Merge branch 'hannes-philipp' of git.gfz-potsdam.de:naaice/tug into hannes-philipp

This commit is contained in:
philippun 2023-08-07 17:24:26 +02:00
commit 20067a6898
9 changed files with 675 additions and 279 deletions

View File

@ -13,3 +13,6 @@ target_link_libraries(FTCS_2D_proto_example_mdl tug)
target_link_libraries(FTCS_1D_proto_example tug)
target_link_libraries(reference-FTCS_2D_closed tug)
# target_link_libraries(FTCS_2D_proto_example easy_profiler)
add_executable(FTCS_2D_proto_closed_mdl FTCS_2D_proto_closed_mdl.cpp)
target_link_libraries(FTCS_2D_proto_closed_mdl tug)

View File

@ -1,22 +1,30 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
* @file FTCS_2D_proto_closed_mdl.cpp
* @author Hannes Signer, Philipp Ungrund, MDL
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
*
*/
#include <cstdlib>
#include <iostream>
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
int row = 64;
if (argc == 2) {
// no cmd line argument, take col=row=64
row = atoi(argv[1]);
}
int col=row;
std::cout << "Nrow =" << row << std::endl;
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row/2-1;
Grid grid = Grid(row,col);
@ -59,14 +67,14 @@ int main(int argc, char *argv[]) {
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
// set the timestep of the simulation
simulation.setTimestep(10000); // timestep
// (optional) set the number of iterations
simulation.setIterations(5);
// set the number of iterations
simulation.setIterations(100);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****

View File

@ -1,3 +1,9 @@
/**
* @file Boundary.hpp
* @brief
*
*
*/
#ifndef BOUNDARY_H_
#define BOUNDARY_H_
@ -20,71 +26,168 @@ enum BC_SIDE {
BC_SIDE_BOTTOM
};
/**
* This class defines the boundary conditions of individual boundary elements.
* These can be flexibly used and combined later in other classes.
* The class serves as an auxiliary class for structuring the Boundary class.
*/
class BoundaryElement {
public:
// bc type closed
BoundaryElement();
/**
* @brief Construct a new Boundary Element object for the closed case.
* The boundary type is here automatically set to the type
* BC_TYPE_CLOSED, where the value takes NaN.
*/
BoundaryElement();
// bc type constant
BoundaryElement(double value);
/**
* @brief Construct a new Boundary Element object for the constant case.
* The boundary type is automatically set to the type
* BC_TYPE_CONSTANT.
*
* @param value Value of the constant concentration to be assumed at the
* corresponding boundary element.
*/
BoundaryElement(double value);
void setType(BC_TYPE type);
/**
* @brief Allows changing the boundary type of a corresponding
* BoundaryElement object.
*
* @param type Type of boundary condition. Either BC_TYPE_CONSTANT or
BC_TYPE_CLOSED.
*/
void setType(BC_TYPE type);
/**
* @brief Sets the value of a boundary condition for the constant case.
*
* @param value Concentration to be considered constant for the
* corresponding boundary element.
*/
void setValue(double value);
void setValue(double value);
/**
* @brief Return the type of the boundary condition, i.e. whether the
* boundary is considered closed or constant.
*
* @return BC_TYPE Type of boundary condition, either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*/
BC_TYPE getType();
BC_TYPE getType();
double getValue();
/**
* @brief Return the concentration value for the constant boundary condition.
*
* @return double Value of the concentration.
*/
double getValue();
private:
BC_TYPE type;
double value;
};
class BoundaryWall {
public:
BoundaryWall(int length);
void setWall(BC_TYPE type, double value = NAN);
vector<BoundaryElement> getWall();
void setBoundaryElement(int index, BC_TYPE type, double value = NAN);
BoundaryElement getBoundaryElement();
private:
BC_SIDE side;
int length;
vector<BoundaryElement> wall;
};
/**
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
*/
class Boundary {
public:
/**
* @brief Creates a boundary object based on the passed grid object and
* initializes the boundaries as closed.
*
* @param grid Grid object on the basis of which the simulation is to take place.
*/
Boundary(Grid grid);
/**
* @brief Construct a new Boundary object
*
* @param grid
*/
Boundary(Grid grid);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition closed.
*
* @param side Side to be set to closed, e.g. BC_SIDE_LEFT.
*/
void setBoundarySideClosed(BC_SIDE side);
void setBoundarySideClosed(BC_SIDE side);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition constant. Thereby the concentration values of the
* boundaries are set to the passed value.
*
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
* @param value Concentration to be set for all elements of the specified page.
*/
void setBoundarySideConstant(BC_SIDE side, double value);
void setBoundarySideConstant(BC_SIDE side, double value);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition closed.
*
* @param side Side in which an element is to be defined as closed.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
*/
void setBoundaryElementClosed(BC_SIDE side, int index);
void setBoundaryElementClosed(BC_SIDE side, int index);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition constant with the
given concentration value.
*
* @param side Side in which an element is to be defined as constant.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @param value Concentration value to which the boundary element should be set.
*/
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
/**
* @brief Returns the boundary condition of a specified side as a vector
* of BoundarsElement objects.
*
* @param side Boundary side from which the boundaryconditions are to be returned.
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
*/
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
/**
* @brief Returns the boundary condition of a specified element on a given side.
*
* @param side Boundary side in which the boundary condition is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BoundaryElement Boundary condition as a BoundaryElement object.
*/
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
/**
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*
* @param side Boundary side in which the boundary condition type is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
*/
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
double getBoundaryElementValue(BC_SIDE side, int index);
/**
* @brief Returns the concentration value of a corresponding
* BoundaryElement object if it is a constant boundary condition.
*
* @param side Boundary side in which the boundary condition value is
* located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
* @return double Concentration of the corresponding BoundaryElement object.
*/
double getBoundaryElementValue(BC_SIDE side, int index);
private:
Grid grid;

