refactor: format all source files to LLVM standard

This commit is contained in:
Max Lübke 2023-09-14 10:24:03 +02:00
parent 81774e72c1
commit 0d34752837
24 changed files with 2413 additions and 2416 deletions

View File

@ -14,7 +14,6 @@ int main(int argc, char *argv[]) {
// TODO add option to set concentrations with a vector in 1D case
grid.setConcentrations(concentrations);
// ******************
// **** BOUNDARY ****
// ******************
@ -24,13 +23,13 @@ int main(int argc, char *argv[]) {
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
@ -38,7 +37,8 @@ int main(int argc, char *argv[]) {
// set the number of iterations
simulation.setIterations(100);
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****

View File

@ -16,19 +16,17 @@ int main(int argc, char *argv[]) {
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// grid.setConcentrations(concentrations);
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(10, 10) = 2000;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
@ -44,7 +42,6 @@ int main(int argc, char *argv[]) {
// bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
// bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
@ -55,13 +52,13 @@ int main(int argc, char *argv[]) {
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
@ -69,7 +66,8 @@ int main(int argc, char *argv[]) {
// set the number of iterations
simulation.setIterations(300);
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
// **** RUN SIMULATION ****

View File

@ -13,7 +13,6 @@ int main(int argc, char *argv[]) {
MatrixXd concentrations = MatrixXd::Constant(1, 20, 20);
grid.setConcentrations(concentrations);
// ******************
// **** BOUNDARY ****
// ******************
@ -23,13 +22,13 @@ int main(int argc, char *argv[]) {
bc.setBoundarySideConstant(BC_SIDE_LEFT, 1);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 1);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
@ -37,7 +36,8 @@ int main(int argc, char *argv[]) {
// (optional) set the number of iterations
simulation.setIterations(100);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****

View File

@ -1,7 +1,8 @@
/**
* @file FTCS_2D_proto_closed_mdl.cpp
* @author Hannes Signer, Philipp Ungrund, MDL
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary
* condition; optional command line argument: number of cols and rows
*
*/
@ -32,7 +33,8 @@ int main(int argc, char *argv[]) {
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(n2, n2) = 1;
concentrations(n2, n2 + 1) = 1;
@ -45,7 +47,6 @@ int main(int argc, char *argv[]) {
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
@ -59,13 +60,13 @@ int main(int argc, char *argv[]) {
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(10000); // timestep
@ -73,7 +74,8 @@ int main(int argc, char *argv[]) {
// set the number of iterations
simulation.setIterations(100);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****

View File

@ -1,8 +1,8 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
* approach and constant boundary condition
*
*/
@ -10,7 +10,6 @@
// #include <easy/profiler.h>
// #define EASY_PROFILER_ENABLE ::profiler::setEnabled(true);
int main(int argc, char *argv[]) {
// EASY_PROFILER_ENABLE;
// profiler::startListen();
@ -27,19 +26,17 @@ int main(int argc, char *argv[]) {
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// grid.setConcentrations(concentrations);
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value grid.setConcentrations(concentrations);
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(0, 0) = 1999;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
// grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
@ -51,7 +48,6 @@ int main(int argc, char *argv[]) {
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// (optional) set boundary condition values for one side, e.g.:
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
@ -62,13 +58,13 @@ int main(int argc, char *argv[]) {
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// set the timestep of the simulation
simulation.setTimestep(0.1); // timestep
@ -76,10 +72,10 @@ int main(int argc, char *argv[]) {
// set the number of iterations
simulation.setIterations(10000);
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****
// run the simulation

View File

@ -1,8 +1,8 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
* approach and constant boundary condition
*
*/
@ -24,7 +24,8 @@ int main(int argc, char *argv[]) {
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
// #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
concentrations(n2, n2) = 1;
concentrations(n2, n2 + 1) = 1;
@ -37,7 +38,6 @@ int main(int argc, char *argv[]) {
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
@ -51,13 +51,13 @@ int main(int argc, char *argv[]) {
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
Simulation simulation =
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
@ -65,7 +65,8 @@ int main(int argc, char *argv[]) {
// (optional) set the number of iterations
simulation.setIterations(5);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****

View File

@ -1,8 +1,8 @@
#include <chrono>
#include <fstream>
#include <iostream>
#include <string>
#include <tug/Simulation.hpp>
#include <iostream>
#include <fstream>
#include <chrono>
int main(int argc, char *argv[]) {
@ -11,7 +11,6 @@ int main(int argc, char *argv[]) {
int iterations[1] = {1};
int repetition = 10;
for (int l = 0; l < size(threads); l++) {
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
ofstream myfile;
@ -42,8 +41,7 @@ int main(int argc, char *argv[]) {
if (argc == 2) {
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
}
else{
} else {
sim.setNumberThreads(threads[l]);
}
@ -54,13 +52,14 @@ int main(int argc, char *argv[]) {
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end -
begin);
myfile << milliseconds.count() << endl;
}
}
cout << endl;
myfile << endl;
}
myfile.close();
}

View File

@ -1,8 +1,8 @@
#include <chrono>
#include <fstream>
#include <iostream>
#include <string>
#include <tug/Simulation.hpp>
#include <iostream>
#include <fstream>
#include <chrono>
int main(int argc, char *argv[]) {
@ -11,7 +11,6 @@ int main(int argc, char *argv[]) {
int iterations[1] = {1};
int repetition = 10;
for (int l = 0; l < size(threads); l++) {
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
ofstream myfile;
@ -42,8 +41,7 @@ int main(int argc, char *argv[]) {
if (argc == 2) {
int numThreads = atoi(argv[1]);
sim.setNumberThreads(numThreads);
}
else{
} else {
sim.setNumberThreads(threads[l]);
}
@ -54,13 +52,14 @@ int main(int argc, char *argv[]) {
auto begin = std::chrono::high_resolution_clock::now();
sim.run();
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end -
begin);
myfile << milliseconds.count() << endl;
}
}
cout << endl;
myfile << endl;
}
myfile.close();
}

View File

@ -1,6 +1,6 @@
#include <tug/Simulation.hpp>
#include "Eigen/Core"
#include <iostream>
#include <tug/Simulation.hpp>
using namespace std;
@ -10,7 +10,6 @@ int main(int argc, char *argv[]) {
int domain_row = 10;
int domain_col = 10;
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
@ -37,11 +36,9 @@ int main(int argc, char *argv[]) {
}
grid.setAlpha(alpha, alpha);
// Boundary
Boundary bc = Boundary(grid);
// Simulation
Simulation sim = Simulation(grid, bc, FTCS_APPROACH);
sim.setTimestep(0.001);
@ -49,7 +46,6 @@ int main(int argc, char *argv[]) {
sim.setOutputCSV(CSV_OUTPUT_OFF);
sim.setOutputConsole(CONSOLE_OUTPUT_OFF);
// RUN
sim.run();
}

