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in y-direction.
*/
const MatrixXd getAlphaY();
/**
* @brief Gets the dimensions of the grid.
*
* @return int Dimensions, either 1 or 2.
*/
int getDim();
/**
* @brief Gets the dimensions of the grid.
*
* @return int Dimensions, either 1 or 2.
*/
int getDim();
/**
* @brief Gets length of 1D grid. Must be one dimensional grid.
*
* @return int Length of 1D grid.
*/
int getLength();
/**
* @brief Gets length of 1D grid. Must be one dimensional grid.
*
* @return int Length of 1D grid.
*/
int getLength();
/**
* @brief Gets the number of rows of the grid.
*
* @return int Number of rows.
*/
int getRow();
/**
* @brief Gets the number of rows of the grid.
*
* @return int Number of rows.
*/
int getRow();
/**
* @brief Gets the number of columns of the grid.
*
* @return int Number of columns.
*/
int getCol();
/**
* @brief Gets the number of columns of the grid.
*
* @return int Number of columns.
*/
int getCol();
/**
* @brief Sets the domain length of a 1D-Grid. Grid must be one dimensional.
*
* @param domainLength A double value of the domain length. Must be positive.
*/
void setDomain(double domainLength);
/**
* @brief Sets the domain length of a 1D-Grid. Grid must be one dimensional.
*
* @param domainLength A double value of the domain length. Must be positive.
*/
void setDomain(double domainLength);
/**
* @brief Sets the domain size of a 2D-Grid. Grid must be two dimensional.
*
* @param domainRow A double value of the domain size in y-direction. Must be
* positive.
* @param domainCol A double value of the domain size in x-direction. Must be
* positive.
*/
void setDomain(double domainRow, double domainCol);
/**
* @brief Sets the domain size of a 2D-Grid. Grid must be two dimensional.
*
* @param domainRow A double value of the domain size in y-direction. Must be positive.
* @param domainCol A double value of the domain size in x-direction. Must be positive.
*/
void setDomain(double domainRow,double domainCol);
/**
* @brief Gets the delta value for 1D-Grid. Grid must be one dimensional.
*
* @return double Delta value.
*/
double getDelta();
/**
* @brief Gets the delta value for 1D-Grid. Grid must be one dimensional.
*
* @return double Delta value.
*/
double getDelta();
/**
* @brief Gets the delta value in x-direction.
*
* @return double Delta value in x-direction.
*/
double getDeltaCol();
/**
* @brief Gets the delta value in x-direction.
*
* @return double Delta value in x-direction.
*/
double getDeltaCol();
/**
* @brief Gets the delta value in y-direction. Must be two dimensional grid.
*
* @return double Delta value in y-direction.
*/
double getDeltaRow();
private:
int col; // number of grid columns
int row; // number of grid rows
int dim; // 1D or 2D
double domainCol; // number of domain columns
double domainRow; // number of domain rows
double deltaCol; // delta in x-direction (between columns)
double deltaRow; // delta in y-direction (between rows)
MatrixXd concentrations; // Matrix holding grid concentrations
MatrixXd alphaX; // Matrix holding alpha coefficients in x-direction
MatrixXd alphaY; // Matrix holding alpha coefficients in y-direction
/**
* @brief Gets the delta value in y-direction. Must be two dimensional grid.
*
* @return double Delta value in y-direction.
*/
double getDeltaRow();
private:
int col; // number of grid columns
int row; // number of grid rows
int dim; // 1D or 2D
double domainCol; // number of domain columns
double domainRow; // number of domain rows
double deltaCol; // delta in x-direction (between columns)
double deltaRow; // delta in y-direction (between rows)
MatrixXd concentrations; // Matrix holding grid concentrations
MatrixXd alphaX; // Matrix holding alpha coefficients in x-direction
MatrixXd alphaY; // Matrix holding alpha coefficients in y-direction
};

View File

@ -1,8 +1,8 @@
/**
* @file Simulation.hpp
* @brief API of Simulation class, that holds all information regarding a specific simulation
* run like its timestep, number of iterations and output options. Simulation object
* also holds a predefined Grid and Boundary object.
* @brief API of Simulation class, that holds all information regarding a
* specific simulation run like its timestep, number of iterations and output
* options. Simulation object also holds a predefined Grid and Boundary object.
*
*/
#include "Boundary.hpp"
@ -11,52 +11,54 @@
using namespace std;
/**
* @brief Enum defining the two implemented solution approaches.
*
* @brief Enum defining the two implemented solution approaches.
*
*/
enum APPROACH {
FTCS_APPROACH, // Forward Time-Centered Space
BTCS_APPROACH, // Backward Time-Centered Space solved with EigenLU solver
CRANK_NICOLSON_APPROACH
FTCS_APPROACH, // Forward Time-Centered Space
BTCS_APPROACH, // Backward Time-Centered Space solved with EigenLU solver
CRANK_NICOLSON_APPROACH
};
/**
* @brief Enum defining the Linear Equation solvers
*
*
*/
enum SOLVER {
EIGEN_LU_SOLVER, // EigenLU solver
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for tridiagonal matrices
EIGEN_LU_SOLVER, // EigenLU solver
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for
// tridiagonal matrices
};
/**
* @brief Enum holding different options for .csv output.
*
*
*/
enum CSV_OUTPUT {
CSV_OUTPUT_OFF, // do not produce csv output
CSV_OUTPUT_ON, // produce csv output with last concentration matrix
CSV_OUTPUT_VERBOSE, // produce csv output with all concentration matrices
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary conditions at beginning
CSV_OUTPUT_OFF, // do not produce csv output
CSV_OUTPUT_ON, // produce csv output with last concentration matrix
CSV_OUTPUT_VERBOSE, // produce csv output with all concentration matrices
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary
// conditions at beginning
};
/**
* @brief Enum holding different options for console output.
*
*
*/
enum CONSOLE_OUTPUT {
CONSOLE_OUTPUT_OFF, // do not print any output to console
CONSOLE_OUTPUT_ON, // print before and after concentrations to console
CONSOLE_OUTPUT_VERBOSE // print all concentration matrices to console
CONSOLE_OUTPUT_OFF, // do not print any output to console
CONSOLE_OUTPUT_ON, // print before and after concentrations to console
CONSOLE_OUTPUT_VERBOSE // print all concentration matrices to console
};
/**
* @brief Enum holding different options for time measurement.
*
* @brief Enum holding different options for time measurement.
*
*/
enum TIME_MEASURE {
TIME_MEASURE_OFF, // do not print any time measures
TIME_MEASURE_ON // print time measure after last iteration
TIME_MEASURE_OFF, // do not print any time measures
TIME_MEASURE_ON // print time measure after last iteration
};
/**
@ -66,148 +68,155 @@ enum TIME_MEASURE {
*
*/
class Simulation {
public:
/**
* @brief Set up a simulation environment. The timestep and number of iterations
* must be set. For the BTCS approach, the Thomas algorithm is used as
* the default linear equation solver as this is faster for tridiagonal
* matrices. CSV output, console output and time measure are off by default.
* Also, the number of cores is set to the maximum number of cores -1 by default.
*
* @param grid Valid grid object
* @param bc Valid boundary condition object
* @param approach Approach to solving the problem. Either FTCS or BTCS.
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
public:
/**
* @brief Set up a simulation environment. The timestep and number of
* iterations must be set. For the BTCS approach, the Thomas algorithm is used
* as the default linear equation solver as this is faster for tridiagonal
* matrices. CSV output, console output and time measure are off by
* default. Also, the number of cores is set to the maximum number of cores -1
* by default.
*
* @param grid Valid grid object
* @param bc Valid boundary condition object
* @param approach Approach to solving the problem. Either FTCS or BTCS.
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
/**
* @brief Set the option to output the results to a CSV file. Off by default.
*
*
* @param csv_output Valid output option. The following options can be set
* here:
* - CSV_OUTPUT_OFF: do not produce csv output
* - CSV_OUTPUT_ON: produce csv output with last
* concentration matrix
* - CSV_OUTPUT_VERBOSE: produce csv output with all
* concentration matrices
* - CSV_OUTPUT_XTREME: produce csv output with all
* concentration matrices and simulation environment
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief Set the option to output the results to a CSV file. Off by default.
*
*
* @param csv_output Valid output option. The following options can be set
* here:
* - CSV_OUTPUT_OFF: do not produce csv output
* - CSV_OUTPUT_ON: produce csv output with last
* concentration matrix
* - CSV_OUTPUT_VERBOSE: produce csv output with all
* concentration matrices
* - CSV_OUTPUT_XTREME: produce csv output with all
* concentration matrices and simulation environment
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief Set the options for outputting information to the console. Off by default.
*
* @param console_output Valid output option. The following options can be set
* here:
* - CONSOLE_OUTPUT_OFF: do not print any output to console
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the options for outputting information to the console. Off by
* default.
*
* @param console_output Valid output option. The following options can be set
* here:
* - CONSOLE_OUTPUT_OFF: do not print any output to
* console
* - CONSOLE_OUTPUT_ON: print before and after
* concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration
* matrices to console
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the Time Measure option. Off by default.
*
* @param time_measure The following options are allowed:
* - TIME_MEASURE_OFF: Time of simulation is not printed to console
* - TIME_MEASURE_ON: Time of simulation run is printed to console
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Set the Time Measure option. Off by default.
*
* @param time_measure The following options are allowed:
* - TIME_MEASURE_OFF: Time of simulation is not printed
* to console
* - TIME_MEASURE_ON: Time of simulation run is printed to
* console
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Setting the time step for each iteration step. Time step must be
* greater than zero. Setting the timestep is required.
*
* @param timestep Valid timestep greater than zero.
*/
void setTimestep(double timestep);
/**
* @brief Setting the time step for each iteration step. Time step must be
* greater than zero. Setting the timestep is required.
*
* @param timestep Valid timestep greater than zero.
*/
void setTimestep(double timestep);
/**
* @brief Currently set time step is returned.
*
* @return double timestep
*/
double getTimestep();
/**
* @brief Currently set time step is returned.
*
* @return double timestep
*/
double getTimestep();
/**
* @brief Set the desired iterations to be calculated. A value greater
* than zero must be specified here. Setting iterations is required.
*
* @param iterations Number of iterations to be simulated.
*/
void setIterations(int iterations);
/**
* @brief Set the desired iterations to be calculated. A value greater
* than zero must be specified here. Setting iterations is required.
*
* @param iterations Number of iterations to be simulated.
*/
void setIterations(int iterations);
/**
* @brief Set the desired linear equation solver to be used for BTCS approach. Without effect
* in case of FTCS approach.
*
* @param solver Solver to be used. Default is Thomas Algorithm as it is more efficient for
* tridiagonal Matrices.
*/
void setSolver(SOLVER solver);
/**
* @brief Set the desired linear equation solver to be used for BTCS approach.
* Without effect in case of FTCS approach.
*
* @param solver Solver to be used. Default is Thomas Algorithm as it is more
* efficient for tridiagonal Matrices.
*/
void setSolver(SOLVER solver);
/**
* @brief Set the number of desired openMP Threads.
*
* @param num_threads Number of desired threads. Must have a value between
* 1 and the maximum available number of processors. The maximum number of
* processors is set as the default case during Simulation construction.
*/
void setNumberThreads(int num_threads);
/**
* @brief Set the number of desired openMP Threads.
*
* @param num_threads Number of desired threads. Must have a value between
* 1 and the maximum available number of processors. The
* maximum number of processors is set as the default case during Simulation
* construction.
*/
void setNumberThreads(int num_threads);
/**
* @brief Return the currently set iterations to be calculated.
*
* @return int Number of iterations.
*/
int getIterations();
/**
* @brief Return the currently set iterations to be calculated.
*
* @return int Number of iterations.
*/
int getIterations();
/**
* @brief Outputs the current concentrations of the grid on the console.
*
*/
void printConcentrationsConsole();
/**
* @brief Outputs the current concentrations of the grid on the console.
*
*/
void printConcentrationsConsole();
/**
* @brief Creates a CSV file with a name containing the current simulation
* parameters. If the data name already exists, an additional counter is
* appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
*
* @return string Filename with configured simulation parameters.
*/
string createCSVfile();
/**
* @brief Creates a CSV file with a name containing the current simulation
* parameters. If the data name already exists, an additional counter
* is appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of
* iterations>+<counter>.csv
*
* @return string Filename with configured simulation parameters.
*/
string createCSVfile();
/**
* @brief Writes the currently calculated concentration values of the grid
* into the CSV file with the passed filename.
*
* @param filename Name of the file to which the concentration values are
* to be written.
*/
void printConcentrationsCSV(string filename);
/**
* @brief Writes the currently calculated concentration values of the grid
* into the CSV file with the passed filename.
*
* @param filename Name of the file to which the concentration values are
* to be written.
*/
void printConcentrationsCSV(string filename);
/**
* @brief Method starts the simulation process with the previously set
* parameters.
*/
void run();
/**
* @brief Method starts the simulation process with the previously set
* parameters.
*/
void run();
private:
double timestep;
int iterations;
int innerIterations;
int numThreads;
CSV_OUTPUT csv_output;
CONSOLE_OUTPUT console_output;
TIME_MEASURE time_measure;
Grid &grid;
Boundary &bc;
APPROACH approach;
SOLVER solver;
private:
double timestep;
int iterations;
int innerIterations;
int numThreads;
CSV_OUTPUT csv_output;
CONSOLE_OUTPUT console_output;
TIME_MEASURE time_measure;
Grid &grid;
Boundary &bc;
APPROACH approach;
SOLVER solver;
};

