mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
Merge branch 'hannes-philipp' of git.gfz-potsdam.de:naaice/tug into hannes-philipp
This commit is contained in:
commit
20067a6898
@ -13,3 +13,6 @@ target_link_libraries(FTCS_2D_proto_example_mdl tug)
|
||||
target_link_libraries(FTCS_1D_proto_example tug)
|
||||
target_link_libraries(reference-FTCS_2D_closed tug)
|
||||
# target_link_libraries(FTCS_2D_proto_example easy_profiler)
|
||||
|
||||
add_executable(FTCS_2D_proto_closed_mdl FTCS_2D_proto_closed_mdl.cpp)
|
||||
target_link_libraries(FTCS_2D_proto_closed_mdl tug)
|
||||
|
||||
@ -1,22 +1,30 @@
|
||||
/**
|
||||
* @file FTCS_2D_proto_example.cpp
|
||||
* @author Hannes Signer, Philipp Ungrund
|
||||
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
|
||||
* and constant boundary condition
|
||||
* @file FTCS_2D_proto_closed_mdl.cpp
|
||||
* @author Hannes Signer, Philipp Ungrund, MDL
|
||||
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
|
||||
*
|
||||
*/
|
||||
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
|
||||
int row = 64;
|
||||
|
||||
if (argc == 2) {
|
||||
// no cmd line argument, take col=row=64
|
||||
row = atoi(argv[1]);
|
||||
}
|
||||
int col=row;
|
||||
|
||||
std::cout << "Nrow =" << row << std::endl;
|
||||
// **************
|
||||
// **** GRID ****
|
||||
// **************
|
||||
|
||||
// create a grid with a 20 x 20 field
|
||||
int row = 64;
|
||||
int col = 64;
|
||||
int n2 = row/2-1;
|
||||
Grid grid = Grid(row,col);
|
||||
|
||||
@ -59,14 +67,14 @@ int main(int argc, char *argv[]) {
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// (optional) set the timestep of the simulation
|
||||
simulation.setTimestep(1000); // timestep
|
||||
// set the timestep of the simulation
|
||||
simulation.setTimestep(10000); // timestep
|
||||
|
||||
// (optional) set the number of iterations
|
||||
simulation.setIterations(5);
|
||||
// set the number of iterations
|
||||
simulation.setIterations(100);
|
||||
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
|
||||
@ -1,3 +1,9 @@
|
||||
/**
|
||||
* @file Boundary.hpp
|
||||
* @brief
|
||||
*
|
||||
*
|
||||
*/
|
||||
#ifndef BOUNDARY_H_
|
||||
#define BOUNDARY_H_
|
||||
|
||||
@ -20,71 +26,168 @@ enum BC_SIDE {
|
||||
BC_SIDE_BOTTOM
|
||||
};
|
||||
|
||||
/**
|
||||
* This class defines the boundary conditions of individual boundary elements.
|
||||
* These can be flexibly used and combined later in other classes.
|
||||
* The class serves as an auxiliary class for structuring the Boundary class.
|
||||
*/
|
||||
class BoundaryElement {
|
||||
public:
|
||||
// bc type closed
|
||||
BoundaryElement();
|
||||
/**
|
||||
* @brief Construct a new Boundary Element object for the closed case.
|
||||
* The boundary type is here automatically set to the type
|
||||
* BC_TYPE_CLOSED, where the value takes NaN.
|
||||
*/
|
||||
BoundaryElement();
|
||||
|
||||
// bc type constant
|
||||
BoundaryElement(double value);
|
||||
/**
|
||||
* @brief Construct a new Boundary Element object for the constant case.
|
||||
* The boundary type is automatically set to the type
|
||||
* BC_TYPE_CONSTANT.
|
||||
*
|
||||
* @param value Value of the constant concentration to be assumed at the
|
||||
* corresponding boundary element.
|
||||
*/
|
||||
BoundaryElement(double value);
|
||||
|
||||
void setType(BC_TYPE type);
|
||||
/**
|
||||
* @brief Allows changing the boundary type of a corresponding
|
||||
* BoundaryElement object.
|
||||
*
|
||||
* @param type Type of boundary condition. Either BC_TYPE_CONSTANT or
|
||||
BC_TYPE_CLOSED.