View File

@ -1,14 +1,14 @@
/**
* @file Boundary.hpp
* @brief API of Boundary class, that holds all information for each boundary condition
* at the edges of the diffusion grid.
* @brief API of Boundary class, that holds all information for each boundary
* condition at the edges of the diffusion grid.
*
*/
#ifndef BOUNDARY_H_
#define BOUNDARY_H_
#include <cstddef>
#include "Grid.hpp"
#include <cstddef>
using namespace std;
using namespace Eigen;
@ -17,21 +17,13 @@ using namespace Eigen;
* @brief Enum defining the two implemented boundary conditions.
*
*/
enum BC_TYPE {
BC_TYPE_CLOSED,
BC_TYPE_CONSTANT
};
enum BC_TYPE { BC_TYPE_CLOSED, BC_TYPE_CONSTANT };
/**
* @brief Enum defining all 4 possible sides to a 1D and 2D grid.
*
*/
enum BC_SIDE {
BC_SIDE_LEFT,
BC_SIDE_RIGHT,
BC_SIDE_TOP,
BC_SIDE_BOTTOM
};
enum BC_SIDE { BC_SIDE_LEFT, BC_SIDE_RIGHT, BC_SIDE_TOP, BC_SIDE_BOTTOM };
/**
* This class defines the boundary conditions of individual boundary elements.
@ -40,7 +32,6 @@ enum BC_SIDE {
*/
class BoundaryElement {
public:
/**
* @brief Construct a new Boundary Element object for the closed case.
* The boundary type is here automatically set to the type
@ -97,7 +88,6 @@ class BoundaryElement {
double value;
};
/**
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
@ -127,7 +117,8 @@ class Boundary {
* boundaries are set to the passed value.
*
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
* @param value Concentration to be set for all elements of the specified page.
* @param value Concentration to be set for all elements of the specified
* page.
*/
void setBoundarySideConstant(BC_SIDE side, double value);
@ -137,7 +128,8 @@ class Boundary {
*
* @param side Side in which an element is to be defined as closed.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* boundary side. Must index an element of the corresponding
* side.
*/
void setBoundaryElementClosed(BC_SIDE side, int index);
@ -148,8 +140,10 @@ class Boundary {
*
* @param side Side in which an element is to be defined as constant.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @param value Concentration value to which the boundary element should be set.
* boundary side. Must index an element of the corresponding
side.
* @param value Concentration value to which the boundary element should be
set.
*/
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
@ -157,14 +151,16 @@ class Boundary {
* @brief Returns the boundary condition of a specified side as a vector
* of BoundarsElement objects.
*
* @param side Boundary side from which the boundary conditions are to be returned.
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
* @param side Boundary side from which the boundary conditions are to be
* returned.
* @return vector<BoundaryElement> Contains the boundary conditions as
* BoundaryElement objects.
*/
const vector<BoundaryElement> getBoundarySide(BC_SIDE side);
/**
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some specific
boundary is closed.
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some
specific boundary is closed.
*
* @param side Boundary side for which the values are to be returned.
* @return VectorXd Vector with values as doubles.
@ -172,22 +168,25 @@ class Boundary {
VectorXd getBoundarySideValues(BC_SIDE side);
/**
* @brief Returns the boundary condition of a specified element on a given side.
* @brief Returns the boundary condition of a specified element on a given
* side.
*
* @param side Boundary side in which the boundary condition is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* boundary side. Must index an element of the corresponding
* side.
* @return BoundaryElement Boundary condition as a BoundaryElement object.
*/
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
/**
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED
or BC_TYPE_CONSTANT.
*
* @param side Boundary side in which the boundary condition type is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* boundary side. Must index an element of the corresponding
side.
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
*/
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
@ -208,8 +207,8 @@ class Boundary {
private:
Grid grid; // Boundary is directly dependent on the dimensions of a predefined
vector<vector<BoundaryElement>> boundaries; // Vector with Boundary Element information
vector<vector<BoundaryElement>>
boundaries; // Vector with Boundary Element information
};
#endif

View File

@ -12,24 +12,23 @@ using namespace Eigen;
class Grid {
public:
/**
* @brief Constructs a new 1D-Grid object of a given length, which holds a matrix
* with concentrations and a respective matrix of alpha coefficients.
* The domain length is per default the same as the length. The concentrations
* are all 20 by default and the alpha coefficients are 1.
* @brief Constructs a new 1D-Grid object of a given length, which holds a
* matrix with concentrations and a respective matrix of alpha coefficients.
* The domain length is per default the same as the length. The
* concentrations are all 20 by default and the alpha coefficients are 1.
*
* @param length Length of the 1D-Grid. Must be greater than 3.
*/
Grid(int length);
/**
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a matrix
* with concentrations and the respective matrices of alpha coefficient for
* each direction. The domain in x- and y-direction is per default equal to
* the col length and row length, respectively.
* The concentrations are all 20 by default across the entire grid and the
* alpha coefficients 1 in both directions.
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a
* matrix with concentrations and the respective matrices of alpha coefficient
* for each direction. The domain in x- and y-direction is per default equal
* to the col length and row length, respectively. The concentrations are all
* 20 by default across the entire grid and the alpha coefficients 1 in both
* directions.
*
* @param row Length of the 2D-Grid in y-direction. Must be greater than 3.
* @param col Length of the 2D-Grid in x-direction. Must be greater than 3.
@ -39,9 +38,9 @@ class Grid {
/**
* @brief Sets the concentrations matrix for a 1D or 2D-Grid.
*
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix must
* have correct dimensions as defined in row and col. (Or length,
* in 1D case).
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix
* must have correct dimensions as defined in row and col. (Or length, in 1D
* case).
*/
void setConcentrations(MatrixXd concentrations);
@ -54,41 +53,44 @@ class Grid {
const MatrixXd getConcentrations();
/**
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one dimensional.
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one
* dimensional.
*
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients. Matrix
* columns must have same size as length of grid.
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients.
* Matrix columns must have same size as length of grid.
*/
void setAlpha(MatrixXd alpha);
/**
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two dimensional.
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two
* dimensional.
*
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in x-direction.
* Matrix must be of same size as the grid.
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in y-direction.
* Matrix must be of same size as the grid.
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in
* x-direction. Matrix must be of same size as the grid.
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in
* y-direction. Matrix must be of same size as the grid.
*/
void setAlpha(MatrixXd alphaX, MatrixXd alphaY);
/**
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one dimensional.
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one
* dimensional.
*
* @return MatrixXd A matrix with 1 row holding the alpha coefficients.
*/
const MatrixXd getAlpha();
/**
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid. Grid must be
* two dimensional.
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid.
* Grid must be two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in x-direction.
*/
const MatrixXd getAlphaX();
/**
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid. Grid must be
* two dimensional.
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid.
* Grid must be two dimensional.
*
* @return MatrixXd A matrix holding the alpha coefficients in y-direction.
*/
@ -132,8 +134,10 @@ class Grid {
/**
* @brief Sets the domain size of a 2D-Grid. Grid must be two dimensional.
*
* @param domainRow A double value of the domain size in y-direction. Must be positive.
* @param domainCol A double value of the domain size in x-direction. Must be positive.
* @param domainRow A double value of the domain size in y-direction. Must be
* positive.
* @param domainCol A double value of the domain size in x-direction. Must be
* positive.
*/
void setDomain(double domainRow, double domainCol);
@ -158,9 +162,7 @@ class Grid {
*/
double getDeltaRow();
private:
int col; // number of grid columns
int row; // number of grid rows
int dim; // 1D or 2D
@ -171,5 +173,4 @@ class Grid {
MatrixXd concentrations; // Matrix holding grid concentrations
MatrixXd alphaX; // Matrix holding alpha coefficients in x-direction
MatrixXd alphaY; // Matrix holding alpha coefficients in y-direction
};