View File

@ -1,437 +1,459 @@
/**
* @file BTCSv2.cpp
* @brief Implementation of heterogenous BTCS (backward time-centered space) solution
* of diffusion equation in 1D and 2D space. Internally the alternating-direction
* implicit (ADI) method is used. Version 2, because Version 1 was an
* implementation for the homogeneous BTCS solution.
*
* @brief Implementation of heterogenous BTCS (backward time-centered space)
* solution of diffusion equation in 1D and 2D space. Internally the
* alternating-direction implicit (ADI) method is used. Version 2, because
* Version 1 was an implementation for the homogeneous BTCS solution.
*
*/
#include "FTCS.cpp"
#include <tug/Boundary.hpp>
#include <omp.h>
#include <tug/Boundary.hpp>
#define NUM_THREADS_BTCS 10
using namespace Eigen;
// calculates coefficient for left boundary in constant case
static tuple<double, double> calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
static tuple<double, double>
calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1))
+ 2 * alpha(rowIndex,0));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
centerCoeff =
1 + sx * (calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1)) +
2 * alpha(rowIndex, 0));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
return {centerCoeff, rightCoeff};
return {centerCoeff, rightCoeff};
}
// calculates coefficient for left boundary in closed case
static tuple<double, double> calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
static tuple<double, double>
calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
centerCoeff =
1 + sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
return {centerCoeff, rightCoeff};
return {centerCoeff, rightCoeff};
}
// calculates coefficient for right boundary in constant case
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, int n, double sx) {
double leftCoeff;
double centerCoeff;
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha,
int rowIndex, int n,
double sx) {
double leftCoeff;
double centerCoeff;
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n))
+ 2 * alpha(rowIndex,n));
leftCoeff =
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
centerCoeff =
1 + sx * (calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n)) +
2 * alpha(rowIndex, n));
return {leftCoeff, centerCoeff};
return {leftCoeff, centerCoeff};
}
// calculates coefficient for right boundary in closed case
static tuple<double, double> calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
double leftCoeff;
double centerCoeff;
static tuple<double, double>
calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
double leftCoeff;
double centerCoeff;
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
leftCoeff =
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
centerCoeff =
1 + sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
return {leftCoeff, centerCoeff};
return {leftCoeff, centerCoeff};
}
// creates coefficient matrix for next time step from alphas in x-direction
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha, vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight, int numCols, int rowIndex, double sx) {
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha,
vector<BoundaryElement> &bcLeft,
vector<BoundaryElement> &bcRight,
int numCols, int rowIndex,
double sx) {
// square matrix of column^2 dimension for the coefficients
SparseMatrix<double> cm(numCols, numCols);
cm.reserve(VectorXi::Constant(numCols, 3));
// square matrix of column^2 dimension for the coefficients
SparseMatrix<double> cm(numCols, numCols);
cm.reserve(VectorXi::Constant(numCols, 3));
// left column
BC_TYPE type = bcLeft[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
cm.insert(0,0) = centerCoeffTop;
cm.insert(0,1) = rightCoeffTop;
} else if (type == BC_TYPE_CLOSED) {
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
cm.insert(0,0) = centerCoeffTop;
cm.insert(0,1) = rightCoeffTop;
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
}
// left column
BC_TYPE type = bcLeft[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [centerCoeffTop, rightCoeffTop] =
calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
cm.insert(0, 0) = centerCoeffTop;
cm.insert(0, 1) = rightCoeffTop;
} else if (type == BC_TYPE_CLOSED) {
auto [centerCoeffTop, rightCoeffTop] =
calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
cm.insert(0, 0) = centerCoeffTop;
cm.insert(0, 1) = rightCoeffTop;
} else {
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Left or Top!");
}
// inner columns
int n = numCols-1;
for (int i = 1; i < n; i++) {
cm.insert(i,i-1) = -sx * calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i));
cm.insert(i,i) = 1 + sx * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1))
+ calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i))
)
;
cm.insert(i,i+1) = -sx * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1));
}
// inner columns
int n = numCols - 1;
for (int i = 1; i < n; i++) {
cm.insert(i, i - 1) =
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
cm.insert(i, i) =
1 +
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
cm.insert(i, i + 1) =
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
}
// right column
type = bcRight[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
cm.insert(n,n-1) = leftCoeffBottom;
cm.insert(n,n) = centerCoeffBottom;
} else if (type == BC_TYPE_CLOSED) {
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
cm.insert(n,n-1) = leftCoeffBottom;
cm.insert(n,n) = centerCoeffBottom;
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
// right column
type = bcRight[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [leftCoeffBottom, centerCoeffBottom] =
calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
cm.insert(n, n - 1) = leftCoeffBottom;
cm.insert(n, n) = centerCoeffBottom;
} else if (type == BC_TYPE_CLOSED) {
auto [leftCoeffBottom, centerCoeffBottom] =
calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
cm.insert(n, n - 1) = leftCoeffBottom;
cm.insert(n, n) = centerCoeffBottom;
} else {
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
cm.makeCompressed(); // important for Eigen solver
cm.makeCompressed(); // important for Eigen solver
return cm;
return cm;
}
// calculates explicity concentration at top boundary in constant case
static double calcExplicitConcentrationsTopBoundaryConstant(MatrixXd &concentrations,
MatrixXd &alpha, vector<BoundaryElement> &bcTop, int rowIndex, int i, double sy) {
double c;
static double calcExplicitConcentrationsTopBoundaryConstant(
MatrixXd &concentrations, MatrixXd &alpha, vector<BoundaryElement> &bcTop,
int rowIndex, int i, double sy) {
double c;
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
* concentrations(rowIndex,i)
+ (
1 - sy * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
+ 2 * alpha(rowIndex,i)
)
) * concentrations(rowIndex,i)
+ sy * alpha(rowIndex,i) * bcTop[i].getValue();
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
concentrations(rowIndex, i) +
(1 -
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) +
2 * alpha(rowIndex, i))) *
concentrations(rowIndex, i) +
sy * alpha(rowIndex, i) * bcTop[i].getValue();
return c;
return c;
}
// calculates explicit concentration at top boundary in closed case
static double calcExplicitConcentrationsTopBoundaryClosed(MatrixXd &concentrations,
MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
static double calcExplicitConcentrationsTopBoundaryClosed(
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
* concentrations(rowIndex,i)
+ (
1 - sy * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
)
) * concentrations(rowIndex,i);
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
concentrations(rowIndex, i) +
(1 -
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)))) *
concentrations(rowIndex, i);
return c;
return c;
}
// calculates explicit concentration at bottom boundary in constant case
static double calcExplicitConcentrationsBottomBoundaryConstant(MatrixXd &concentrations,
MatrixXd &alpha, vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
double c;
static double calcExplicitConcentrationsBottomBoundaryConstant(
MatrixXd &concentrations, MatrixXd &alpha,
vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
double c;
c = sy * alpha(rowIndex,i) * bcBottom[i].getValue()
+ (
1 - sy * (
2 * alpha(rowIndex,i)
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
* concentrations(rowIndex-1,i);
c = sy * alpha(rowIndex, i) * bcBottom[i].getValue() +
(1 -
sy * (2 * alpha(rowIndex, i) +
calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
concentrations(rowIndex - 1, i);
return c;
return c;
}
// calculates explicit concentration at bottom boundary in closed case
static double calcExplicitConcentrationsBottomBoundaryClosed(MatrixXd &concentrations,
MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
static double calcExplicitConcentrationsBottomBoundaryClosed(
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
c = (
1 - sy * (
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
* concentrations(rowIndex-1,i);
c = (1 -
sy * (+calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
concentrations(rowIndex - 1, i);
return c;
return c;
}
// creates a solution vector for next time step from the current state of
// concentrations
static VectorXd createSolutionVector(
MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
int length, int rowIndex, double sx, double sy) {
// creates a solution vector for next time step from the current state of concentrations
static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
int length, int rowIndex, double sx, double sy) {
VectorXd sv(length);
int numRows = concentrations.rows();
BC_TYPE type;
VectorXd sv(length);
int numRows = concentrations.rows();
BC_TYPE type;
// inner rows
if (rowIndex > 0 && rowIndex < numRows-1) {
for (int i = 0; i < length; i++) {
sv(i) = sy * calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
* concentrations(rowIndex+1,i)
+ (
1 - sy * (
calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
+ calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
* concentrations(rowIndex-1,i)
;
}
// inner rows
if (rowIndex > 0 && rowIndex < numRows - 1) {
for (int i = 0; i < length; i++) {
sv(i) =
sy *
calcAlphaIntercell(alphaY(rowIndex, i), alphaY(rowIndex + 1, i)) *
concentrations(rowIndex + 1, i) +
(1 - sy * (calcAlphaIntercell(alphaY(rowIndex, i),
alphaY(rowIndex + 1, i)) +
calcAlphaIntercell(alphaY(rowIndex - 1, i),
alphaY(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy *
calcAlphaIntercell(alphaY(rowIndex - 1, i), alphaY(rowIndex, i)) *
concentrations(rowIndex - 1, i);
}
}
// first row
else if (rowIndex == 0) {
for (int i = 0; i < length; i++) {
type = bcTop[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(concentrations, alphaY, bcTop, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
}
}
// first row
else if (rowIndex == 0) {
for (int i = 0; i < length; i++) {
type = bcTop[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(
concentrations, alphaY, bcTop, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(
concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Left or Top!");
}
}
}
// last row
else if (rowIndex == numRows-1) {
for (int i = 0; i < length; i++) {
type = bcBottom[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(concentrations, alphaY, bcBottom, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
}
// last row
else if (rowIndex == numRows - 1) {
for (int i = 0; i < length; i++) {
type = bcBottom[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(
concentrations, alphaY, bcBottom, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(
concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
}
}
// first column -> additional fixed concentration change from perpendicular dimension in constant bc case
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(0) += 2 * sx * alphaX(rowIndex,0) * bcLeft[rowIndex].getValue();
}
// first column -> additional fixed concentration change from perpendicular
// dimension in constant bc case
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(0) += 2 * sx * alphaX(rowIndex, 0) * bcLeft[rowIndex].getValue();
}
// last column -> additional fixed concentration change from perpendicular dimension in constant bc case
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(length-1) += 2 * sx * alphaX(rowIndex,length-1) * bcRight[rowIndex].getValue();
}
// last column -> additional fixed concentration change from perpendicular
// dimension in constant bc case
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(length - 1) +=
2 * sx * alphaX(rowIndex, length - 1) * bcRight[rowIndex].getValue();
}
return sv;
return sv;
}
// solver for linear equation system; A corresponds to coefficient matrix,
// b to the solution vector
// use of EigenLU solver
static VectorXd EigenLUAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
SparseLU<SparseMatrix<double>> solver;
solver.analyzePattern(A);
solver.factorize(A);
SparseLU<SparseMatrix<double>> solver;
solver.analyzePattern(A);
solver.factorize(A);
return solver.solve(b);
return solver.solve(b);
}
// solver for linear equation system; A corresponds to coefficient matrix,
// solver for linear equation system; A corresponds to coefficient matrix,
// b to the solution vector
// implementation of Thomas Algorithm
static VectorXd ThomasAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
uint32_t n = b.size();
uint32_t n = b.size();
Eigen::VectorXd a_diag(n);
Eigen::VectorXd b_diag(n);
Eigen::VectorXd c_diag(n);
Eigen::VectorXd x_vec = b;
Eigen::VectorXd a_diag(n);
Eigen::VectorXd b_diag(n);
Eigen::VectorXd c_diag(n);
Eigen::VectorXd x_vec = b;
// Fill diagonals vectors
b_diag[0] = A.coeff(0, 0);
c_diag[0] = A.coeff(0, 1);
// Fill diagonals vectors
b_diag[0] = A.coeff(0, 0);
c_diag[0] = A.coeff(0, 1);
for (int i = 1; i < n - 1; i++) {
a_diag[i] = A.coeff(i, i - 1);
b_diag[i] = A.coeff(i, i);
c_diag[i] = A.coeff(i, i + 1);
}
a_diag[n - 1] = A.coeff(n - 1, n - 2);
b_diag[n - 1] = A.coeff(n - 1, n - 1);
for (int i = 1; i < n - 1; i++) {
a_diag[i] = A.coeff(i, i - 1);
b_diag[i] = A.coeff(i, i);
c_diag[i] = A.coeff(i, i + 1);
}
a_diag[n - 1] = A.coeff(n - 1, n - 2);
b_diag[n - 1] = A.coeff(n - 1, n - 1);
// start solving - c_diag and x_vec are overwritten
n--;
c_diag[0] /= b_diag[0];
x_vec[0] /= b_diag[0];
// start solving - c_diag and x_vec are overwritten
n--;
c_diag[0] /= b_diag[0];
x_vec[0] /= b_diag[0];
for (int i = 1; i < n; i++) {
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
}
for (int i = 1; i < n; i++) {
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
}
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
for (int i = n; i-- > 0;) {
x_vec[i] -= c_diag[i] * x_vec[i + 1];
}
for (int i = n; i-- > 0;) {
x_vec[i] -= c_diag[i] * x_vec[i + 1];
}
return x_vec;
return x_vec;
}
// BTCS solution for 1D grid
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep,
VectorXd (*solverFunc)(SparseMatrix<double> &A,
VectorXd &b)) {
int length = grid.getLength();
double sx = timestep / (grid.getDelta() * grid.getDelta());
// BTCS solution for 1D grid
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b)) {
int length = grid.getLength();
double sx = timestep / (grid.getDelta() * grid.getDelta());
VectorXd concentrations_t1(length);
VectorXd concentrations_t1(length);
SparseMatrix<double> A;
VectorXd b(length);
SparseMatrix<double> A;
VectorXd b(length);
MatrixXd alpha = grid.getAlpha();
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
MatrixXd alpha = grid.getAlpha();
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
MatrixXd concentrations = grid.getConcentrations();
int rowIndex = 0;
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex,
sx); // this is exactly same as in 2D
for (int i = 0; i < length; i++) {
b(i) = concentrations(0, i);
}
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
b(0) += 2 * sx * alpha(0, 0) * bcLeft[0].getValue();
}
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
b(length - 1) += 2 * sx * alpha(0, length - 1) * bcRight[0].getValue();
}
MatrixXd concentrations = grid.getConcentrations();
int rowIndex = 0;
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex, sx); // this is exactly same as in 2D
for (int i = 0; i < length; i++) {
b(i) = concentrations(0,i);
}
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
b(0) += 2 * sx * alpha(0,0) * bcLeft[0].getValue();
}
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
b(length-1) += 2 * sx * alpha(0,length-1) * bcRight[0].getValue();
}
concentrations_t1 = solverFunc(A, b);
concentrations_t1 = solverFunc(A, b);
for (int j = 0; j < length; j++) {
concentrations(0, j) = concentrations_t1(j);
}
for (int j = 0; j < length; j++) {
concentrations(0,j) = concentrations_t1(j);
}
grid.setConcentrations(concentrations);
grid.setConcentrations(concentrations);
}
// BTCS solution for 2D grid
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b), int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep,
VectorXd (*solverFunc)(SparseMatrix<double> &A,
VectorXd &b),
int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
VectorXd row_t1(colMax);
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
VectorXd row_t1(colMax);
SparseMatrix<double> A;
VectorXd b;
SparseMatrix<double> A;
VectorXd b;
MatrixXd alphaX = grid.getAlphaX();
MatrixXd alphaY = grid.getAlphaY();
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
MatrixXd alphaX = grid.getAlphaX();
MatrixXd alphaY = grid.getAlphaY();
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
MatrixXd concentrations = grid.getConcentrations();
MatrixXd concentrations = grid.getConcentrations();
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
for (int i = 0; i < rowMax; i++) {
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
bcTop, bcBottom, colMax, i, sx, sy);
SparseLU<SparseMatrix<double>> solver;
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
for (int i = 0; i < rowMax; i++) {
row_t1 = solverFunc(A, b);
concentrations_t1.row(i) = row_t1;
}
concentrations_t1.transposeInPlace();
concentrations.transposeInPlace();
alphaX.transposeInPlace();
alphaY.transposeInPlace();
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
for (int i = 0; i < colMax; i++) {
// swap alphas, boundary conditions and sx/sy for column-wise calculation
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
bcLeft, bcRight, rowMax, i, sy, sx);
row_t1 = solverFunc(A, b);
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
bcTop, bcBottom, colMax, i, sx, sy);
concentrations.row(i) = row_t1;
}
concentrations.transposeInPlace();
SparseLU<SparseMatrix<double>> solver;
grid.setConcentrations(concentrations);
row_t1 = solverFunc(A, b);
concentrations_t1.row(i) = row_t1;
}
concentrations_t1.transposeInPlace();
concentrations.transposeInPlace();
alphaX.transposeInPlace();
alphaY.transposeInPlace();
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
for (int i = 0; i < colMax; i++) {
// swap alphas, boundary conditions and sx/sy for column-wise calculation
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
bcLeft, bcRight, rowMax, i, sy, sx);
row_t1 = solverFunc(A, b);
concentrations.row(i) = row_t1;
}
concentrations.transposeInPlace();
grid.setConcentrations(concentrations);
}
// entry point for EigenLU solver; differentiate between 1D and 2D grid
static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
if (grid.getDim() == 1) {
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
}
if (grid.getDim() == 1) {
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
} else {
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep, int numThreads) {
if (grid.getDim() == 1) {
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
}
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep,
int numThreads) {
if (grid.getDim() == 1) {
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
} else {
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}