|
||||
*/
|
||||
void setType(BC_TYPE type);
|
||||
|
||||
/**
|
||||
* @brief Sets the value of a boundary condition for the constant case.
|
||||
*
|
||||
* @param value Concentration to be considered constant for the
|
||||
* corresponding boundary element.
|
||||
*/
|
||||
void setValue(double value);
|
||||
|
||||
void setValue(double value);
|
||||
/**
|
||||
* @brief Return the type of the boundary condition, i.e. whether the
|
||||
* boundary is considered closed or constant.
|
||||
*
|
||||
* @return BC_TYPE Type of boundary condition, either BC_TYPE_CLOSED or
|
||||
BC_TYPE_CONSTANT.
|
||||
*/
|
||||
BC_TYPE getType();
|
||||
|
||||
BC_TYPE getType();
|
||||
|
||||
double getValue();
|
||||
/**
|
||||
* @brief Return the concentration value for the constant boundary condition.
|
||||
*
|
||||
* @return double Value of the concentration.
|
||||
*/
|
||||
double getValue();
|
||||
|
||||
private:
|
||||
BC_TYPE type;
|
||||
double value;
|
||||
};
|
||||
|
||||
class BoundaryWall {
|
||||
public:
|
||||
BoundaryWall(int length);
|
||||
|
||||
void setWall(BC_TYPE type, double value = NAN);
|
||||
|
||||
vector<BoundaryElement> getWall();
|
||||
|
||||
void setBoundaryElement(int index, BC_TYPE type, double value = NAN);
|
||||
|
||||
BoundaryElement getBoundaryElement();
|
||||
|
||||
private:
|
||||
BC_SIDE side;
|
||||
int length;
|
||||
vector<BoundaryElement> wall;
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* This class implements the functionality and management of the boundary
|
||||
* conditions in the grid to be simulated.
|
||||
* This class implements the functionality and management of the boundary
|
||||
* conditions in the grid to be simulated.
|
||||
*/
|
||||
class Boundary {
|
||||
public:
|
||||
/**
|
||||
* @brief Creates a boundary object based on the passed grid object and
|
||||
* initializes the boundaries as closed.
|
||||
*
|
||||
* @param grid Grid object on the basis of which the simulation is to take place.
|
||||
*/
|
||||
Boundary(Grid grid);
|
||||
|
||||
/**
|
||||
* @brief Construct a new Boundary object
|
||||
*
|
||||
* @param grid
|
||||
*/
|
||||
Boundary(Grid grid);
|
||||
/**
|
||||
* @brief Sets all elements of the specified boundary side to the boundary
|
||||
* condition closed.
|
||||
*
|
||||
* @param side Side to be set to closed, e.g. BC_SIDE_LEFT.
|
||||
*/
|
||||
void setBoundarySideClosed(BC_SIDE side);
|
||||
|
||||
void setBoundarySideClosed(BC_SIDE side);
|
||||
/**
|
||||
* @brief Sets all elements of the specified boundary side to the boundary
|
||||
* condition constant. Thereby the concentration values of the
|
||||
* boundaries are set to the passed value.
|
||||
*
|
||||
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
|
||||
* @param value Concentration to be set for all elements of the specified page.
|
||||
*/
|
||||
void setBoundarySideConstant(BC_SIDE side, double value);
|
||||
|
||||
void setBoundarySideConstant(BC_SIDE side, double value);
|
||||
/**
|
||||
* @brief Specifically sets the boundary element of the specified side
|
||||
* defined by the index to the boundary condition closed.
|
||||
*
|
||||
* @param side Side in which an element is to be defined as closed.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
*/
|
||||
void setBoundaryElementClosed(BC_SIDE side, int index);
|
||||
|
||||
void setBoundaryElementClosed(BC_SIDE side, int index);
|
||||
/**
|
||||
* @brief Specifically sets the boundary element of the specified side
|
||||
* defined by the index to the boundary condition constant with the
|
||||
given concentration value.
|
||||
*
|
||||
* @param side Side in which an element is to be defined as constant.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* @param value Concentration value to which the boundary element should be set.