View File

@ -1,8 +1,8 @@
/**
* @file Simulation.hpp
* @brief API of Simulation class, that holds all information regarding a specific simulation
* run like its timestep, number of iterations and output options. Simulation object
* also holds a predefined Grid and Boundary object.
* @brief API of Simulation class, that holds all information regarding a
* specific simulation run like its timestep, number of iterations and output
* options. Simulation object also holds a predefined Grid and Boundary object.
*
*/
#include "Boundary.hpp"
@ -26,7 +26,8 @@ enum APPROACH {
*/
enum SOLVER {
EIGEN_LU_SOLVER, // EigenLU solver
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for tridiagonal matrices
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for
// tridiagonal matrices
};
/**
@ -37,7 +38,8 @@ enum CSV_OUTPUT {
CSV_OUTPUT_OFF, // do not produce csv output
CSV_OUTPUT_ON, // produce csv output with last concentration matrix
CSV_OUTPUT_VERBOSE, // produce csv output with all concentration matrices
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary conditions at beginning
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary
// conditions at beginning
};
/**
@ -68,11 +70,12 @@ enum TIME_MEASURE {
class Simulation {
public:
/**
* @brief Set up a simulation environment. The timestep and number of iterations
* must be set. For the BTCS approach, the Thomas algorithm is used as
* the default linear equation solver as this is faster for tridiagonal
* matrices. CSV output, console output and time measure are off by default.
* Also, the number of cores is set to the maximum number of cores -1 by default.
* @brief Set up a simulation environment. The timestep and number of
* iterations must be set. For the BTCS approach, the Thomas algorithm is used
* as the default linear equation solver as this is faster for tridiagonal
* matrices. CSV output, console output and time measure are off by
* default. Also, the number of cores is set to the maximum number of cores -1
* by default.
*
* @param grid Valid grid object
* @param bc Valid boundary condition object
@ -97,13 +100,17 @@ class Simulation {
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief Set the options for outputting information to the console. Off by default.
* @brief Set the options for outputting information to the console. Off by
* default.
*
* @param console_output Valid output option. The following options can be set
* here:
* - CONSOLE_OUTPUT_OFF: do not print any output to console
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
* - CONSOLE_OUTPUT_OFF: do not print any output to
* console
* - CONSOLE_OUTPUT_ON: print before and after
* concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration
* matrices to console
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
@ -111,8 +118,10 @@ class Simulation {
* @brief Set the Time Measure option. Off by default.
*
* @param time_measure The following options are allowed:
* - TIME_MEASURE_OFF: Time of simulation is not printed to console
* - TIME_MEASURE_ON: Time of simulation run is printed to console
* - TIME_MEASURE_OFF: Time of simulation is not printed
* to console
* - TIME_MEASURE_ON: Time of simulation run is printed to
* console
*/
void setTimeMeasure(TIME_MEASURE time_measure);
@ -140,11 +149,11 @@ class Simulation {
void setIterations(int iterations);
/**
* @brief Set the desired linear equation solver to be used for BTCS approach. Without effect
* in case of FTCS approach.
* @brief Set the desired linear equation solver to be used for BTCS approach.
* Without effect in case of FTCS approach.
*
* @param solver Solver to be used. Default is Thomas Algorithm as it is more efficient for
* tridiagonal Matrices.
* @param solver Solver to be used. Default is Thomas Algorithm as it is more
* efficient for tridiagonal Matrices.
*/
void setSolver(SOLVER solver);
@ -152,8 +161,9 @@ class Simulation {
* @brief Set the number of desired openMP Threads.
*
* @param num_threads Number of desired threads. Must have a value between
* 1 and the maximum available number of processors. The maximum number of
* processors is set as the default case during Simulation construction.
* 1 and the maximum available number of processors. The
* maximum number of processors is set as the default case during Simulation
* construction.
*/
void setNumberThreads(int num_threads);
@ -172,9 +182,10 @@ class Simulation {
/**
* @brief Creates a CSV file with a name containing the current simulation
* parameters. If the data name already exists, an additional counter is
* appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
* parameters. If the data name already exists, an additional counter
* is appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of
* iterations>+<counter>.csv
*
* @return string Filename with configured simulation parameters.
*/
@ -196,7 +207,6 @@ class Simulation {
void run();
private:
double timestep;
int iterations;
int innerIterations;
@ -209,5 +219,4 @@ class Simulation {
Boundary &bc;
APPROACH approach;
SOLVER solver;
};