View File

@ -1,162 +1,162 @@
#include "TugUtils.cpp"
#include <iostream>
#include <omp.h>
#include <tug/Boundary.hpp>
#include <stdexcept>
#include <tug/Boundary.hpp>
using namespace std;
BoundaryElement::BoundaryElement() {
this->type = BC_TYPE_CLOSED;
this->value = -1; // without meaning in closed case
this->type = BC_TYPE_CLOSED;
this->value = -1; // without meaning in closed case
}
BoundaryElement::BoundaryElement(double value) {
this->type = BC_TYPE_CONSTANT;
this->value = value;
this->type = BC_TYPE_CONSTANT;
this->value = value;
}
void BoundaryElement::setType(BC_TYPE type) {
this->type = type;
}
void BoundaryElement::setType(BC_TYPE type) { this->type = type; }
void BoundaryElement::setValue(double value) {
if(value < 0){
throw_invalid_argument("No negative concentration allowed.");
}
if(type == BC_TYPE_CLOSED){
throw_invalid_argument(
"No constant boundary concentrations can be set for closed "
"boundaries. Please change type first.");
}
this->value = value;
if (value < 0) {
throw_invalid_argument("No negative concentration allowed.");
}
if (type == BC_TYPE_CLOSED) {
throw_invalid_argument(
"No constant boundary concentrations can be set for closed "
"boundaries. Please change type first.");
}
this->value = value;
}
BC_TYPE BoundaryElement::getType() {
return this->type;
}
BC_TYPE BoundaryElement::getType() { return this->type; }
double BoundaryElement::getValue() {
return this->value;
}
double BoundaryElement::getValue() { return this->value; }
Boundary::Boundary(Grid grid) : grid(grid) {
if (grid.getDim() == 1) {
this->boundaries = vector<vector<BoundaryElement>>(2); // in 1D only left and right boundary
if (grid.getDim() == 1) {
this->boundaries = vector<vector<BoundaryElement>>(
2); // in 1D only left and right boundary
this->boundaries[BC_SIDE_LEFT].push_back(BoundaryElement());
this->boundaries[BC_SIDE_RIGHT].push_back(BoundaryElement());
} else if (grid.getDim() == 2) {
this->boundaries = vector<vector<BoundaryElement>>(4);
this->boundaries[BC_SIDE_LEFT].push_back(BoundaryElement());
this->boundaries[BC_SIDE_RIGHT].push_back(BoundaryElement());
} else if (grid.getDim() == 2) {
this->boundaries = vector<vector<BoundaryElement>>(4);
this->boundaries[BC_SIDE_LEFT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_RIGHT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_TOP] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
this->boundaries[BC_SIDE_BOTTOM] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
}
this->boundaries[BC_SIDE_LEFT] =
vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_RIGHT] =
vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_TOP] =
vector<BoundaryElement>(grid.getCol(), BoundaryElement());
this->boundaries[BC_SIDE_BOTTOM] =
vector<BoundaryElement>(grid.getCol(), BoundaryElement());
}
}
void Boundary::setBoundarySideClosed(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional case, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
if (grid.getDim() == 1) {
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
throw_invalid_argument(
"For the one-dimensional case, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
int n;
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
n = grid.getRow();
} else {
n = grid.getCol();
}
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement());
int n;
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
n = grid.getRow();
} else {
n = grid.getCol();
}
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement());
}
void Boundary::setBoundarySideConstant(BC_SIDE side, double value) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional case, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
if (grid.getDim() == 1) {
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
throw_invalid_argument(
"For the one-dimensional case, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
int n;
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
n = grid.getRow();
} else {
n = grid.getCol();
}
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement(value));
int n;
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
n = grid.getRow();
} else {
n = grid.getCol();
}
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement(value));
}
void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
// tests whether the index really points to an element of the boundary side.
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
}
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
this->boundaries[side][index].setValue(value);
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index,
double value) {
// tests whether the index really points to an element of the boundary side.
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
this->boundaries[side][index].setValue(value);
}
const vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
if (grid.getDim() == 1) {
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
return this->boundaries[side];
}
return this->boundaries[side];
}
VectorXd Boundary::getBoundarySideValues(BC_SIDE side) {
int length = boundaries[side].size();
VectorXd values(length);
int length = boundaries[side].size();
VectorXd values(length);
for (int i = 0; i < length; i++) {
if (getBoundaryElementType(side, i) == BC_TYPE_CLOSED) {
values(i) = -1;
continue;
}
values(i) = getBoundaryElementValue(side, i);
for (int i = 0; i < length; i++) {
if (getBoundaryElementType(side, i) == BC_TYPE_CLOSED) {
values(i) = -1;
continue;
}
values(i) = getBoundaryElementValue(side, i);
}
return values;
return values;
}
BoundaryElement Boundary::getBoundaryElement(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index];
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index];
}
BC_TYPE Boundary::getBoundaryElementType(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index].getType();
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index].getType();
}
double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
if(boundaries[side][index].getType() != BC_TYPE_CONSTANT){
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
}
return this->boundaries[side][index].getValue();
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
}
if (boundaries[side][index].getType() != BC_TYPE_CONSTANT) {
throw_invalid_argument(
"A value can only be output if it is a constant boundary condition.");
}
return this->boundaries[side][index].getValue();
}