|
||||
*/
|
||||
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
|
||||
|
||||
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
|
||||
/**
|
||||
* @brief Returns the boundary condition of a specified side as a vector
|
||||
* of BoundarsElement objects.
|
||||
*
|
||||
* @param side Boundary side from which the boundaryconditions are to be returned.
|
||||
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
|
||||
*/
|
||||
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
|
||||
|
||||
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
|
||||
/**
|
||||
* @brief Returns the boundary condition of a specified element on a given side.
|
||||
*
|
||||
* @param side Boundary side in which the boundary condition is located.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* @return BoundaryElement Boundary condition as a BoundaryElement object.
|
||||
*/
|
||||
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
|
||||
|
||||
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
|
||||
/**
|
||||
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
|
||||
BC_TYPE_CONSTANT.
|
||||
*
|
||||
* @param side Boundary side in which the boundary condition type is located.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
|
||||
*/
|
||||
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
|
||||
|
||||
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
|
||||
|
||||
double getBoundaryElementValue(BC_SIDE side, int index);
|
||||
/**
|
||||
* @brief Returns the concentration value of a corresponding
|
||||
* BoundaryElement object if it is a constant boundary condition.
|
||||
*
|
||||
* @param side Boundary side in which the boundary condition value is
|
||||
* located.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding
|
||||
* side.
|
||||
* @return double Concentration of the corresponding BoundaryElement object.
|
||||
*/
|
||||
double getBoundaryElementValue(BC_SIDE side, int index);
|
||||
|
||||
private:
|
||||
Grid grid;
|
||||
|
||||
@ -1,3 +1,7 @@
|
||||
/**
|
||||
* @file Simulation.hpp
|
||||
* @brief
|
||||
*/
|
||||
#include "Boundary.hpp"
|
||||
#include <ios>
|
||||
|
||||
@ -27,92 +31,124 @@ enum TIME_MEASURE {
|
||||
TIME_MEASURE_VERBOSE // print time measures after each iteration
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief The class forms the interface for performing the diffusion simulations
|
||||
* and contains all the methods for controlling the desired parameters, such as
|
||||
* time step, number of simulations, etc.
|
||||
*
|
||||
*/
|
||||
class Simulation {
|
||||
public:
|
||||
/**
|
||||
* @brief Set up a runnable simulation environment with the largest stable
|
||||
* time step and 1000 iterations by passing the required parameters.
|
||||
*
|
||||
* @param grid Valid grid object
|
||||
* @param bc Valid boundary condition object
|
||||
* @param approach Approach to solving the problem. Either FTCS or BTCS.
|
||||
*/
|
||||
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
|
||||
|
||||
/**
|
||||
* @brief Construct a new Simulation object
|
||||
*
|
||||
* @param grid
|
||||
* @param bc
|
||||
* @param aproach
|
||||
*/
|
||||
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
|
||||
/**
|
||||
* @brief Set the option to output the results to a CSV file.
|
||||
*
|
||||
*
|
||||
* @param csv_output Valid output option. The following options can be set
|
||||
* here:
|
||||
* - CSV_OUTPUT_OFF: do not produce csv output
|
||||
* - CSV_OUTPUT_ON: produce csv output with last
|
||||
* concentration matrix
|
||||
* - CSV_OUTPUT_VERBOSE: produce csv output with all
|
||||
* concentration matrices
|
||||
* - CSV_OUTPUT_XTREME: produce csv output with all
|
||||
* concentration matrices and simulation environment
|
||||
*/
|
||||
void setOutputCSV(CSV_OUTPUT csv_output);
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @param csv_output
|
||||
*/
|
||||
void setOutputCSV(CSV_OUTPUT csv_output);
|
||||
/**
|
||||
* @brief Set the options for outputting information to the console.