View File

@ -1,73 +1,83 @@
/**
* @file BTCSv2.cpp
* @brief Implementation of heterogenous BTCS (backward time-centered space) solution
* of diffusion equation in 1D and 2D space. Internally the alternating-direction
* implicit (ADI) method is used. Version 2, because Version 1 was an
* implementation for the homogeneous BTCS solution.
* @brief Implementation of heterogenous BTCS (backward time-centered space)
* solution of diffusion equation in 1D and 2D space. Internally the
* alternating-direction implicit (ADI) method is used. Version 2, because
* Version 1 was an implementation for the homogeneous BTCS solution.
*
*/
#include "FTCS.cpp"
#include <tug/Boundary.hpp>
#include <omp.h>
#include <tug/Boundary.hpp>
#define NUM_THREADS_BTCS 10
using namespace Eigen;
// calculates coefficient for left boundary in constant case
static tuple<double, double> calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
static tuple<double, double>
calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1))
+ 2 * alpha(rowIndex,0));
centerCoeff =
1 + sx * (calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1)) +
2 * alpha(rowIndex, 0));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
return {centerCoeff, rightCoeff};
}
// calculates coefficient for left boundary in closed case
static tuple<double, double> calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
static tuple<double, double>
calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
double centerCoeff;
double rightCoeff;
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
centerCoeff =
1 + sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
return {centerCoeff, rightCoeff};
}
// calculates coefficient for right boundary in constant case
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, int n, double sx) {
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha,
int rowIndex, int n,
double sx) {
double leftCoeff;
double centerCoeff;
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n))
+ 2 * alpha(rowIndex,n));
leftCoeff =
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
centerCoeff =
1 + sx * (calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n)) +
2 * alpha(rowIndex, n));
return {leftCoeff, centerCoeff};
}
// calculates coefficient for right boundary in closed case
static tuple<double, double> calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
static tuple<double, double>
calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
double leftCoeff;
double centerCoeff;
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
leftCoeff =
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
centerCoeff =
1 + sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
return {leftCoeff, centerCoeff};
}
// creates coefficient matrix for next time step from alphas in x-direction
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha, vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight, int numCols, int rowIndex, double sx) {
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha,
vector<BoundaryElement> &bcLeft,
vector<BoundaryElement> &bcRight,
int numCols, int rowIndex,
double sx) {
// square matrix of column^2 dimension for the coefficients
SparseMatrix<double> cm(numCols, numCols);
@ -76,41 +86,48 @@ static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha, vector<BoundaryEl
// left column
BC_TYPE type = bcLeft[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
auto [centerCoeffTop, rightCoeffTop] =
calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
cm.insert(0, 0) = centerCoeffTop;
cm.insert(0, 1) = rightCoeffTop;
} else if (type == BC_TYPE_CLOSED) {
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
auto [centerCoeffTop, rightCoeffTop] =
calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
cm.insert(0, 0) = centerCoeffTop;
cm.insert(0, 1) = rightCoeffTop;
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Left or Top!");
}
// inner columns
int n = numCols - 1;
for (int i = 1; i < n; i++) {
cm.insert(i,i-1) = -sx * calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i));
cm.insert(i,i) = 1 + sx * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1))
+ calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i))
)
;
cm.insert(i,i+1) = -sx * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1));
cm.insert(i, i - 1) =
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
cm.insert(i, i) =
1 +
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
cm.insert(i, i + 1) =
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
}
// right column
type = bcRight[rowIndex].getType();
if (type == BC_TYPE_CONSTANT) {
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
auto [leftCoeffBottom, centerCoeffBottom] =
calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
cm.insert(n, n - 1) = leftCoeffBottom;
cm.insert(n, n) = centerCoeffBottom;
} else if (type == BC_TYPE_CLOSED) {
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
auto [leftCoeffBottom, centerCoeffBottom] =
calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
cm.insert(n, n - 1) = leftCoeffBottom;
cm.insert(n, n) = centerCoeffBottom;
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
cm.makeCompressed(); // important for Eigen solver
@ -118,81 +135,72 @@ static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha, vector<BoundaryEl
return cm;
}
// calculates explicity concentration at top boundary in constant case
static double calcExplicitConcentrationsTopBoundaryConstant(MatrixXd &concentrations,
MatrixXd &alpha, vector<BoundaryElement> &bcTop, int rowIndex, int i, double sy) {
static double calcExplicitConcentrationsTopBoundaryConstant(
MatrixXd &concentrations, MatrixXd &alpha, vector<BoundaryElement> &bcTop,
int rowIndex, int i, double sy) {
double c;
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
* concentrations(rowIndex,i)
+ (
1 - sy * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
+ 2 * alpha(rowIndex,i)
)
) * concentrations(rowIndex,i)
+ sy * alpha(rowIndex,i) * bcTop[i].getValue();
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
concentrations(rowIndex, i) +
(1 -
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) +
2 * alpha(rowIndex, i))) *
concentrations(rowIndex, i) +
sy * alpha(rowIndex, i) * bcTop[i].getValue();
return c;
}
// calculates explicit concentration at top boundary in closed case
static double calcExplicitConcentrationsTopBoundaryClosed(MatrixXd &concentrations,
MatrixXd &alpha, int rowIndex, int i, double sy) {
static double calcExplicitConcentrationsTopBoundaryClosed(
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
* concentrations(rowIndex,i)
+ (
1 - sy * (
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
)
) * concentrations(rowIndex,i);
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
concentrations(rowIndex, i) +
(1 -
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)))) *
concentrations(rowIndex, i);
return c;
}
// calculates explicit concentration at bottom boundary in constant case
static double calcExplicitConcentrationsBottomBoundaryConstant(MatrixXd &concentrations,
MatrixXd &alpha, vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
static double calcExplicitConcentrationsBottomBoundaryConstant(
MatrixXd &concentrations, MatrixXd &alpha,
vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
double c;
c = sy * alpha(rowIndex,i) * bcBottom[i].getValue()
+ (
1 - sy * (
2 * alpha(rowIndex,i)
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
* concentrations(rowIndex-1,i);
c = sy * alpha(rowIndex, i) * bcBottom[i].getValue() +
(1 -
sy * (2 * alpha(rowIndex, i) +
calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
concentrations(rowIndex - 1, i);
return c;
}
// calculates explicit concentration at bottom boundary in closed case
static double calcExplicitConcentrationsBottomBoundaryClosed(MatrixXd &concentrations,
MatrixXd &alpha, int rowIndex, int i, double sy) {
static double calcExplicitConcentrationsBottomBoundaryClosed(
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
double c;
c = (
1 - sy * (
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
* concentrations(rowIndex-1,i);
c = (1 -
sy * (+calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
concentrations(rowIndex - 1, i);
return c;
}
// creates a solution vector for next time step from the current state of concentrations
static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
// creates a solution vector for next time step from the current state of
// concentrations
static VectorXd createSolutionVector(
MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
int length, int rowIndex, double sx, double sy) {
@ -204,17 +212,18 @@ static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX,
// inner rows
if (rowIndex > 0 && rowIndex < numRows - 1) {
for (int i = 0; i < length; i++) {
sv(i) = sy * calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
* concentrations(rowIndex+1,i)
+ (
1 - sy * (
calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
+ calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
)
) * concentrations(rowIndex,i)
+ sy * calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
* concentrations(rowIndex-1,i)
;
sv(i) =
sy *
calcAlphaIntercell(alphaY(rowIndex, i), alphaY(rowIndex + 1, i)) *
concentrations(rowIndex + 1, i) +
(1 - sy * (calcAlphaIntercell(alphaY(rowIndex, i),
alphaY(rowIndex + 1, i)) +
calcAlphaIntercell(alphaY(rowIndex - 1, i),
alphaY(rowIndex, i)))) *
concentrations(rowIndex, i) +
sy *
calcAlphaIntercell(alphaY(rowIndex - 1, i), alphaY(rowIndex, i)) *
concentrations(rowIndex - 1, i);
}
}
@ -223,11 +232,14 @@ static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX,
for (int i = 0; i < length; i++) {
type = bcTop[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(concentrations, alphaY, bcTop, rowIndex, i, sy);
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(
concentrations, alphaY, bcTop, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(
concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Left or Top!");
}
}
}
@ -237,29 +249,34 @@ static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX,
for (int i = 0; i < length; i++) {
type = bcBottom[i].getType();
if (type == BC_TYPE_CONSTANT) {
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(concentrations, alphaY, bcBottom, rowIndex, i, sy);
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(
concentrations, alphaY, bcBottom, rowIndex, i, sy);
} else if (type == BC_TYPE_CLOSED) {
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(
concentrations, alphaY, rowIndex, i, sy);
} else {
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
throw_invalid_argument(
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
}
}
}
// first column -> additional fixed concentration change from perpendicular dimension in constant bc case
// first column -> additional fixed concentration change from perpendicular
// dimension in constant bc case
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(0) += 2 * sx * alphaX(rowIndex, 0) * bcLeft[rowIndex].getValue();
}
// last column -> additional fixed concentration change from perpendicular dimension in constant bc case
// last column -> additional fixed concentration change from perpendicular
// dimension in constant bc case
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
sv(length-1) += 2 * sx * alphaX(rowIndex,length-1) * bcRight[rowIndex].getValue();
sv(length - 1) +=
2 * sx * alphaX(rowIndex, length - 1) * bcRight[rowIndex].getValue();
}
return sv;
}
// solver for linear equation system; A corresponds to coefficient matrix,
// b to the solution vector
// use of EigenLU solver
@ -316,9 +333,10 @@ static VectorXd ThomasAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
return x_vec;
}
// BTCS solution for 1D grid
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b)) {
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep,
VectorXd (*solverFunc)(SparseMatrix<double> &A,
VectorXd &b)) {
int length = grid.getLength();
double sx = timestep / (grid.getDelta() * grid.getDelta());
@ -333,7 +351,8 @@ static void BTCS_1D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
MatrixXd concentrations = grid.getConcentrations();
int rowIndex = 0;
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex, sx); // this is exactly same as in 2D
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex,
sx); // this is exactly same as in 2D
for (int i = 0; i < length; i++) {
b(i) = concentrations(0, i);
}
@ -353,9 +372,11 @@ static void BTCS_1D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
grid.setConcentrations(concentrations);
}
// BTCS solution for 2D grid
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b), int numThreads) {
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep,
VectorXd (*solverFunc)(SparseMatrix<double> &A,
VectorXd &b),
int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
@ -379,7 +400,6 @@ static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
for (int i = 0; i < rowMax; i++) {
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
bcTop, bcBottom, colMax, i, sx, sy);
@ -413,7 +433,6 @@ static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
grid.setConcentrations(concentrations);
}
// entry point for EigenLU solver; differentiate between 1D and 2D grid
static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
if (grid.getDim() == 1) {
@ -421,17 +440,20 @@ static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep, int numThreads) {
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep,
int numThreads) {
if (grid.getDim() == 1) {
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
} else if (grid.getDim() == 2) {
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}