View File

@ -1,433 +1,389 @@
/**
* @file FTCS.cpp
* @brief Implementation of heterogenous FTCS (forward time-centered space) solution
* of diffusion equation in 1D and 2D space.
*
* @brief Implementation of heterogenous FTCS (forward time-centered space)
* solution of diffusion equation in 1D and 2D space.
*
*/
#include "TugUtils.cpp"
#include <cstddef>
#include <tug/Boundary.hpp>
#include <iostream>
#include <omp.h>
#include <tug/Boundary.hpp>
using namespace std;
// calculates horizontal change on one cell independent of boundary type
static double calcHorizontalChange(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col+1)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col-1);
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col + 1) -
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col))) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col - 1);
return result;
return result;
}
// calculates vertical change on one cell independent of boundary type
static double calcVerticalChange(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
* grid.getConcentrations()(row+1,col)
- (
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
* grid.getConcentrations()(row-1,col);
return result;
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row + 1, col) -
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) +
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
grid.getAlphaY()(row, col))) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row - 1, col);
return result;
}
// calculates horizontal change on one cell with a constant left boundary
static double calcHorizontalChangeLeftBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeLeftBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col+1)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
+ 2 * grid.getAlphaX()(row,col)
)
* grid.getConcentrations()(row,col)
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col + 1) -
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) +
2 * grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col) +
2 * grid.getAlphaX()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
return result;
return result;
}
// calculates horizontal change on one cell with a closed left boundary
static double calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row, col+1), grid.getAlphaX()(row, col))
* (grid.getConcentrations()(row, col+1) - grid.getConcentrations()(row, col));
return result;
}
static double calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row,
int &col) {
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
(grid.getConcentrations()(row, col + 1) -
grid.getConcentrations()(row, col));
return result;
}
// checks boundary condition type for a cell on the left edge of grid
static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CLOSED) {
return calcHorizontalChangeLeftBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CLOSED) {
return calcHorizontalChangeLeftBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
}
// calculates horizontal change on one cell with a constant right boundary
static double calcHorizontalChangeRightBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeRightBoundaryConstant(Grid &grid,
Boundary &bc, int &row,
int &col) {
double result =
2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_RIGHT, row)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
+ 2 * grid.getAlphaX()(row,col)
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col-1);
double result = 2 * grid.getAlphaX()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_RIGHT, row) -
(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) +
2 * grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col - 1);
return result;
return result;
}
// calculates horizontal change on one cell with a closed right boundary
static double calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row, int &col) {
double result =
- (calcAlphaIntercell(grid.getAlphaX()(row, col-1), grid.getAlphaX()(row, col))
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row, col-1)));
return result;
}
static double calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row,
int &col) {
double result = -(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
(grid.getConcentrations()(row, col) -
grid.getConcentrations()(row, col - 1)));
return result;
}
// checks boundary condition type for a cell on the right edge of grid
static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CLOSED) {
return calcHorizontalChangeRightBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CLOSED) {
return calcHorizontalChangeRightBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
}
// calculates vertical change on one cell with a constant top boundary
static double calcVerticalChangeTopBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
* grid.getConcentrations()(row+1,col)
- (
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
+ 2 * grid.getAlphaY()(row, col)
)
* grid.getConcentrations()(row, col)
+ 2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_TOP, col);
static double calcVerticalChangeTopBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
return result;
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row + 1, col) -
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) +
2 * grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row, col) +
2 * grid.getAlphaY()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_TOP, col);
return result;
}
// calculates vertical change on one cell with a closed top boundary
static double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getConcentrations()(row, col))
* (grid.getConcentrations()(row+1, col) - grid.getConcentrations()(row, col));
static double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row,
int &col) {
return result;
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getConcentrations()(row, col)) *
(grid.getConcentrations()(row + 1, col) -
grid.getConcentrations()(row, col));
return result;
}
// checks boundary condition type for a cell on the top edge of grid
static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeTopBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CLOSED) {
return calcVerticalChangeTopBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row,
int &col) {
if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeTopBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CLOSED) {
return calcVerticalChangeTopBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
}
// calculates vertical change on one cell with a constant bottom boundary
static double calcVerticalChangeBottomBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcVerticalChangeBottomBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
double result =
2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col)
- (
calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
+ 2 * grid.getAlphaY()(row, col)
)
* grid.getConcentrations()(row, col)
+ calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
* grid.getConcentrations()(row-1,col);
double result = 2 * grid.getAlphaY()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col) -
(calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) +
2 * grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) *
grid.getConcentrations()(row - 1, col);
return result;
return result;
}
// calculates vertical change on one cell with a closed bottom boundary
static double calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row, int &col) {
static double calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row,
int &col) {
double result =
- (calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row-1, col)));
double result = -(calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) *
(grid.getConcentrations()(row, col) -
grid.getConcentrations()(row - 1, col)));
return result;
return result;
}
// checks boundary condition type for a cell on the bottom edge of grid
static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CLOSED) {
return calcVerticalChangeBottomBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CLOSED) {
return calcVerticalChangeBottomBoundaryClosed(grid, row, col);
} else {
throw_invalid_argument("Undefined Boundary Condition Type!");
}
}
// FTCS solution for 1D grid
static void FTCS_1D(Grid &grid, Boundary &bc, double &timestep) {
int colMax = grid.getCol();
double deltaCol = grid.getDeltaCol();
int colMax = grid.getCol();
double deltaCol = grid.getDeltaCol();
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(1, colMax, 0);
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(1, colMax, 0);
// only one row in 1D case -> row constant at index 0
int row = 0;
// only one row in 1D case -> row constant at index 0
int row = 0;
// inner cells
// independent of boundary condition type
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
// inner cells
// independent of boundary condition type
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// left boundary; hold column constant at index 0
int col = 0;
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
;
// left boundary; hold column constant at index 0
int col = 0;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col));
// right boundary; hold column constant at max index
col = colMax - 1;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col));
// right boundary; hold column constant at max index
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
;
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
}
// FTCS solution for 2D grid
static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double deltaRow = grid.getDeltaRow();
double deltaCol = grid.getDeltaCol();
static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep,
int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double deltaRow = grid.getDeltaRow();
double deltaCol = grid.getDeltaCol();
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// inner cells
// these are independent of the boundary condition type
// omp_set_num_threads(10);
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax-1; row++) {
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
}
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// right without corners / looping over rows
// hold column constant at max index
col = colMax-1;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for num_threads(numThreads)
for (int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax-1;
#pragma omp parallel for num_threads(numThreads)
for(int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax-1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// inner cells
// these are independent of the boundary condition type
// omp_set_num_threads(10);
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChange(grid, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
}
// corner bottom right
// hold row and column constant at max index
row = rowMax-1;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
}
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// }
// right without corners / looping over rows
// hold column constant at max index
col = colMax - 1;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for num_threads(numThreads)
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax - 1;
#pragma omp parallel for num_threads(numThreads)
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col));
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax - 1;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col));
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax - 1;
col = 0;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
// corner bottom right
// hold row and column constant at max index
row = rowMax - 1;
col = colMax - 1;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// }
}
// entry point; differentiate between 1D and 2D grid
static void FTCS(Grid &grid, Boundary &bc, double &timestep, int &numThreads) {
if (grid.getDim() == 1) {
FTCS_1D(grid, bc, timestep);
} else if (grid.getDim() == 2) {
FTCS_2D(grid, bc, timestep, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
}
if (grid.getDim() == 1) {
FTCS_1D(grid, bc, timestep);
} else if (grid.getDim() == 2) {
FTCS_2D(grid, bc, timestep, numThreads);
} else {
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}