|
||||
*
|
||||
* @param console_output Valid output option. The following options can be set
|
||||
* here:
|
||||
* - CONSOLE_OUTPUT_OFF: do not print any output to console
|
||||
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
|
||||
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
|
||||
*/
|
||||
void setOutputConsole(CONSOLE_OUTPUT console_output);
|
||||
|
||||
/**
|
||||
* @brief Set the Output Console object
|
||||
*
|
||||
* @param console_output
|
||||
*/
|
||||
void setOutputConsole(CONSOLE_OUTPUT console_output);
|
||||
/**
|
||||
* @brief Set the Time Measure object
|
||||
*
|
||||
* @param time_measure
|
||||
*/
|
||||
void setTimeMeasure(TIME_MEASURE time_measure);
|
||||
|
||||
/**
|
||||
* @brief Set the Time Measure object
|
||||
*
|
||||
* @param time_measure
|
||||
*/
|
||||
void setTimeMeasure(TIME_MEASURE time_measure);
|
||||
/**
|
||||
* @brief Setting the time step for each iteration step. Time step must be
|
||||
* greater than zero.
|
||||
*
|
||||
* @param timestep Valid timestep greater than zero.
|
||||
*/
|
||||
void setTimestep(double timestep);
|
||||
|
||||
/**
|
||||
* @brief Set the Timestep object
|
||||
*
|
||||
* @param timetstep
|
||||
*/
|
||||
void setTimestep(double timetstep);
|
||||
/**
|
||||
* @brief Currently set time step is returned.
|
||||
*
|
||||
* @return double timestep
|
||||
*/
|
||||
double getTimestep();
|
||||
|
||||
/**
|
||||
* @brief Get the Timestep object
|
||||
*
|
||||
*/
|
||||
double getTimestep();
|
||||
/**
|
||||
* @brief Set the desired iterations to be calculated. A value greater
|
||||
* than zero must be specified here.
|
||||
*
|
||||
* @param iterations Number of iterations to be simulated.
|
||||
*/
|
||||
void setIterations(int iterations);
|
||||
|
||||
/**
|
||||
* @brief Set the Iterations object
|
||||
*
|
||||
* @param iterations
|
||||
*/
|
||||
void setIterations(int iterations);
|
||||
/**
|
||||
* @brief Return the currently set iterations to be calculated.
|
||||
*
|
||||
* @return int Number of iterations.
|
||||
*/
|
||||
int getIterations();
|
||||
|
||||
/**
|
||||
* @brief Get the Iterations object
|
||||
*
|
||||
* @return auto
|
||||
*/
|
||||
int getIterations();
|
||||
/**
|
||||
* @brief Outputs the current concentrations of the grid on the console.
|
||||
*
|
||||
*/
|
||||
void printConcentrationsConsole();
|
||||
|
||||
/**
|
||||
* @brief Print the current concentrations of the grid to standard out.
|
||||
*
|
||||
*/
|
||||
void printConcentrationsConsole();
|
||||
/**
|
||||
* @brief Creates a CSV file with a name containing the current simulation
|
||||
* parameters. If the data name already exists, an additional counter is
|
||||
* appended to the name. The name of the file is built up as follows:
|
||||
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
|
||||
*
|
||||
* @return string Filename with given simulation parameter.
|
||||
*/
|
||||
string createCSVfile();
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
string createCSVfile();
|
||||
/**
|
||||
* @brief Writes the currently calculated concentration values of the grid
|
||||
* into the CSV file with the passed filename.
|
||||
*
|
||||
* @param filename Name of the file to which the concentration values are
|
||||
* to be written.
|
||||
*/
|
||||
void printConcentrationsCSV(string filename);
|
||||
|
||||
void printConcentrationsCSV(string filename);
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @return Grid
|
||||
*/
|
||||
void run();
|
||||
/**
|
||||
* @brief Method starts the simulation process with the previously set
|
||||
* parameters.