View File

@ -1,8 +1,8 @@
#include "TugUtils.cpp"
#include <iostream>
#include <omp.h>
#include <tug/Boundary.hpp>
#include <stdexcept>
#include <tug/Boundary.hpp>
using namespace std;
@ -17,9 +17,7 @@ BoundaryElement::BoundaryElement(double value) {
this->value = value;
}
void BoundaryElement::setType(BC_TYPE type) {
this->type = type;
}
void BoundaryElement::setType(BC_TYPE type) { this->type = type; }
void BoundaryElement::setValue(double value) {
if (value < 0) {
@ -33,27 +31,28 @@ void BoundaryElement::setValue(double value) {
this->value = value;
}
BC_TYPE BoundaryElement::getType() {
return this->type;
}
BC_TYPE BoundaryElement::getType() { return this->type; }
double BoundaryElement::getValue() {
return this->value;
}
double BoundaryElement::getValue() { return this->value; }
Boundary::Boundary(Grid grid) : grid(grid) {
if (grid.getDim() == 1) {
this->boundaries = vector<vector<BoundaryElement>>(2); // in 1D only left and right boundary
this->boundaries = vector<vector<BoundaryElement>>(
2); // in 1D only left and right boundary
this->boundaries[BC_SIDE_LEFT].push_back(BoundaryElement());
this->boundaries[BC_SIDE_RIGHT].push_back(BoundaryElement());
} else if (grid.getDim() == 2) {
this->boundaries = vector<vector<BoundaryElement>>(4);
this->boundaries[BC_SIDE_LEFT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_RIGHT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_TOP] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
this->boundaries[BC_SIDE_BOTTOM] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
this->boundaries[BC_SIDE_LEFT] =
vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_RIGHT] =
vector<BoundaryElement>(grid.getRow(), BoundaryElement());
this->boundaries[BC_SIDE_TOP] =
vector<BoundaryElement>(grid.getCol(), BoundaryElement());
this->boundaries[BC_SIDE_BOTTOM] =
vector<BoundaryElement>(grid.getCol(), BoundaryElement());
}
}
@ -101,7 +100,8 @@ void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
}
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index,
double value) {
// tests whether the index really points to an element of the boundary side.
if ((boundaries[side].size() < index) || index < 0) {
throw_invalid_argument("Index is selected either too large or too small.");
@ -155,8 +155,8 @@ double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
throw_invalid_argument("Index is selected either too large or too small.");
}
if (boundaries[side][index].getType() != BC_TYPE_CONSTANT) {
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
throw_invalid_argument(
"A value can only be output if it is a constant boundary condition.");
}
return this->boundaries[side][index].getValue();
}

View File

@ -1,85 +1,86 @@
/**
* @file FTCS.cpp
* @brief Implementation of heterogenous FTCS (forward time-centered space) solution
* of diffusion equation in 1D and 2D space.
* @brief Implementation of heterogenous FTCS (forward time-centered space)
* solution of diffusion equation in 1D and 2D space.
*
*/
#include "TugUtils.cpp"
#include <cstddef>
#include <tug/Boundary.hpp>
#include <iostream>
#include <omp.h>
#include <tug/Boundary.hpp>
using namespace std;
// calculates horizontal change on one cell independent of boundary type
static double calcHorizontalChange(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col+1)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col-1);
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col + 1) -
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col))) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col - 1);
return result;
}
// calculates vertical change on one cell independent of boundary type
static double calcVerticalChange(Grid &grid, int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
* grid.getConcentrations()(row+1,col)
- (
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
* grid.getConcentrations()(row-1,col);
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row + 1, col) -
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) +
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
grid.getAlphaY()(row, col))) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row - 1, col);
return result;
}
// calculates horizontal change on one cell with a constant left boundary
static double calcHorizontalChangeLeftBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeLeftBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col+1)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
+ 2 * grid.getAlphaX()(row,col)
)
* grid.getConcentrations()(row,col)
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col + 1) -
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) +
2 * grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col) +
2 * grid.getAlphaX()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
return result;
}
// calculates horizontal change on one cell with a closed left boundary
static double calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row, int &col) {
static double calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row,
int &col) {
double result =
calcAlphaIntercell(grid.getAlphaX()(row, col+1), grid.getAlphaX()(row, col))
* (grid.getConcentrations()(row, col+1) - grid.getConcentrations()(row, col));
double result = calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
grid.getAlphaX()(row, col)) *
(grid.getConcentrations()(row, col + 1) -
grid.getConcentrations()(row, col));
return result;
}
// checks boundary condition type for a cell on the left edge of grid
static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CLOSED) {
@ -89,37 +90,39 @@ static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc, int &ro
}
}
// calculates horizontal change on one cell with a constant right boundary
static double calcHorizontalChangeRightBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeRightBoundaryConstant(Grid &grid,
Boundary &bc, int &row,
int &col) {
double result =
2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_RIGHT, row)
- (
calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
+ 2 * grid.getAlphaX()(row,col)
)
* grid.getConcentrations()(row,col)
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
* grid.getConcentrations()(row,col-1);
double result = 2 * grid.getAlphaX()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_RIGHT, row) -
(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) +
2 * grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
grid.getConcentrations()(row, col - 1);
return result;
}
// calculates horizontal change on one cell with a closed right boundary
static double calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row, int &col) {
static double calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row,
int &col) {
double result =
- (calcAlphaIntercell(grid.getAlphaX()(row, col-1), grid.getAlphaX()(row, col))
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row, col-1)));
double result = -(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
grid.getAlphaX()(row, col)) *
(grid.getConcentrations()(row, col) -
grid.getConcentrations()(row, col - 1)));
return result;
}
// checks boundary condition type for a cell on the right edge of grid
static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CONSTANT) {
return calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CLOSED) {
@ -129,37 +132,38 @@ static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc, int &r
}
}
// calculates vertical change on one cell with a constant top boundary
static double calcVerticalChangeTopBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcVerticalChangeTopBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
* grid.getConcentrations()(row+1,col)
- (
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
+ 2 * grid.getAlphaY()(row, col)
)
* grid.getConcentrations()(row, col)
+ 2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_TOP, col);
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row + 1, col) -
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getAlphaY()(row, col)) +
2 * grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row, col) +
2 * grid.getAlphaY()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_TOP, col);
return result;
}
// calculates vertical change on one cell with a closed top boundary
static double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row, int &col) {
static double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row,
int &col) {
double result =
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getConcentrations()(row, col))
* (grid.getConcentrations()(row+1, col) - grid.getConcentrations()(row, col));
double result = calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
grid.getConcentrations()(row, col)) *
(grid.getConcentrations()(row + 1, col) -
grid.getConcentrations()(row, col));
return result;
}
// checks boundary condition type for a cell on the top edge of grid
static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row,
int &col) {
if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeTopBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CLOSED) {
@ -169,37 +173,38 @@ static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row,
}
}
// calculates vertical change on one cell with a constant bottom boundary
static double calcVerticalChangeBottomBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcVerticalChangeBottomBoundaryConstant(Grid &grid, Boundary &bc,
int &row, int &col) {
double result =
2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col)
- (
calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
+ 2 * grid.getAlphaY()(row, col)
)
* grid.getConcentrations()(row, col)
+ calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
* grid.getConcentrations()(row-1,col);
double result = 2 * grid.getAlphaY()(row, col) *
bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col) -
(calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) +
2 * grid.getAlphaY()(row, col)) *
grid.getConcentrations()(row, col) +
calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) *
grid.getConcentrations()(row - 1, col);
return result;
}
// calculates vertical change on one cell with a closed bottom boundary
static double calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row, int &col) {
static double calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row,
int &col) {
double result =
- (calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row-1, col)));
double result = -(calcAlphaIntercell(grid.getAlphaY()(row, col),
grid.getAlphaY()(row - 1, col)) *
(grid.getConcentrations()(row, col) -
grid.getConcentrations()(row - 1, col)));
return result;
}
// checks boundary condition type for a cell on the bottom edge of grid
static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc,
int &row, int &col) {
if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CONSTANT) {
return calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col);
} else if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CLOSED) {
@ -209,7 +214,6 @@ static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc, int &ro
}
}
// FTCS solution for 1D grid
static void FTCS_1D(Grid &grid, Boundary &bc, double &timestep) {
int colMax = grid.getCol();
@ -224,40 +228,32 @@ static void FTCS_1D(Grid &grid, Boundary &bc, double &timestep) {
// inner cells
// independent of boundary condition type
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// left boundary; hold column constant at index 0
int col = 0;
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col));
// right boundary; hold column constant at max index
col = colMax - 1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col));
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
}
// FTCS solution for 2D grid
static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads) {
static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep,
int numThreads) {
int rowMax = grid.getRow();
int colMax = grid.getCol();
double deltaRow = grid.getDeltaRow();
@ -272,16 +268,11 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads)
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChange(grid, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
}
@ -291,16 +282,11 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads)
int col = 0;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
}
// right without corners / looping over rows
@ -308,34 +294,24 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads)
col = colMax - 1;
#pragma omp parallel for num_threads(numThreads)
for (int row = 1; row < rowMax - 1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for num_threads(numThreads)
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// bottom without corners / looping over columns
@ -343,84 +319,63 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep, int numThreads)
row = rowMax - 1;
#pragma omp parallel for num_threads(numThreads)
for (int col = 1; col < colMax - 1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col)) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChange(grid, row, col));
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col));
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax - 1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeTopBoundary(grid, bc, row, col));
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax - 1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
// corner bottom right
// hold row and column constant at max index
row = rowMax - 1;
col = colMax - 1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
concentrations_t1(row, col) =
grid.getConcentrations()(row, col) +
timestep / (deltaCol * deltaCol) *
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
timestep / (deltaRow * deltaRow) *
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// }
}
// entry point; differentiate between 1D and 2D grid
static void FTCS(Grid &grid, Boundary &bc, double &timestep, int &numThreads) {
if (grid.getDim() == 1) {
@ -428,6 +383,7 @@ static void FTCS(Grid &grid, Boundary &bc, double &timestep, int &numThreads) {
} else if (grid.getDim() == 2) {
FTCS_2D(grid, bc, timestep, numThreads);
} else {
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
throw_invalid_argument(
"Error: Only 1- and 2-dimensional grids are defined!");
}
}