View File

@ -1,164 +1,171 @@
#include "TugUtils.cpp"
#include <tug/Grid.hpp>
#include <iostream>
#include <tug/Grid.hpp>
Grid::Grid(int length) {
if (length <= 3) {
throw_invalid_argument("Given grid length too small. Must be greater than 3.");
}
if (length <= 3) {
throw_invalid_argument(
"Given grid length too small. Must be greater than 3.");
}
this->row = 1;
this->col = length;
this->domainCol = length; // default: same size as length
this->deltaCol = double(this->domainCol)/double(this->col); // -> 1
this->dim = 1;
this->row = 1;
this->col = length;
this->domainCol = length; // default: same size as length
this->deltaCol = double(this->domainCol) / double(this->col); // -> 1
this->dim = 1;
this->concentrations = MatrixXd::Constant(1, col, 20);
this->alphaX = MatrixXd::Constant(1, col, 1);
this->concentrations = MatrixXd::Constant(1, col, 20);
this->alphaX = MatrixXd::Constant(1, col, 1);
}
Grid::Grid(int row, int col) {
if (row <= 3 || col <= 3) {
throw_invalid_argument("Given grid dimensions too small. Must each be greater than 3.");
}
if (row <= 3 || col <= 3) {
throw_invalid_argument(
"Given grid dimensions too small. Must each be greater than 3.");
}
this->row = row;
this->col = col;
this->domainRow = row; // default: same size as row
this->domainCol = col; // default: same size as col
this->deltaRow = double(this->domainRow)/double(this->row); // -> 1
this->deltaCol = double(this->domainCol)/double(this->col); // -> 1
this->dim = 2;
this->row = row;
this->col = col;
this->domainRow = row; // default: same size as row
this->domainCol = col; // default: same size as col
this->deltaRow = double(this->domainRow) / double(this->row); // -> 1
this->deltaCol = double(this->domainCol) / double(this->col); // -> 1
this->dim = 2;
this->concentrations = MatrixXd::Constant(row, col, 20);
this->alphaX = MatrixXd::Constant(row, col, 1);
this->alphaY = MatrixXd::Constant(row, col, 1);
this->concentrations = MatrixXd::Constant(row, col, 20);
this->alphaX = MatrixXd::Constant(row, col, 1);
this->alphaY = MatrixXd::Constant(row, col, 1);
}
void Grid::setConcentrations(MatrixXd concentrations) {
if (concentrations.rows() != this->row || concentrations.cols() != this->col) {
throw_invalid_argument("Given matrix of concentrations mismatch with Grid dimensions!");
}
if (concentrations.rows() != this->row ||
concentrations.cols() != this->col) {
throw_invalid_argument(
"Given matrix of concentrations mismatch with Grid dimensions!");
}
this->concentrations = concentrations;
this->concentrations = concentrations;
}
const MatrixXd Grid::getConcentrations() {
return this->concentrations;
}
const MatrixXd Grid::getConcentrations() { return this->concentrations; }
void Grid::setAlpha(MatrixXd alpha) {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use 2D setter function!");
}
if (alpha.rows() != 1 || alpha.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients mismatch with Grid dimensions!");
}
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use 2D setter function!");
}
if (alpha.rows() != 1 || alpha.cols() != this->col) {
throw_invalid_argument(
"Given matrix of alpha coefficients mismatch with Grid dimensions!");
}
this->alphaX = alpha;
this->alphaX = alpha;
}
void Grid::setAlpha(MatrixXd alphaX, MatrixXd alphaY) {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use 1D setter function!");
}
if (alphaX.rows() != this->row || alphaX.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in x-direction mismatch with GRid dimensions!");
}
if (alphaY.rows() != this->row || alphaY.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in y-direction mismatch with GRid dimensions!");
}
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably "
"use 1D setter function!");
}
if (alphaX.rows() != this->row || alphaX.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in x-direction "
"mismatch with GRid dimensions!");
}
if (alphaY.rows() != this->row || alphaY.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in y-direction "
"mismatch with GRid dimensions!");
}
this->alphaX = alphaX;
this->alphaY = alphaY;
this->alphaX = alphaX;
this->alphaY = alphaY;
}
const MatrixXd Grid::getAlpha() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use either getAlphaX() or getAlphaY()!");
}
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use either getAlphaX() or getAlphaY()!");
}
return this->alphaX;
return this->alphaX;
}
const MatrixXd Grid::getAlphaX() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
}
if (dim != 2) {
throw_invalid_argument(
"Grid is not two dimensional, you should probably use getAlpha()!");
}
return this->alphaX;
return this->alphaX;
}
const MatrixXd Grid::getAlphaY() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
}
if (dim != 2) {
throw_invalid_argument(
"Grid is not two dimensional, you should probably use getAlpha()!");
}
return this->alphaY;
return this->alphaY;
}
int Grid::getDim() {
return dim;
}
int Grid::getDim() { return dim; }
int Grid::getLength() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use getRow() or getCol()!");
}
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use getRow() or getCol()!");
}
return col;
return col;
}
int Grid::getRow() {
return row;
}
int Grid::getRow() { return row; }
int Grid::getCol() {
return col;
}
int Grid::getCol() { return col; }
void Grid::setDomain(double domainLength) {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probaly use the 2D domain setter!");
}
if (domainLength <= 0) {
throw_invalid_argument("Given domain length is not positive!");
}
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probaly "
"use the 2D domain setter!");
}
if (domainLength <= 0) {
throw_invalid_argument("Given domain length is not positive!");
}
this->domainCol = domainLength;
this->deltaCol = double(this->domainCol)/double(this->col);
this->domainCol = domainLength;
this->deltaCol = double(this->domainCol) / double(this->col);
}
void Grid::setDomain(double domainRow, double domainCol) {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use the 1D domain setter!");
}
if (domainRow <= 0 || domainCol <= 0) {
throw_invalid_argument("Given domain size is not positive!");
}
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably "
"use the 1D domain setter!");
}
if (domainRow <= 0 || domainCol <= 0) {
throw_invalid_argument("Given domain size is not positive!");
}
this->domainRow = domainRow;
this->domainCol = domainCol;
this->deltaRow = double(this->domainRow)/double(this->row);
this->deltaCol = double(this->domainCol)/double(this->col);
this->domainRow = domainRow;
this->domainCol = domainCol;
this->deltaRow = double(this->domainRow) / double(this->row);
this->deltaCol = double(this->domainCol) / double(this->col);
}
double Grid::getDelta() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use the 2D delta getters");
}
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use the 2D delta getters");
}
return this->deltaCol;
return this->deltaCol;
}
double Grid::getDeltaCol() {
return this->deltaCol;
}
double Grid::getDeltaCol() { return this->deltaCol; }
double Grid::getDeltaRow() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, meaning there is no delta in y-direction!");
}
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, meaning there is no "
"delta in y-direction!");
}
return this->deltaRow;
return this->deltaRow;
}