|
||||
*/
|
||||
void run();
|
||||
|
||||
private:
|
||||
|
||||
double timestep;
|
||||
int iterations;
|
||||
int innerIterations;
|
||||
CSV_OUTPUT csv_output;
|
||||
CONSOLE_OUTPUT console_output;
|
||||
TIME_MEASURE time_measure;
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
#include "TugUtils.hpp"
|
||||
#include "tug/BoundaryCondition.hpp"
|
||||
#include <iostream>
|
||||
#include <omp.h>
|
||||
@ -7,6 +8,7 @@
|
||||
using namespace std;
|
||||
|
||||
BoundaryElement::BoundaryElement() {
|
||||
|
||||
this->type = BC_TYPE_CLOSED;
|
||||
this->value = NAN;
|
||||
}
|
||||
@ -21,6 +23,14 @@ void BoundaryElement::setType(BC_TYPE type) {
|
||||
}
|
||||
|
||||
void BoundaryElement::setValue(double value) {
|
||||
if(value < 0){
|
||||
throw_invalid_argument("No negative concentration allowed.");
|
||||
}
|
||||
if(type == BC_TYPE_CLOSED){
|
||||
throw_invalid_argument(
|
||||
"No constant boundary concentrations can be set for closed "
|
||||
"boundaries. Please change type first.");
|
||||
}
|
||||
this->value = value;
|
||||
}
|
||||
|
||||
@ -51,35 +61,76 @@ Boundary::Boundary(Grid grid) : grid(grid) {
|
||||
}
|
||||
|
||||
void Boundary::setBoundarySideClosed(BC_SIDE side) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
}
|
||||
}
|
||||
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
|
||||
}
|
||||
|
||||
void Boundary::setBoundarySideConstant(BC_SIDE side, double value) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
}
|
||||
}
|
||||
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement(value));
|
||||
}
|
||||
|
||||
void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
|
||||
// tests whether the index really points to an element of the boundary side.
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
|
||||
}
|
||||
|
||||
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
|
||||
// tests whether the index really points to an element of the boundary side.
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
|
||||
this->boundaries[side][index].setValue(value);
|
||||
}
|
||||
|
||||
vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
}
|
||||
}
|
||||
return this->boundaries[side];
|
||||
}
|
||||
|
||||
BoundaryElement Boundary::getBoundaryElement(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
return this->boundaries[side][index];
|
||||
}
|
||||
|
||||
BC_TYPE Boundary::getBoundaryElementType(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
return this->boundaries[side][index].getType();
|
||||
}
|
||||
|
||||
double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
if(boundaries[side][index].getType() != BC_TYPE_CONSTANT){
|
||||
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
|
||||
}
|
||||
return this->boundaries[side][index].getValue();
|
||||
}
|
||||
|
||||
|
||||
304
src/FTCS.cpp
304
src/FTCS.cpp
@ -273,160 +273,196 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double ×tep) {
|
||||
double deltaRow = grid.getDeltaRow();
|
||||
double deltaCol = grid.getDeltaCol();
|
||||
|
||||
// matrix for concentrations at time t+1
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
// MDL: here we have to compute the max time step
|
||||
// double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
|
||||
// double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
||||
|
||||
// double minDelta2 = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
|
||||
// double maxAlphaX = grid.getAlphaX().maxCoeff();
|
||||
// double maxAlphaY = grid.getAlphaY().maxCoeff();
|
||||
// double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
|
||||
|
||||
// double CFL_MDL = minDelta2 / (4*maxAlpha); // Formula from Marco --> seems to be unstable
|
||||
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
|
||||
|
||||
// cout << "FTCS_2D :: CFL condition MDL: " << CFL_MDL << endl;
|
||||
// cout << "FTCS_2D :: CFL condition Wiki: " << CFL_Wiki << endl;
|
||||
// double required_dt = timestep;
|
||||
// cout << "FTCS_2D :: required dt=" << required_dt << endl;
|
||||
|
||||
// inner cells
|
||||
// these are independent of the boundary condition type
|
||||
omp_set_num_threads(10);
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
// int inner_iterations = 1;
|
||||
// double timestep = timestep;
|
||||
// if (required_dt > CFL_MDL) {
|
||||
|
||||
// inner_iterations = (int)ceil(required_dt / CFL_MDL);
|
||||
// timestep = required_dt / (double)inner_iterations;
|
||||
|
||||
// cout << "FTCS_2D :: Required " << inner_iterations
|
||||
// << " inner iterations with dt=" << timestep << endl;
|
||||
// } else {
|
||||
// cout << "FTCS_2D :: No inner iterations required, dt=" << required_dt
|
||||
// << endl;
|
||||
// }
|
||||
|
||||
// we loop for inner iterations
|
||||
// for (int it =0; it < inner_iterations; ++it){
|
||||
|
||||
// cout << "FTCS_2D :: iteration " << it+1 << "/" << inner_iterations << endl;
|
||||
// matrix for concentrations at time t+1