View File

@ -1,10 +1,11 @@
#include "TugUtils.cpp"
#include <tug/Grid.hpp>
#include <iostream>
#include <tug/Grid.hpp>
Grid::Grid(int length) {
if (length <= 3) {
throw_invalid_argument("Given grid length too small. Must be greater than 3.");
throw_invalid_argument(
"Given grid length too small. Must be greater than 3.");
}
this->row = 1;
@ -19,7 +20,8 @@ Grid::Grid(int length) {
Grid::Grid(int row, int col) {
if (row <= 3 || col <= 3) {
throw_invalid_argument("Given grid dimensions too small. Must each be greater than 3.");
throw_invalid_argument(
"Given grid dimensions too small. Must each be greater than 3.");
}
this->row = row;
@ -36,23 +38,25 @@ Grid::Grid(int row, int col) {
}
void Grid::setConcentrations(MatrixXd concentrations) {
if (concentrations.rows() != this->row || concentrations.cols() != this->col) {
throw_invalid_argument("Given matrix of concentrations mismatch with Grid dimensions!");
if (concentrations.rows() != this->row ||
concentrations.cols() != this->col) {
throw_invalid_argument(
"Given matrix of concentrations mismatch with Grid dimensions!");
}
this->concentrations = concentrations;
}
const MatrixXd Grid::getConcentrations() {
return this->concentrations;
}
const MatrixXd Grid::getConcentrations() { return this->concentrations; }
void Grid::setAlpha(MatrixXd alpha) {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use 2D setter function!");
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use 2D setter function!");
}
if (alpha.rows() != 1 || alpha.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients mismatch with Grid dimensions!");
throw_invalid_argument(
"Given matrix of alpha coefficients mismatch with Grid dimensions!");
}
this->alphaX = alpha;
@ -60,13 +64,16 @@ void Grid::setAlpha(MatrixXd alpha) {
void Grid::setAlpha(MatrixXd alphaX, MatrixXd alphaY) {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use 1D setter function!");
throw_invalid_argument("Grid is not two dimensional, you should probably "
"use 1D setter function!");
}
if (alphaX.rows() != this->row || alphaX.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in x-direction mismatch with GRid dimensions!");
throw_invalid_argument("Given matrix of alpha coefficients in x-direction "
"mismatch with GRid dimensions!");
}
if (alphaY.rows() != this->row || alphaY.cols() != this->col) {
throw_invalid_argument("Given matrix of alpha coefficients in y-direction mismatch with GRid dimensions!");
throw_invalid_argument("Given matrix of alpha coefficients in y-direction "
"mismatch with GRid dimensions!");
}
this->alphaX = alphaX;
@ -75,7 +82,8 @@ void Grid::setAlpha(MatrixXd alphaX, MatrixXd alphaY) {
const MatrixXd Grid::getAlpha() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use either getAlphaX() or getAlphaY()!");
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use either getAlphaX() or getAlphaY()!");
}
return this->alphaX;
@ -83,7 +91,8 @@ const MatrixXd Grid::getAlpha() {
const MatrixXd Grid::getAlphaX() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
throw_invalid_argument(
"Grid is not two dimensional, you should probably use getAlpha()!");
}
return this->alphaX;
@ -91,35 +100,32 @@ const MatrixXd Grid::getAlphaX() {
const MatrixXd Grid::getAlphaY() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
throw_invalid_argument(
"Grid is not two dimensional, you should probably use getAlpha()!");
}
return this->alphaY;
}
int Grid::getDim() {
return dim;
}
int Grid::getDim() { return dim; }
int Grid::getLength() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use getRow() or getCol()!");
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use getRow() or getCol()!");
}
return col;
}
int Grid::getRow() {
return row;
}
int Grid::getRow() { return row; }
int Grid::getCol() {
return col;
}
int Grid::getCol() { return col; }
void Grid::setDomain(double domainLength) {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probaly use the 2D domain setter!");
throw_invalid_argument("Grid is not one dimensional, you should probaly "
"use the 2D domain setter!");
}
if (domainLength <= 0) {
throw_invalid_argument("Given domain length is not positive!");
@ -131,7 +137,8 @@ void Grid::setDomain(double domainLength) {
void Grid::setDomain(double domainRow, double domainCol) {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, you should probably use the 1D domain setter!");
throw_invalid_argument("Grid is not two dimensional, you should probably "
"use the 1D domain setter!");
}
if (domainRow <= 0 || domainCol <= 0) {
throw_invalid_argument("Given domain size is not positive!");
@ -145,19 +152,19 @@ void Grid::setDomain(double domainRow, double domainCol) {
double Grid::getDelta() {
if (dim != 1) {
throw_invalid_argument("Grid is not one dimensional, you should probably use the 2D delta getters");
throw_invalid_argument("Grid is not one dimensional, you should probably "
"use the 2D delta getters");
}
return this->deltaCol;
}
double Grid::getDeltaCol() {
return this->deltaCol;
}
double Grid::getDeltaCol() { return this->deltaCol; }
double Grid::getDeltaRow() {
if (dim != 2) {
throw_invalid_argument("Grid is not two dimensional, meaning there is no delta in y-direction!");
throw_invalid_argument("Grid is not two dimensional, meaning there is no "
"delta in y-direction!");
}
return this->deltaRow;