View File

@ -1,10 +1,10 @@
#include <cmath>
#include <cstddef>
#include <filesystem>
#include <omp.h>
#include <stdexcept>
#include <string>
#include <tug/Simulation.hpp>
#include <omp.h>
#include <fstream>
@ -13,319 +13,330 @@
#include "BTCSv2.cpp"
using namespace std;
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach)
: grid(grid), bc(bc) {
this->approach = approach;
this->solver = THOMAS_ALGORITHM_SOLVER;
this->timestep = -1; // error per default; needs to be set
this->iterations = -1;
this->innerIterations = 1;
this->numThreads = omp_get_num_procs()-1;
this->csv_output = CSV_OUTPUT_OFF;
this->console_output = CONSOLE_OUTPUT_OFF;
this->time_measure = TIME_MEASURE_OFF;
this->approach = approach;
this->solver = THOMAS_ALGORITHM_SOLVER;
this->timestep = -1; // error per default; needs to be set
this->iterations = -1;
this->innerIterations = 1;
this->numThreads = omp_get_num_procs() - 1;
this->csv_output = CSV_OUTPUT_OFF;
this->console_output = CONSOLE_OUTPUT_OFF;
this->time_measure = TIME_MEASURE_OFF;
}
void Simulation::setOutputCSV(CSV_OUTPUT csv_output) {
if (csv_output < CSV_OUTPUT_OFF && csv_output > CSV_OUTPUT_VERBOSE) {
throw_invalid_argument("Invalid CSV output option given!");
}
if (csv_output < CSV_OUTPUT_OFF && csv_output > CSV_OUTPUT_VERBOSE) {
throw_invalid_argument("Invalid CSV output option given!");
}
this->csv_output = csv_output;
this->csv_output = csv_output;
}
void Simulation::setOutputConsole(CONSOLE_OUTPUT console_output) {
if (console_output < CONSOLE_OUTPUT_OFF && console_output > CONSOLE_OUTPUT_VERBOSE) {
throw_invalid_argument("Invalid console output option given!");
}
if (console_output < CONSOLE_OUTPUT_OFF &&
console_output > CONSOLE_OUTPUT_VERBOSE) {
throw_invalid_argument("Invalid console output option given!");
}
this->console_output = console_output;
this->console_output = console_output;
}
void Simulation::setTimeMeasure(TIME_MEASURE time_measure) {
if (time_measure < TIME_MEASURE_OFF && time_measure > TIME_MEASURE_ON) {
throw_invalid_argument("Invalid time measure option given!");
}
if (time_measure < TIME_MEASURE_OFF && time_measure > TIME_MEASURE_ON) {
throw_invalid_argument("Invalid time measure option given!");
}
this->time_measure = time_measure;
this->time_measure = time_measure;
}
void Simulation::setTimestep(double timestep) {
if(timestep <= 0){
throw_invalid_argument("Timestep has to be greater than zero.");
}
if (timestep <= 0) {
throw_invalid_argument("Timestep has to be greater than zero.");
}
if (approach == FTCS_APPROACH || approach == CRANK_NICOLSON_APPROACH) {
if (approach == FTCS_APPROACH || approach == CRANK_NICOLSON_APPROACH) {
double deltaRowSquare;
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDeltaSquare;
double maxAlphaX, maxAlphaY, maxAlpha;
string dim;
if (grid.getDim() == 2) {
dim = "2D";
double deltaRowSquare;
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDeltaSquare;
double maxAlphaX, maxAlphaY, maxAlpha;
string dim;
if (grid.getDim() == 2) {
dim = "2D";
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
minDeltaSquare = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
maxAlphaX = grid.getAlphaX().maxCoeff();
maxAlphaY = grid.getAlphaY().maxCoeff();
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
minDeltaSquare =
(deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
maxAlphaX = grid.getAlphaX().maxCoeff();
maxAlphaY = grid.getAlphaY().maxCoeff();
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
} else if (grid.getDim() == 1) {
dim = "1D";
minDeltaSquare = deltaColSquare;
maxAlpha = grid.getAlpha().maxCoeff();
} else {
throw_invalid_argument("Critical error: Undefined number of dimensions!");
}
// Courant-Friedrichs-Lewy condition
double cfl = minDeltaSquare / (4*maxAlpha);
// stability equation from Wikipedia; might be useful if applied cfl does not work in some cases
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare)));
string approachPrefix = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl << endl;
cout << approachPrefix << "_" << dim << " :: required dt=" << timestep << endl;
if (timestep > cfl) {
this->innerIterations = (int)ceil(timestep / cfl);
this->timestep = timestep / (double)innerIterations;
cerr << "Warning :: Timestep was adjusted, because of stability "
"conditions. Time duration was approximately preserved by "
"adjusting internal number of iterations."
<< endl;
cout << approachPrefix << "_" << dim << " :: Required " << this->innerIterations
<< " inner iterations with dt=" << this->timestep << endl;
} else {
this->timestep = timestep;
cout << approachPrefix << "_" << dim << " :: No inner iterations required, dt=" << timestep << endl;
}
} else if (grid.getDim() == 1) {
dim = "1D";
minDeltaSquare = deltaColSquare;
maxAlpha = grid.getAlpha().maxCoeff();
} else {
this->timestep = timestep;
throw_invalid_argument("Critical error: Undefined number of dimensions!");
}
// Courant-Friedrichs-Lewy condition
double cfl = minDeltaSquare / (4 * maxAlpha);
// stability equation from Wikipedia; might be useful if applied cfl does
// not work in some cases double CFL_Wiki = 1 / (4 * maxAlpha *
// ((1/deltaRowSquare) + (1/deltaColSquare)));
string approachPrefix =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl
<< endl;
cout << approachPrefix << "_" << dim << " :: required dt=" << timestep
<< endl;
if (timestep > cfl) {
this->innerIterations = (int)ceil(timestep / cfl);
this->timestep = timestep / (double)innerIterations;
cerr << "Warning :: Timestep was adjusted, because of stability "
"conditions. Time duration was approximately preserved by "
"adjusting internal number of iterations."
<< endl;
cout << approachPrefix << "_" << dim << " :: Required "
<< this->innerIterations
<< " inner iterations with dt=" << this->timestep << endl;
} else {
this->timestep = timestep;
cout << approachPrefix << "_" << dim
<< " :: No inner iterations required, dt=" << timestep << endl;
}
} else {
this->timestep = timestep;
}
}
double Simulation::getTimestep() {
return this->timestep;
}
double Simulation::getTimestep() { return this->timestep; }
void Simulation::setIterations(int iterations) {
if(iterations <= 0){
throw_invalid_argument("Number of iterations must be greater than zero.");
}
this->iterations = iterations;
if (iterations <= 0) {
throw_invalid_argument("Number of iterations must be greater than zero.");
}
this->iterations = iterations;
}
void Simulation::setSolver(SOLVER solver) {
if (this->approach == FTCS_APPROACH) {
cerr << "Warning: Solver was set, but FTCS approach initialized. Setting the solver "
"is thus without effect."
<< endl;
}
if (this->approach == FTCS_APPROACH) {
cerr << "Warning: Solver was set, but FTCS approach initialized. Setting "
"the solver "
"is thus without effect."
<< endl;
}
this->solver = solver;
this->solver = solver;
}
void Simulation::setNumberThreads(int numThreads){
if(numThreads>0 && numThreads<=omp_get_num_procs()){
this->numThreads=numThreads;
}
else{
int maxThreadNumber = omp_get_num_procs();
string outputMessage = "Number of threads exceeds the number of processor cores ("
+ to_string(maxThreadNumber) + ") or is less than 1.";
throw_invalid_argument(outputMessage);
}
void Simulation::setNumberThreads(int numThreads) {
if (numThreads > 0 && numThreads <= omp_get_num_procs()) {
this->numThreads = numThreads;
} else {
int maxThreadNumber = omp_get_num_procs();
string outputMessage =
"Number of threads exceeds the number of processor cores (" +
to_string(maxThreadNumber) + ") or is less than 1.";
throw_invalid_argument(outputMessage);
}
}
int Simulation::getIterations() {
return this->iterations;
}
int Simulation::getIterations() { return this->iterations; }
void Simulation::printConcentrationsConsole() {
cout << grid.getConcentrations() << endl;
cout << endl;
cout << grid.getConcentrations() << endl;
cout << endl;
}
string Simulation::createCSVfile() {
ofstream file;
int appendIdent = 0;
string appendIdentString;
ofstream file;
int appendIdent = 0;
string appendIdentString;
// string approachString = (approach == 0) ? "FTCS" : "BTCS";
string approachString = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string row = to_string(grid.getRow());
string col = to_string(grid.getCol());
string numIterations = to_string(iterations);
// string approachString = (approach == 0) ? "FTCS" : "BTCS";
string approachString =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string row = to_string(grid.getRow());
string col = to_string(grid.getCol());
string numIterations = to_string(iterations);
string filename = approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
string filename =
approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
while (filesystem::exists(filename)) {
appendIdent += 1;
appendIdentString = to_string(appendIdent);
filename = approachString + "_" + row + "_" + col + "_" + numIterations + "-" + appendIdentString + ".csv";
}
while (filesystem::exists(filename)) {
appendIdent += 1;
appendIdentString = to_string(appendIdent);
filename = approachString + "_" + row + "_" + col + "_" + numIterations +
"-" + appendIdentString + ".csv";
}
file.open(filename);
if (!file) {
exit(1);
}
file.open(filename);
if (!file) {
exit(1);
}
// adds lines at the beginning of verbose output csv that represent the boundary conditions and their values
// -1 in case of closed boundary
if (csv_output == CSV_OUTPUT_XTREME) {
IOFormat one_row(StreamPrecision, DontAlignCols, "", " ");
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row) << endl; // boundary left
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row) << endl; // boundary right
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row) << endl; // boundary top
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row) << endl; // boundary bottom
file << endl << endl;
}
// adds lines at the beginning of verbose output csv that represent the
// boundary conditions and their values -1 in case of closed boundary
if (csv_output == CSV_OUTPUT_XTREME) {
IOFormat one_row(StreamPrecision, DontAlignCols, "", " ");
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row)
<< endl; // boundary left
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row)
<< endl; // boundary right
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row)
<< endl; // boundary top
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row)
<< endl; // boundary bottom
file << endl << endl;
}
file.close();
file.close();
return filename;
return filename;
}
void Simulation::printConcentrationsCSV(string filename) {
ofstream file;
ofstream file;
file.open(filename, std::ios_base::app);
if (!file) {
exit(1);
}
file.open(filename, std::ios_base::app);
if (!file) {
exit(1);
}
IOFormat do_not_align(StreamPrecision, DontAlignCols);
file << grid.getConcentrations().format(do_not_align) << endl;
file << endl << endl;
file.close();
IOFormat do_not_align(StreamPrecision, DontAlignCols);
file << grid.getConcentrations().format(do_not_align) << endl;
file << endl << endl;
file.close();
}
void Simulation::run() {
if (this->timestep == -1) {
throw_invalid_argument("Timestep is not set!");
}
if (this->iterations == -1) {
throw_invalid_argument("Number of iterations are not set!");
}
if (this->timestep == -1) {
throw_invalid_argument("Timestep is not set!");
}
if (this->iterations == -1) {
throw_invalid_argument("Number of iterations are not set!");
}
string filename;
if (this->console_output > CONSOLE_OUTPUT_OFF) {
string filename;
if (this->console_output > CONSOLE_OUTPUT_OFF) {
printConcentrationsConsole();
}
if (this->csv_output > CSV_OUTPUT_OFF) {
filename = createCSVfile();
}
auto begin = std::chrono::high_resolution_clock::now();
if (approach == FTCS_APPROACH) { // FTCS case
for (int i = 0; i < iterations * innerIterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (this->csv_output > CSV_OUTPUT_OFF) {
filename = createCSVfile();
}
auto begin = std::chrono::high_resolution_clock::now();
if (approach == FTCS_APPROACH) { // FTCS case
for (int i = 0; i < iterations * innerIterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
// if (i % (iterations * innerIterations / 100) == 0) {
// double percentage = (double)i / ((double)iterations * (double)innerIterations) * 100;
// if ((int)percentage % 10 == 0) {
// cout << "Progress: " << percentage << "%" << endl;
// }
// }
}
} else if (approach == BTCS_APPROACH) { // BTCS case
if (solver == EIGEN_LU_SOLVER) {
for (int i = 0; i < iterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
BTCS_LU(this->grid, this->bc, this->timestep, this->numThreads);
}
} else if (solver == THOMAS_ALGORITHM_SOLVER) {
for (int i = 0; i < iterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
}
}
} else if (approach == CRANK_NICOLSON_APPROACH) { // Crank-Nicolson case
double beta = 0.5;
// TODO this implementation is very inefficient!
// a separate implementation that sets up a specific tridiagonal matrix for Crank-Nicolson would be better
MatrixXd concentrations;
MatrixXd concentrationsFTCS;
MatrixXd concentrationsResult;
for (int i = 0; i < iterations * innerIterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
concentrations = grid.getConcentrations();
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
concentrationsFTCS = grid.getConcentrations();
grid.setConcentrations(concentrations);
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
concentrationsResult = beta * concentrationsFTCS + (1-beta) * grid.getConcentrations();
grid.setConcentrations(concentrationsResult);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
if (this->console_output > CONSOLE_OUTPUT_OFF) {
printConcentrationsConsole();
}
if (this->csv_output > CSV_OUTPUT_OFF) {
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
// if (i % (iterations * innerIterations / 100) == 0) {
// double percentage = (double)i / ((double)iterations *
// (double)innerIterations) * 100; if ((int)percentage % 10 == 0) {
// cout << "Progress: " << percentage << "%" << endl;
// }
// }
}
if (this->time_measure > TIME_MEASURE_OFF) {
string approachString = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string dimString = (grid.getDim() == 1) ? "-1D" : "-2D";
cout << approachString << dimString << ":: run() finished in " << milliseconds.count() << "ms" << endl;
} else if (approach == BTCS_APPROACH) { // BTCS case
if (solver == EIGEN_LU_SOLVER) {
for (int i = 0; i < iterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
BTCS_LU(this->grid, this->bc, this->timestep, this->numThreads);
}
} else if (solver == THOMAS_ALGORITHM_SOLVER) {
for (int i = 0; i < iterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
}
}
} else if (approach == CRANK_NICOLSON_APPROACH) { // Crank-Nicolson case
double beta = 0.5;
// TODO this implementation is very inefficient!
// a separate implementation that sets up a specific tridiagonal matrix for
// Crank-Nicolson would be better
MatrixXd concentrations;
MatrixXd concentrationsFTCS;
MatrixXd concentrationsResult;
for (int i = 0; i < iterations * innerIterations; i++) {
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
if (csv_output >= CSV_OUTPUT_VERBOSE) {
printConcentrationsCSV(filename);
}
concentrations = grid.getConcentrations();
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
concentrationsFTCS = grid.getConcentrations();
grid.setConcentrations(concentrations);
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
concentrationsResult =
beta * concentrationsFTCS + (1 - beta) * grid.getConcentrations();
grid.setConcentrations(concentrationsResult);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
if (this->console_output > CONSOLE_OUTPUT_OFF) {
printConcentrationsConsole();
}
if (this->csv_output > CSV_OUTPUT_OFF) {
printConcentrationsCSV(filename);
}
if (this->time_measure > TIME_MEASURE_OFF) {
string approachString =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string dimString = (grid.getDim() == 1) ? "-1D" : "-2D";
cout << approachString << dimString << ":: run() finished in "
<< milliseconds.count() << "ms" << endl;
}
}
#endif

View File

@ -1,7 +1,7 @@
#include <chrono>
#include <fstream>
#include <stdexcept>
#include <string>
#include <fstream>
using namespace std;
@ -29,10 +29,11 @@ using namespace std;
})
// calculates arithmetic or harmonic mean of alpha between two cells
static double calcAlphaIntercell(const double &alpha1, const double &alpha2, bool useHarmonic = true) {
if (useHarmonic) {
return double(2) / ((double(1)/alpha1) + (double(1)/alpha2));
} else {
return 0.5 * (alpha1 + alpha2);
}
static double calcAlphaIntercell(const double &alpha1, const double &alpha2,
bool useHarmonic = true) {
if (useHarmonic) {
return double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
} else {
return 0.5 * (alpha1 + alpha2);
}
}