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
|
||||
// inner cells
|
||||
// these are independent of the boundary condition type
|
||||
// omp_set_num_threads(10);
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
// boundary conditions
|
||||
// left without corners / looping over rows
|
||||
// hold column constant at index 0
|
||||
int col = 0;
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
// boundary conditions
|
||||
// left without corners / looping over rows
|
||||
// hold column constant at index 0
|
||||
int col = 0;
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// right without corners / looping over rows
|
||||
// hold column constant at max index
|
||||
col = colMax-1;
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// right without corners / looping over rows
|
||||
// hold column constant at max index
|
||||
col = colMax-1;
|
||||
#pragma omp parallel for
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
// top without corners / looping over columns
|
||||
// hold row constant at index 0
|
||||
int row = 0;
|
||||
#pragma omp parallel for
|
||||
for (int col=1; col<colMax-1;col++){
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
// top without corners / looping over columns
|
||||
// hold row constant at index 0
|
||||
int row = 0;
|
||||
#pragma omp parallel for
|
||||
for (int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// bottom without corners / looping over columns
|
||||
// hold row constant at max index
|
||||
row = rowMax-1;
|
||||
#pragma omp parallel for
|
||||
for(int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
}
|
||||
|
||||
// bottom without corners / looping over columns
|
||||
// hold row constant at max index
|
||||
row = rowMax-1;
|
||||
#pragma omp parallel for
|
||||
for(int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// corner top left
|
||||
// hold row and column constant at 0
|
||||
row = 0;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner top right
|
||||
// hold row constant at 0 and column constant at max index
|
||||
row = 0;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner top left
|
||||
// hold row and column constant at 0
|
||||
row = 0;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
// corner bottom left
|
||||
// hold row constant at max index and column constant at 0
|
||||
row = rowMax-1;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner top right
|
||||
// hold row constant at 0 and column constant at max index
|
||||
row = 0;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
// corner bottom right
|
||||
// hold row and column constant at max index
|
||||
row = rowMax-1;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner bottom left
|
||||
// hold row constant at max index and column constant at 0
|
||||
row = rowMax-1;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner bottom right
|
||||
// hold row and column constant at max index
|
||||
row = rowMax-1;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// overwrite obsolete concentrations
|
||||
grid.setConcentrations(concentrations_t1);
|
||||
// overwrite obsolete concentrations
|
||||
grid.setConcentrations(concentrations_t1);
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <filesystem>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
@ -11,28 +13,20 @@
|
||||
using namespace std;
|
||||
|
||||
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
|
||||
|
||||
this->approach = approach;
|
||||
this->timestep = -1; // error per default
|
||||
this->iterations = -1;
|
||||
this->innerIterations = 1;
|
||||
|
||||
//TODO calculate max time step
|
||||
|
||||
double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
|
||||
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
||||
|
||||
double minDelta = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
|
||||
double maxAlphaX = grid.getAlphaX().maxCoeff();
|
||||
double maxAlphaY = grid.getAlphaY().maxCoeff();
|
||||
double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
|
||||
|
||||
double maxStableTimestepMdl = minDelta / (2*maxAlpha); // Formula from Marco --> seems to be unstable
|
||||
double maxStableTimestep = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
|
||||
|
||||
// cout << "Max stable time step MDL: " << maxStableTimestepMdl << endl;
|
||||
// cout << "Max stable time step: " << maxStableTimestep << endl;
|
||||
|
||||
this->timestep = maxStableTimestep;
|
||||
|
||||
// MDL no: we need to distinguish between "required dt" and
|
||||
// "number of (outer) iterations" at which the user needs an
|
||||
// output and the actual CFL-allowed timestep and consequently the
|
||||
// number of "inner" iterations which the explicit FTCS needs to
|
||||
// reach them. The following, at least at the moment, cannot be
|
||||
// computed here since "timestep" is not yet set when this
|
||||
// function is called. I brought everything into "FTCS_2D"!