View File

@ -1,10 +1,10 @@
#include <cmath>
#include <cstddef>
#include <filesystem>
#include <omp.h>
#include <stdexcept>
#include <string>
#include <tug/Simulation.hpp>
#include <omp.h>
#include <fstream>
@ -13,10 +13,10 @@
#include "BTCSv2.cpp"
using namespace std;
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach)
: grid(grid), bc(bc) {
this->approach = approach;
this->solver = THOMAS_ALGORITHM_SOLVER;
@ -39,7 +39,8 @@ void Simulation::setOutputCSV(CSV_OUTPUT csv_output) {
}
void Simulation::setOutputConsole(CONSOLE_OUTPUT console_output) {
if (console_output < CONSOLE_OUTPUT_OFF && console_output > CONSOLE_OUTPUT_VERBOSE) {
if (console_output < CONSOLE_OUTPUT_OFF &&
console_output > CONSOLE_OUTPUT_VERBOSE) {
throw_invalid_argument("Invalid console output option given!");
}
@ -71,7 +72,8 @@ void Simulation::setTimestep(double timestep) {
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
minDeltaSquare = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
minDeltaSquare =
(deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
maxAlphaX = grid.getAlphaX().maxCoeff();
maxAlphaY = grid.getAlphaY().maxCoeff();
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
@ -88,12 +90,16 @@ void Simulation::setTimestep(double timestep) {
// Courant-Friedrichs-Lewy condition
double cfl = minDeltaSquare / (4 * maxAlpha);
// stability equation from Wikipedia; might be useful if applied cfl does not work in some cases
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare)));
// stability equation from Wikipedia; might be useful if applied cfl does
// not work in some cases double CFL_Wiki = 1 / (4 * maxAlpha *
// ((1/deltaRowSquare) + (1/deltaColSquare)));
string approachPrefix = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl << endl;
cout << approachPrefix << "_" << dim << " :: required dt=" << timestep << endl;
string approachPrefix =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl
<< endl;
cout << approachPrefix << "_" << dim << " :: required dt=" << timestep
<< endl;
if (timestep > cfl) {
@ -104,25 +110,23 @@ void Simulation::setTimestep(double timestep) {
"conditions. Time duration was approximately preserved by "
"adjusting internal number of iterations."
<< endl;
cout << approachPrefix << "_" << dim << " :: Required " << this->innerIterations
cout << approachPrefix << "_" << dim << " :: Required "
<< this->innerIterations
<< " inner iterations with dt=" << this->timestep << endl;
} else {
this->timestep = timestep;
cout << approachPrefix << "_" << dim << " :: No inner iterations required, dt=" << timestep << endl;
cout << approachPrefix << "_" << dim
<< " :: No inner iterations required, dt=" << timestep << endl;
}
} else {
this->timestep = timestep;
}
}
double Simulation::getTimestep() {
return this->timestep;
}
double Simulation::getTimestep() { return this->timestep; }
void Simulation::setIterations(int iterations) {
if (iterations <= 0) {
@ -133,7 +137,8 @@ void Simulation::setIterations(int iterations) {
void Simulation::setSolver(SOLVER solver) {
if (this->approach == FTCS_APPROACH) {
cerr << "Warning: Solver was set, but FTCS approach initialized. Setting the solver "
cerr << "Warning: Solver was set, but FTCS approach initialized. Setting "
"the solver "
"is thus without effect."
<< endl;
}
@ -144,19 +149,17 @@ void Simulation::setSolver(SOLVER solver) {
void Simulation::setNumberThreads(int numThreads) {
if (numThreads > 0 && numThreads <= omp_get_num_procs()) {
this->numThreads = numThreads;
}
else{
} else {
int maxThreadNumber = omp_get_num_procs();
string outputMessage = "Number of threads exceeds the number of processor cores ("
+ to_string(maxThreadNumber) + ") or is less than 1.";
string outputMessage =
"Number of threads exceeds the number of processor cores (" +
to_string(maxThreadNumber) + ") or is less than 1.";
throw_invalid_argument(outputMessage);
}
}
int Simulation::getIterations() {
return this->iterations;
}
int Simulation::getIterations() { return this->iterations; }
void Simulation::printConcentrationsConsole() {
cout << grid.getConcentrations() << endl;
@ -169,17 +172,20 @@ string Simulation::createCSVfile() {
string appendIdentString;
// string approachString = (approach == 0) ? "FTCS" : "BTCS";
string approachString = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string approachString =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string row = to_string(grid.getRow());
string col = to_string(grid.getCol());
string numIterations = to_string(iterations);
string filename = approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
string filename =
approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
while (filesystem::exists(filename)) {
appendIdent += 1;
appendIdentString = to_string(appendIdent);
filename = approachString + "_" + row + "_" + col + "_" + numIterations + "-" + appendIdentString + ".csv";
filename = approachString + "_" + row + "_" + col + "_" + numIterations +
"-" + appendIdentString + ".csv";
}
file.open(filename);
@ -187,14 +193,18 @@ string Simulation::createCSVfile() {
exit(1);
}
// adds lines at the beginning of verbose output csv that represent the boundary conditions and their values
// -1 in case of closed boundary
// adds lines at the beginning of verbose output csv that represent the
// boundary conditions and their values -1 in case of closed boundary
if (csv_output == CSV_OUTPUT_XTREME) {
IOFormat one_row(StreamPrecision, DontAlignCols, "", " ");
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row) << endl; // boundary left
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row) << endl; // boundary right
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row) << endl; // boundary top
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row) << endl; // boundary bottom
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row)
<< endl; // boundary left
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row)
<< endl; // boundary right
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row)
<< endl; // boundary top
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row)
<< endl; // boundary bottom
file << endl << endl;
}
@ -248,8 +258,8 @@ void Simulation::run() {
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
// if (i % (iterations * innerIterations / 100) == 0) {
// double percentage = (double)i / ((double)iterations * (double)innerIterations) * 100;
// if ((int)percentage % 10 == 0) {
// double percentage = (double)i / ((double)iterations *
// (double)innerIterations) * 100; if ((int)percentage % 10 == 0) {
// cout << "Progress: " << percentage << "%" << endl;
// }
// }
@ -267,7 +277,6 @@ void Simulation::run() {
}
BTCS_LU(this->grid, this->bc, this->timestep, this->numThreads);
}
} else if (solver == THOMAS_ALGORITHM_SOLVER) {
for (int i = 0; i < iterations; i++) {
@ -279,7 +288,6 @@ void Simulation::run() {
}
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
}
}
@ -288,7 +296,8 @@ void Simulation::run() {
double beta = 0.5;
// TODO this implementation is very inefficient!
// a separate implementation that sets up a specific tridiagonal matrix for Crank-Nicolson would be better
// a separate implementation that sets up a specific tridiagonal matrix for
// Crank-Nicolson would be better
MatrixXd concentrations;
MatrixXd concentrationsFTCS;
MatrixXd concentrationsResult;
@ -305,14 +314,15 @@ void Simulation::run() {
concentrationsFTCS = grid.getConcentrations();
grid.setConcentrations(concentrations);
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
concentrationsResult = beta * concentrationsFTCS + (1-beta) * grid.getConcentrations();
concentrationsResult =
beta * concentrationsFTCS + (1 - beta) * grid.getConcentrations();
grid.setConcentrations(concentrationsResult);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
auto milliseconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
if (this->console_output > CONSOLE_OUTPUT_OFF) {
printConcentrationsConsole();
@ -321,11 +331,12 @@ void Simulation::run() {
printConcentrationsCSV(filename);
}
if (this->time_measure > TIME_MEASURE_OFF) {
string approachString = (approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string approachString =
(approach == 0) ? "FTCS" : ((approach == 1) ? "BTCS" : "CRNI");
string dimString = (grid.getDim() == 1) ? "-1D" : "-2D";
cout << approachString << dimString << ":: run() finished in " << milliseconds.count() << "ms" << endl;
cout << approachString << dimString << ":: run() finished in "
<< milliseconds.count() << "ms" << endl;
}
}
#endif