View File

@ -1,8 +1,8 @@
#include <ios>
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <fstream>
#include <ios>
#include <iostream>
#include <sstream>
#include <stdexcept>
@ -11,37 +11,39 @@ using namespace Eigen;
MatrixXd CSV2Eigen(string file2Convert) {
vector<double> matrixEntries;
vector<double> matrixEntries;
ifstream matrixDataFile(file2Convert);
if (matrixDataFile.fail()) {
throw invalid_argument("File probably non-existent!");
ifstream matrixDataFile(file2Convert);
if (matrixDataFile.fail()) {
throw invalid_argument("File probably non-existent!");
}
string matrixRowString;
string matrixEntry;
int matrixRowNumber = 0;
while (getline(matrixDataFile, matrixRowString)) {
stringstream matrixRowStringStream(matrixRowString);
while (getline(matrixRowStringStream, matrixEntry, ' ')) {
matrixEntries.push_back(stod(matrixEntry));
}
string matrixRowString;
string matrixEntry;
int matrixRowNumber = 0;
while(getline(matrixDataFile, matrixRowString)){
stringstream matrixRowStringStream(matrixRowString);
while(getline(matrixRowStringStream, matrixEntry, ' ')){
matrixEntries.push_back(stod(matrixEntry));
}
if (matrixRowString.length() > 1) {
matrixRowNumber++;
}
if (matrixRowString.length() > 1) {
matrixRowNumber++;
}
}
return Map<Matrix<double, Dynamic, Dynamic, RowMajor>>(matrixEntries.data(), matrixRowNumber, matrixEntries.size() / matrixRowNumber);
return Map<Matrix<double, Dynamic, Dynamic, RowMajor>>(
matrixEntries.data(), matrixRowNumber,
matrixEntries.size() / matrixRowNumber);
}
bool checkSimilarity(MatrixXd a, MatrixXd b, double precision=1e-5) {
return a.isApprox(b, precision);
bool checkSimilarity(MatrixXd a, MatrixXd b, double precision = 1e-5) {
return a.isApprox(b, precision);
}
bool checkSimilarityV2(MatrixXd a, MatrixXd b, double maxDiff) {
MatrixXd diff = a - b;
double maxCoeff = diff.maxCoeff();
return abs(maxCoeff) < maxDiff;
MatrixXd diff = a - b;
double maxCoeff = diff.maxCoeff();
return abs(maxCoeff) < maxDiff;
}

View File

@ -1,68 +1,74 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Boundary.hpp>
#include <string>
#include <typeinfo>
#include <iostream>
#include <stdio.h>
#include <string>
#include <tug/Boundary.hpp>
#include <typeinfo>
TEST_CASE("BoundaryElement"){
TEST_CASE("BoundaryElement") {
SUBCASE("Closed case"){
BoundaryElement boundaryElementClosed = BoundaryElement();
CHECK_NOTHROW(BoundaryElement());
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
}
SUBCASE("Closed case") {
BoundaryElement boundaryElementClosed = BoundaryElement();
CHECK_NOTHROW(BoundaryElement());
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
}
SUBCASE("Constant case"){
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
CHECK_NOTHROW(BoundaryElement(0.1));
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
CHECK_EQ(boundaryElementConstant.getValue(), 0.1);
CHECK_NOTHROW(boundaryElementConstant.setValue(0.2));
CHECK_EQ(boundaryElementConstant.getValue(), 0.2);
}
SUBCASE("Constant case") {
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
CHECK_NOTHROW(BoundaryElement(0.1));
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
CHECK_EQ(boundaryElementConstant.getValue(), 0.1);
CHECK_NOTHROW(boundaryElementConstant.setValue(0.2));
CHECK_EQ(boundaryElementConstant.getValue(), 0.2);
}
}
TEST_CASE("Boundary Class"){
Grid grid1D = Grid(10);
Grid grid2D = Grid(10, 12);
Boundary boundary1D = Boundary(grid1D);
Boundary boundary2D = Boundary(grid2D);
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
TEST_CASE("Boundary Class") {
Grid grid1D = Grid(10);
Grid grid2D = Grid(10, 12);
Boundary boundary1D = Boundary(grid1D);
Boundary boundary2D = Boundary(grid2D);
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
SUBCASE("Boundaries 1D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_THROWS(boundary1D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
SUBCASE("Boundaries 1D case") {
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CLOSED);
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_THROWS(boundary1D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
boundary1DVector[0].getType());
}
SUBCASE("Boundaries 2D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
SUBCASE("Boundaries 2D case") {
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CLOSED);
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
boundary1DVector[0].getType());
}
}

View File

@ -1,19 +1,19 @@
#include <doctest/doctest.h>
#include <../src/FTCS.cpp>
#include <doctest/doctest.h>
#include <limits>
TEST_CASE("Maths") {
SUBCASE("mean between two alphas") {
double alpha1 = 10;
double alpha2 = 20;
double average = 15;
double harmonicMean = double(2) / ((double(1)/alpha1)+(double(1)/alpha2));
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) - harmonicMean);
// CHECK(difference < std::numeric_limits<double>::epsilon());
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2), harmonicMean);
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2, false), average);
}
SUBCASE("mean between two alphas") {
double alpha1 = 10;
double alpha2 = 20;
double average = 15;
double harmonicMean =
double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) -
// harmonicMean); CHECK(difference <
// std::numeric_limits<double>::epsilon());
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2), harmonicMean);
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2, false), average);
}
}

View File

@ -1,251 +1,249 @@
#include <Eigen/Core>
#include <doctest/doctest.h>
#include <tug/Grid.hpp>
#include <Eigen/Core>
TEST_CASE("1D Grid, too small length") {
int l = 2;
CHECK_THROWS(Grid(l));
int l = 2;
CHECK_THROWS(Grid(l));
}
TEST_CASE("2D Grid, too small side") {
int r = 2;
int c = 4;
CHECK_THROWS(Grid(r, c));
int r = 2;
int c = 4;
CHECK_THROWS(Grid(r, c));
r = 4;
c = 2;
CHECK_THROWS(Grid(r, c));
r = 4;
c = 2;
CHECK_THROWS(Grid(r, c));
}
TEST_CASE("1D Grid") {
int l = 12;
Grid grid(l);
int l = 12;
Grid grid(l);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 1);
CHECK_EQ(grid.getLength(), l);
CHECK_EQ(grid.getCol(), l);
CHECK_EQ(grid.getRow(), 1);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 1);
CHECK_EQ(grid.getLength(), l);
CHECK_EQ(grid.getCol(), l);
CHECK_EQ(grid.getRow(), 1);
CHECK_EQ(grid.getConcentrations().rows(), 1);
CHECK_EQ(grid.getConcentrations().cols(), l);
CHECK_EQ(grid.getAlpha().rows(), 1);
CHECK_EQ(grid.getAlpha().cols(), l);
CHECK_EQ(grid.getDeltaCol(), 1);
CHECK_EQ(grid.getConcentrations().rows(), 1);
CHECK_EQ(grid.getConcentrations().cols(), l);
CHECK_EQ(grid.getAlpha().rows(), 1);
CHECK_EQ(grid.getAlpha().cols(), l);
CHECK_EQ(grid.getDeltaCol(), 1);
CHECK_THROWS(grid.getAlphaX());
CHECK_THROWS(grid.getAlphaY());
CHECK_THROWS(grid.getDeltaRow());
}
CHECK_THROWS(grid.getAlphaX());
CHECK_THROWS(grid.getAlphaY());
CHECK_THROWS(grid.getDeltaRow());
}
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(1, l, 3);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(1, l, 3);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(2, l, 4);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(2, l, 4);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
SUBCASE("setting alpha") {
// correct alpha matrix
MatrixXd alpha = MatrixXd::Constant(1, l, 3);
CHECK_NOTHROW(grid.setAlpha(alpha));
SUBCASE("setting alpha") {
// correct alpha matrix
MatrixXd alpha = MatrixXd::Constant(1, l, 3);
CHECK_NOTHROW(grid.setAlpha(alpha));
CHECK_THROWS(grid.setAlpha(alpha, alpha));
CHECK_THROWS(grid.setAlpha(alpha, alpha));
grid.setAlpha(alpha);
CHECK_EQ(grid.getAlpha(), alpha);
CHECK_THROWS(grid.getAlphaX());
CHECK_THROWS(grid.getAlphaY());
grid.setAlpha(alpha);
CHECK_EQ(grid.getAlpha(), alpha);
CHECK_THROWS(grid.getAlphaX());
CHECK_THROWS(grid.getAlphaY());
// false alpha matrix
MatrixXd wAlpha = MatrixXd::Constant(3, l, 2);
CHECK_THROWS(grid.setAlpha(wAlpha));
}
// false alpha matrix
MatrixXd wAlpha = MatrixXd::Constant(3, l, 2);
CHECK_THROWS(grid.setAlpha(wAlpha));
}
SUBCASE("setting domain") {
int d = 8;
// set 1D domain
CHECK_NOTHROW(grid.setDomain(d));
SUBCASE("setting domain") {
int d = 8;
// set 1D domain
CHECK_NOTHROW(grid.setDomain(d));
// set 2D domain
CHECK_THROWS(grid.setDomain(d, d));
// set 2D domain
CHECK_THROWS(grid.setDomain(d, d));
grid.setDomain(d);
CHECK_EQ(grid.getDeltaCol(), double(d)/double(l));
CHECK_THROWS(grid.getDeltaRow());
grid.setDomain(d);
CHECK_EQ(grid.getDeltaCol(), double(d) / double(l));
CHECK_THROWS(grid.getDeltaRow());
// set too small domain
d = 0;
CHECK_THROWS(grid.setDomain(d));
d = -2;
CHECK_THROWS(grid.setDomain(d));
}
// set too small domain
d = 0;
CHECK_THROWS(grid.setDomain(d));
d = -2;
CHECK_THROWS(grid.setDomain(d));
}
}
TEST_CASE("2D Grid quadratic") {
int rc = 12;
Grid grid(rc, rc);
int rc = 12;
Grid grid(rc, rc);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 2);
CHECK_THROWS(grid.getLength());
CHECK_EQ(grid.getCol(), rc);
CHECK_EQ(grid.getRow(), rc);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 2);
CHECK_THROWS(grid.getLength());
CHECK_EQ(grid.getCol(), rc);
CHECK_EQ(grid.getRow(), rc);
CHECK_EQ(grid.getConcentrations().rows(), rc);
CHECK_EQ(grid.getConcentrations().cols(), rc);
CHECK_THROWS(grid.getAlpha());
CHECK_EQ(grid.getConcentrations().rows(), rc);
CHECK_EQ(grid.getConcentrations().cols(), rc);
CHECK_THROWS(grid.getAlpha());
CHECK_EQ(grid.getAlphaX().rows(), rc);
CHECK_EQ(grid.getAlphaX().cols(), rc);
CHECK_EQ(grid.getAlphaY().rows(), rc);
CHECK_EQ(grid.getAlphaY().cols(), rc);
CHECK_EQ(grid.getDeltaRow(), 1);
CHECK_EQ(grid.getDeltaCol(), 1);
}
CHECK_EQ(grid.getAlphaX().rows(), rc);
CHECK_EQ(grid.getAlphaX().cols(), rc);
CHECK_EQ(grid.getAlphaY().rows(), rc);
CHECK_EQ(grid.getAlphaY().cols(), rc);
CHECK_EQ(grid.getDeltaRow(), 1);
CHECK_EQ(grid.getDeltaCol(), 1);
}
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(rc, rc, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(rc, rc, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(rc, rc + 3, 1);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(rc + 3, rc, 4);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(rc + 2, rc + 4, 6);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(rc, rc+3, 1);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(rc+3, rc, 4);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(rc+2, rc+4, 6);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
SUBCASE("setting alphas") {
// correct alpha matrices
MatrixXd alphax = MatrixXd::Constant(rc, rc, 2);
MatrixXd alphay = MatrixXd::Constant(rc, rc, 4);
CHECK_NOTHROW(grid.setAlpha(alphax, alphay));
SUBCASE("setting alphas") {
// correct alpha matrices
MatrixXd alphax = MatrixXd::Constant(rc, rc, 2);
MatrixXd alphay = MatrixXd::Constant(rc, rc, 4);
CHECK_NOTHROW(grid.setAlpha(alphax, alphay));
CHECK_THROWS(grid.setAlpha(alphax));
CHECK_THROWS(grid.setAlpha(alphax));
grid.setAlpha(alphax, alphay);
CHECK_EQ(grid.getAlphaX(), alphax);
CHECK_EQ(grid.getAlphaY(), alphay);
CHECK_THROWS(grid.getAlpha());
grid.setAlpha(alphax, alphay);
CHECK_EQ(grid.getAlphaX(), alphax);
CHECK_EQ(grid.getAlphaY(), alphay);
CHECK_THROWS(grid.getAlpha());
// false alpha matrices
alphax = MatrixXd::Constant(rc + 3, rc + 1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
alphay = MatrixXd::Constant(rc + 2, rc + 1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
}
// false alpha matrices
alphax = MatrixXd::Constant(rc+3, rc+1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
alphay = MatrixXd::Constant(rc+2, rc+1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
}
SUBCASE("setting domain") {
int dr = 8;
int dc = 9;
SUBCASE("setting domain") {
int dr = 8;
int dc = 9;
// set 1D domain
CHECK_THROWS(grid.setDomain(dr));
// set 1D domain
CHECK_THROWS(grid.setDomain(dr));
// set 2D domain
CHECK_NOTHROW(grid.setDomain(dr, dc));
// set 2D domain
CHECK_NOTHROW(grid.setDomain(dr, dc));
grid.setDomain(dr, dc);
CHECK_EQ(grid.getDeltaCol(), double(dc) / double(rc));
CHECK_EQ(grid.getDeltaRow(), double(dr) / double(rc));
grid.setDomain(dr, dc);
CHECK_EQ(grid.getDeltaCol(), double(dc)/double(rc));
CHECK_EQ(grid.getDeltaRow(), double(dr)/double(rc));
// set too small domain
dr = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = 8;
dc = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = -2;
CHECK_THROWS(grid.setDomain(dr, dc));
}
// set too small domain
dr = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = 8;
dc = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = -2;
CHECK_THROWS(grid.setDomain(dr, dc));
}
}
TEST_CASE("2D Grid non-quadratic") {
int r = 12;
int c = 15;
Grid grid(r, c);
int r = 12;
int c = 15;
Grid grid(r, c);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 2);
CHECK_THROWS(grid.getLength());
CHECK_EQ(grid.getCol(), c);
CHECK_EQ(grid.getRow(), r);
SUBCASE("correct construction") {
CHECK_EQ(grid.getDim(), 2);
CHECK_THROWS(grid.getLength());
CHECK_EQ(grid.getCol(), c);
CHECK_EQ(grid.getRow(), r);
CHECK_EQ(grid.getConcentrations().rows(), r);
CHECK_EQ(grid.getConcentrations().cols(), c);
CHECK_THROWS(grid.getAlpha());
CHECK_EQ(grid.getConcentrations().rows(), r);
CHECK_EQ(grid.getConcentrations().cols(), c);
CHECK_THROWS(grid.getAlpha());
CHECK_EQ(grid.getAlphaX().rows(), r);
CHECK_EQ(grid.getAlphaX().cols(), c);
CHECK_EQ(grid.getAlphaY().rows(), r);
CHECK_EQ(grid.getAlphaY().cols(), c);
CHECK_EQ(grid.getDeltaRow(), 1);
CHECK_EQ(grid.getDeltaCol(), 1);
}
CHECK_EQ(grid.getAlphaX().rows(), r);
CHECK_EQ(grid.getAlphaX().cols(), c);
CHECK_EQ(grid.getAlphaY().rows(), r);
CHECK_EQ(grid.getAlphaY().cols(), c);
CHECK_EQ(grid.getDeltaRow(), 1);
CHECK_EQ(grid.getDeltaCol(), 1);
}
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(r, c, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
SUBCASE("setting concentrations") {
// correct concentrations matrix
MatrixXd concentrations = MatrixXd::Constant(r, c, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(r, c + 3, 6);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(r + 3, c, 3);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(r + 2, c + 4, 2);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(r, c+3, 6);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(r+3, c, 3);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
wConcentrations = MatrixXd::Constant(r+2, c+4, 2);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
}
SUBCASE("setting alphas") {
// correct alpha matrices
MatrixXd alphax = MatrixXd::Constant(r, c, 2);
MatrixXd alphay = MatrixXd::Constant(r, c, 4);
CHECK_NOTHROW(grid.setAlpha(alphax, alphay));
SUBCASE("setting alphas") {
// correct alpha matrices
MatrixXd alphax = MatrixXd::Constant(r, c, 2);
MatrixXd alphay = MatrixXd::Constant(r, c, 4);
CHECK_NOTHROW(grid.setAlpha(alphax, alphay));
CHECK_THROWS(grid.setAlpha(alphax));
CHECK_THROWS(grid.setAlpha(alphax));
grid.setAlpha(alphax, alphay);
CHECK_EQ(grid.getAlphaX(), alphax);
CHECK_EQ(grid.getAlphaY(), alphay);
CHECK_THROWS(grid.getAlpha());
grid.setAlpha(alphax, alphay);
CHECK_EQ(grid.getAlphaX(), alphax);
CHECK_EQ(grid.getAlphaY(), alphay);
CHECK_THROWS(grid.getAlpha());
// false alpha matrices
alphax = MatrixXd::Constant(r + 3, c + 1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
alphay = MatrixXd::Constant(r + 2, c + 1, 5);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
}
// false alpha matrices
alphax = MatrixXd::Constant(r+3, c+1, 3);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
alphay = MatrixXd::Constant(r+2, c+1, 5);
CHECK_THROWS(grid.setAlpha(alphax, alphay));
}
SUBCASE("setting domain") {
int dr = 8;
int dc = 9;
SUBCASE("setting domain") {
int dr = 8;
int dc = 9;
// set 1D domain
CHECK_THROWS(grid.setDomain(dr));
// set 1D domain
CHECK_THROWS(grid.setDomain(dr));
// set 2D domain
CHECK_NOTHROW(grid.setDomain(dr, dc));
// set 2D domain
CHECK_NOTHROW(grid.setDomain(dr, dc));
grid.setDomain(dr, dc);
CHECK_EQ(grid.getDeltaCol(), double(dc) / double(c));
CHECK_EQ(grid.getDeltaRow(), double(dr) / double(r));
grid.setDomain(dr, dc);
CHECK_EQ(grid.getDeltaCol(), double(dc)/double(c));
CHECK_EQ(grid.getDeltaRow(), double(dr)/double(r));
// set too small domain
dr = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = 8;
dc = -1;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = -2;
CHECK_THROWS(grid.setDomain(dr, dc));
}
// set too small domain
dr = 0;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = 8;
dc = -1;
CHECK_THROWS(grid.setDomain(dr, dc));
dr = -2;
CHECK_THROWS(grid.setDomain(dr, dc));
}
}