|
||||
|
||||
this->iterations = 1000;
|
||||
this->csv_output = CSV_OUTPUT_OFF;
|
||||
this->console_output = CONSOLE_OUTPUT_OFF;
|
||||
this->time_measure = TIME_MEASURE_OFF;
|
||||
@ -64,8 +58,59 @@ void Simulation::setTimeMeasure(TIME_MEASURE time_measure) {
|
||||
}
|
||||
|
||||
void Simulation::setTimestep(double timestep) {
|
||||
//TODO check timestep in FTCS for max value
|
||||
this->timestep = timestep;
|
||||
if(timestep <= 0){
|
||||
throw_invalid_argument("Timestep has to be greater than zero.");
|
||||
}
|
||||
|
||||
double deltaRowSquare;
|
||||
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
||||
double minDeltaSquare;
|
||||
double maxAlphaX, maxAlphaY, maxAlpha;
|
||||
if (grid.getDim() == 2) {
|
||||
|
||||
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
|
||||
|
||||
minDeltaSquare = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
|
||||
maxAlphaX = grid.getAlphaX().maxCoeff();
|
||||
maxAlphaY = grid.getAlphaY().maxCoeff();
|
||||
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
|
||||
|
||||
} else if (grid.getDim() == 1) {
|
||||
minDeltaSquare = deltaColSquare;
|
||||
maxAlpha = grid.getAlpha().maxCoeff();
|
||||
|
||||
|
||||
} else {
|
||||
throw_invalid_argument("Critical error: Undefined number of dimensions!");
|
||||
}
|
||||
|
||||
// TODO check formula 1D case
|
||||
double CFL_MDL = minDeltaSquare / (4*maxAlpha); // Formula from Marco --> seems to be unstable
|
||||
double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
|
||||
|
||||
cout << "FTCS_2D :: CFL condition MDL: " << CFL_MDL << endl;
|
||||
cout << "FTCS_2D :: CFL condition Wiki: " << CFL_Wiki << endl;
|
||||
cout << "FTCS_2D :: required dt=" << timestep << endl;
|
||||
|
||||
if (timestep > CFL_MDL) {
|
||||
|
||||
this->innerIterations = (int)ceil(timestep / CFL_MDL);
|
||||
this->timestep = timestep / (double)innerIterations;
|
||||
|
||||
cerr << "Warning: Timestep was adjusted, because of stability "
|
||||
"conditions. Time duration was approximately preserved by "
|
||||
"adjusting internal number of iterations."
|
||||
<< endl;
|
||||
cout << "FTCS_2D :: Required " << this->innerIterations
|
||||
<< " inner iterations with dt=" << this->timestep << endl;
|
||||
|
||||
} else {
|
||||
|
||||
this->timestep = timestep;
|
||||
cout << "FTCS_2D :: No inner iterations required, dt=" << timestep << endl;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
double Simulation::getTimestep() {
|
||||
@ -73,6 +118,9 @@ double Simulation::getTimestep() {
|
||||
}
|
||||
|
||||
void Simulation::setIterations(int iterations) {
|
||||
if(iterations <= 0){
|
||||
throw_invalid_argument("Number of iterations must be greater than zero.");
|
||||
}
|
||||
this->iterations = iterations;
|
||||
}
|
||||
|
||||
@ -145,6 +193,13 @@ void Simulation::printConcentrationsCSV(string filename) {
|
||||
}
|
||||
|
||||
void Simulation::run() {
|
||||
if (this->timestep == -1) {
|
||||
throw_invalid_argument("Timestep is not set!");
|
||||
}
|
||||
if (this->iterations == -1) {
|
||||
throw_invalid_argument("Number of iterations are not set!");
|
||||
}
|
||||
|
||||
string filename;
|
||||
if (this->console_output > CONSOLE_OUTPUT_OFF) {
|
||||
printConcentrationsConsole();
|
||||
@ -155,7 +210,9 @@ void Simulation::run() {
|
||||
|
||||
if (approach == FTCS_APPROACH) {
|
||||
auto begin = std::chrono::high_resolution_clock::now();
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
for (int i = 0; i < iterations * innerIterations; i++) {
|
||||
// MDL: distinguish between "outer" and "inner" iterations
|
||||
// std::cout << ":: run(): Outer iteration " << i+1 << "/" << iterations << endl;
|
||||
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
||||
printConcentrationsConsole();
|
||||
}
|
||||
@ -163,11 +220,13 @@ void Simulation::run() {
|
||||
printConcentrationsCSV(filename);
|
||||
}
|
||||
|
||||
FTCS(grid, bc, timestep);
|
||||
FTCS(this->grid, this->bc, this->timestep);
|