View File

@ -1,7 +1,7 @@
#include <chrono>
#include <fstream>
#include <stdexcept>
#include <string>
#include <fstream>
using namespace std;
@ -29,7 +29,8 @@ using namespace std;
})
// calculates arithmetic or harmonic mean of alpha between two cells
static double calcAlphaIntercell(const double &alpha1, const double &alpha2, bool useHarmonic = true) {
static double calcAlphaIntercell(const double &alpha1, const double &alpha2,
bool useHarmonic = true) {
if (useHarmonic) {
return double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
} else {

View File

@ -1,8 +1,8 @@
#include <ios>
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <fstream>
#include <ios>
#include <iostream>
#include <sstream>
#include <stdexcept>
@ -32,7 +32,9 @@ MatrixXd CSV2Eigen(string file2Convert) {
}
}
return Map<Matrix<double, Dynamic, Dynamic, RowMajor>>(matrixEntries.data(), matrixRowNumber, matrixEntries.size() / matrixRowNumber);
return Map<Matrix<double, Dynamic, Dynamic, RowMajor>>(
matrixEntries.data(), matrixRowNumber,
matrixEntries.size() / matrixRowNumber);
}
bool checkSimilarity(MatrixXd a, MatrixXd b, double precision = 1e-5) {

View File

@ -1,9 +1,9 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Boundary.hpp>
#include <string>
#include <typeinfo>
#include <iostream>
#include <stdio.h>
#include <string>
#include <tug/Boundary.hpp>
#include <typeinfo>
TEST_CASE("BoundaryElement") {
@ -36,7 +36,8 @@ TEST_CASE("Boundary Class"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CLOSED);
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
@ -44,8 +45,10 @@ TEST_CASE("Boundary Class"){
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
boundary1DVector[0].getType());
}
SUBCASE("Boundaries 2D case") {
@ -54,7 +57,8 @@ TEST_CASE("Boundary Class"){
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CLOSED);
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
@ -62,7 +66,9 @@ TEST_CASE("Boundary Class"){
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
boundary1DVector[0].getType());
}
}

View File

@ -1,5 +1,5 @@
#include <doctest/doctest.h>
#include <../src/FTCS.cpp>
#include <doctest/doctest.h>
#include <limits>
TEST_CASE("Maths") {
@ -7,13 +7,13 @@ TEST_CASE("Maths") {
double alpha1 = 10;
double alpha2 = 20;
double average = 15;
double harmonicMean = double(2) / ((double(1)/alpha1)+(double(1)/alpha2));
double harmonicMean =
double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) - harmonicMean);
// CHECK(difference < std::numeric_limits<double>::epsilon());
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) -
// harmonicMean); CHECK(difference <
// std::numeric_limits<double>::epsilon());
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2), harmonicMean);
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2, false), average);
}
}

View File

@ -1,6 +1,6 @@
#include <Eigen/Core>
#include <doctest/doctest.h>
#include <tug/Grid.hpp>
#include <Eigen/Core>
TEST_CASE("1D Grid, too small length") {
int l = 2;
@ -112,7 +112,6 @@ TEST_CASE("2D Grid quadratic") {
MatrixXd concentrations = MatrixXd::Constant(rc, rc, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(rc, rc + 3, 1);
CHECK_THROWS(grid.setConcentrations(wConcentrations));
@ -195,7 +194,6 @@ TEST_CASE("2D Grid non-quadratic") {
MatrixXd concentrations = MatrixXd::Constant(r, c, 2);
CHECK_NOTHROW(grid.setConcentrations(concentrations));
// false concentrations matrix
MatrixXd wConcentrations = MatrixXd::Constant(r, c + 3, 6);
CHECK_THROWS(grid.setConcentrations(wConcentrations));

View File

@ -1,19 +1,19 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Simulation.hpp>
#include "TestUtils.cpp"
#include <doctest/doctest.h>
#include <stdio.h>
#include <string>
#include <tug/Simulation.hpp>
// include the configured header file
#include <testSimulation.hpp>
static Grid setupSimulation(APPROACH approach, double timestep, int iterations) {
static Grid setupSimulation(APPROACH approach, double timestep,
int iterations) {
int row = 11;
int col = 11;
int domain_row = 10;
int domain_col = 10;
// Grid
Grid grid = Grid(row, col);
grid.setDomain(domain_row, domain_col);
@ -40,11 +40,9 @@ static Grid setupSimulation(APPROACH approach, double timestep, int iterations)
}
grid.setAlpha(alpha, alpha);
// Boundary
Boundary bc = Boundary(grid);
// Simulation
Simulation sim = Simulation(grid, bc, approach);
// sim.setOutputConsole(CONSOLE_OUTPUT_ON);
@ -54,7 +52,6 @@ static Grid setupSimulation(APPROACH approach, double timestep, int iterations)
// RUN
return grid;
}
TEST_CASE("equality to reference matrix with FTCS") {
@ -91,9 +88,7 @@ TEST_CASE("Simulation environment"){
Boundary boundary(grid);
Simulation sim(grid, boundary, FTCS_APPROACH);
SUBCASE("default paremeters") {
CHECK_EQ(sim.getIterations(), -1);
}
SUBCASE("default paremeters") { CHECK_EQ(sim.getIterations(), -1); }
SUBCASE("set iterations") {
CHECK_NOTHROW(sim.setIterations(2000));
@ -107,4 +102,3 @@ TEST_CASE("Simulation environment"){
CHECK_THROWS(sim.setTimestep(-0.3));
}
}