View File

@ -1,110 +1,104 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Simulation.hpp>
#include "TestUtils.cpp"
#include <doctest/doctest.h>
#include <stdio.h>
#include <string>
#include <tug/Simulation.hpp>
// include the configured header file
#include <testSimulation.hpp>
static Grid setupSimulation(APPROACH approach, double timestep, int iterations) {
int row = 11;
int col = 11;
int domain_row = 10;
int domain_col = 10;
static Grid setupSimulation(APPROACH approach, double timestep,
int iterations) {
int row = 11;
int col = 11;
int domain_row = 10;
int domain_col = 10;
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(5, 5) = 1;
grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(5,5) = 1;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 6; j++) {
alpha(i, j) = 0.01;
}
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 6; j++) {
alpha(i, j) = 0.01;
}
for (int i = 0; i < 5; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.001;
}
}
for (int i = 0; i < 5; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.001;
}
for (int i = 5; i < 11; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.1;
}
}
for (int i = 5; i < 11; i++) {
for (int j = 6; j < 11; j++) {
alpha(i, j) = 0.1;
}
grid.setAlpha(alpha, alpha);
}
grid.setAlpha(alpha, alpha);
// Boundary
Boundary bc = Boundary(grid);
// Boundary
Boundary bc = Boundary(grid);
// Simulation
Simulation sim = Simulation(grid, bc, approach);
// sim.setOutputConsole(CONSOLE_OUTPUT_ON);
sim.setTimestep(timestep);
sim.setIterations(iterations);
sim.run();
// Simulation
Simulation sim = Simulation(grid, bc, approach);
// sim.setOutputConsole(CONSOLE_OUTPUT_ON);
sim.setTimestep(timestep);
sim.setIterations(iterations);
sim.run();
// RUN
return grid;
// RUN
return grid;
}
TEST_CASE("equality to reference matrix with FTCS") {
// set string from the header file
string test_path = testSimulationCSVDir;
MatrixXd reference = CSV2Eigen(test_path);
cout << "FTCS Test: " << endl;
Grid grid = setupSimulation(FTCS_APPROACH, 0.001, 7000);
cout << endl;
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
// set string from the header file
string test_path = testSimulationCSVDir;
MatrixXd reference = CSV2Eigen(test_path);
cout << "FTCS Test: " << endl;
Grid grid = setupSimulation(FTCS_APPROACH, 0.001, 7000);
cout << endl;
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
}
TEST_CASE("equality to reference matrix with BTCS") {
// set string from the header file
string test_path = testSimulationCSVDir;
MatrixXd reference = CSV2Eigen(test_path);
cout << "BTCS Test: " << endl;
Grid grid = setupSimulation(BTCS_APPROACH, 1, 7);
cout << endl;
CHECK(checkSimilarityV2(reference, grid.getConcentrations(), 0.01) == true);
// set string from the header file
string test_path = testSimulationCSVDir;
MatrixXd reference = CSV2Eigen(test_path);
cout << "BTCS Test: " << endl;
Grid grid = setupSimulation(BTCS_APPROACH, 1, 7);
cout << endl;
CHECK(checkSimilarityV2(reference, grid.getConcentrations(), 0.01) == true);
}
TEST_CASE("Initialize environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
TEST_CASE("Initialize environment") {
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
CHECK_NOTHROW(Simulation sim(grid, boundary, BTCS_APPROACH));
CHECK_NOTHROW(Simulation sim(grid, boundary, BTCS_APPROACH));
}
TEST_CASE("Simulation environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
Simulation sim(grid, boundary, FTCS_APPROACH);
TEST_CASE("Simulation environment") {
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
Simulation sim(grid, boundary, FTCS_APPROACH);
SUBCASE("default paremeters") {
CHECK_EQ(sim.getIterations(), -1);
}
SUBCASE("default paremeters") { CHECK_EQ(sim.getIterations(), -1); }
SUBCASE("set iterations") {
CHECK_NOTHROW(sim.setIterations(2000));
CHECK_EQ(sim.getIterations(), 2000);
CHECK_THROWS(sim.setIterations(-300));
}
SUBCASE("set iterations") {
CHECK_NOTHROW(sim.setIterations(2000));
CHECK_EQ(sim.getIterations(), 2000);
CHECK_THROWS(sim.setIterations(-300));
}
SUBCASE("set timestep") {
CHECK_NOTHROW(sim.setTimestep(0.1));
CHECK_EQ(sim.getTimestep(), 0.1);
CHECK_THROWS(sim.setTimestep(-0.3));
}
SUBCASE("set timestep") {
CHECK_NOTHROW(sim.setTimestep(0.1));
CHECK_EQ(sim.getTimestep(), 0.1);
CHECK_THROWS(sim.setTimestep(-0.3));
}
}