||||
}
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
|
||||
std::cout << milliseconds.count() << endl;
|
||||
|
||||
// MDL: meaningful stdout messages
|
||||
std::cout << ":: run() finished in " << milliseconds.count() << "ms" << endl;
|
||||
|
||||
} else if (approach == BTCS_APPROACH) {
|
||||
|
||||
|
||||
68
test/testBoundary.cpp
Normal file
68
test/testBoundary.cpp
Normal file
@ -0,0 +1,68 @@
|
||||
#include <stdio.h>
|
||||
#include <doctest/doctest.h>
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <string>
|
||||
#include <typeinfo>
|
||||
#include <iostream>
|
||||
|
||||
TEST_CASE("BoundaryElement"){
|
||||
|
||||
SUBCASE("Closed case"){
|
||||
BoundaryElement boundaryElementClosed = BoundaryElement();
|
||||
CHECK_NOTHROW(BoundaryElement());
|
||||
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
|
||||
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
|
||||
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
|
||||
}
|
||||
|
||||
SUBCASE("Constant case"){
|
||||
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
|
||||
CHECK_NOTHROW(BoundaryElement(0.1));
|
||||
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundaryElementConstant.getValue(), 0.1);
|
||||
CHECK_NOTHROW(boundaryElementConstant.setValue(0.2));
|
||||
CHECK_EQ(boundaryElementConstant.getValue(), 0.2);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Boundary Class"){
|
||||
Grid grid1D = Grid(10);
|
||||
Grid grid2D = Grid(10, 12);
|
||||
Boundary boundary1D = Boundary(grid1D);
|
||||
Boundary boundary2D = Boundary(grid2D);
|
||||
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
|
||||
|
||||
SUBCASE("Boundaries 1D case"){
|
||||
CHECK_NOTHROW(Boundary boundary(grid1D));
|
||||
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
|
||||
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
|
||||
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
|
||||
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
|
||||
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
|
||||
CHECK_THROWS(boundary1D.setBoundarySideClosed(BC_SIDE_TOP));
|
||||
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
|
||||
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
|
||||
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
|
||||
}
|
||||
|
||||
SUBCASE("Boundaries 2D case"){
|
||||
CHECK_NOTHROW(Boundary boundary(grid1D));
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
|
||||
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
|
||||
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
|
||||
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
|
||||
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_TOP));
|
||||
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
|
||||
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
|
||||
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
|
||||
}
|
||||
}
|
||||
@ -63,3 +63,35 @@ TEST_CASE("equality to reference matrix") {
|
||||
Grid grid = setupSimulation();
|
||||
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
|
||||
}
|
||||
|
||||
TEST_CASE("Initialize environment"){
|
||||
int rc = 12;
|
||||
Grid grid(rc, rc);
|
||||
Boundary boundary(grid);
|
||||
|
||||
CHECK_NOTHROW(Simulation sim(grid, boundary, FTCS_APPROACH));
|
||||
}
|
||||
|
||||
TEST_CASE("Simulation environment"){
|
||||
int rc = 12;
|
||||
Grid grid(rc, rc);
|
||||
Boundary boundary(grid);
|
||||
Simulation sim(grid, boundary, FTCS_APPROACH);
|
||||
|
||||
SUBCASE("default paremeters"){
|
||||
CHECK_EQ(sim.getIterations(), -1);
|
||||
}
|
||||
|
||||
SUBCASE("set iterations"){
|
||||
CHECK_NOTHROW(sim.setIterations(2000));
|
||||
CHECK_EQ(sim.getIterations(), 2000);
|
||||
CHECK_THROWS(sim.setIterations(-300));
|
||||
}
|
||||
|
||||
SUBCASE("set timestep"){
|
||||
CHECK_NOTHROW(sim.setTimestep(0.1));
|
||||
CHECK_EQ(sim.getTimestep(), 0.1);
|
||||
CHECK_THROWS(sim.setTimestep(-0.3));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user