View File

@ -1,3 +1,7 @@
/**
* @file Simulation.hpp
* @brief
*/
#include "Boundary.hpp"
#include <ios>
@ -27,92 +31,124 @@ enum TIME_MEASURE {
TIME_MEASURE_VERBOSE // print time measures after each iteration
};
/**
* @brief The class forms the interface for performing the diffusion simulations
* and contains all the methods for controlling the desired parameters, such as
* time step, number of simulations, etc.
*
*/
class Simulation {
public:
/**
* @brief Set up a runnable simulation environment with the largest stable
* time step and 1000 iterations by passing the required parameters.
*
* @param grid Valid grid object
* @param bc Valid boundary condition object
* @param approach Approach to solving the problem. Either FTCS or BTCS.
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
/**
* @brief Construct a new Simulation object
*
* @param grid
* @param bc
* @param aproach
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
/**
* @brief Set the option to output the results to a CSV file.
*
*
* @param csv_output Valid output option. The following options can be set
* here:
* - CSV_OUTPUT_OFF: do not produce csv output
* - CSV_OUTPUT_ON: produce csv output with last
* concentration matrix
* - CSV_OUTPUT_VERBOSE: produce csv output with all
* concentration matrices
* - CSV_OUTPUT_XTREME: produce csv output with all
* concentration matrices and simulation environment
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief
*
* @param csv_output
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief Set the options for outputting information to the console.
*
* @param console_output Valid output option. The following options can be set
* here:
* - CONSOLE_OUTPUT_OFF: do not print any output to console
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the Output Console object
*
* @param console_output
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the Time Measure object
*
* @param time_measure
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Set the Time Measure object
*
* @param time_measure
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Setting the time step for each iteration step. Time step must be
* greater than zero.
*
* @param timestep Valid timestep greater than zero.
*/
void setTimestep(double timestep);
/**
* @brief Set the Timestep object
*
* @param timetstep
*/
void setTimestep(double timetstep);
/**
* @brief Currently set time step is returned.
*
* @return double timestep
*/
double getTimestep();
/**
* @brief Get the Timestep object
*
*/
double getTimestep();
/**
* @brief Set the desired iterations to be calculated. A value greater
* than zero must be specified here.
*
* @param iterations Number of iterations to be simulated.
*/
void setIterations(int iterations);
/**
* @brief Set the Iterations object
*
* @param iterations
*/
void setIterations(int iterations);
/**
* @brief Return the currently set iterations to be calculated.
*
* @return int Number of iterations.
*/
int getIterations();
/**
* @brief Get the Iterations object
*
* @return auto
*/
int getIterations();
/**
* @brief Outputs the current concentrations of the grid on the console.
*
*/
void printConcentrationsConsole();
/**
* @brief Print the current concentrations of the grid to standard out.
*
*/
void printConcentrationsConsole();
/**
* @brief Creates a CSV file with a name containing the current simulation
* parameters. If the data name already exists, an additional counter is
* appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
*
* @return string Filename with given simulation parameter.
*/
string createCSVfile();
/**
* @brief
*
* @return string
*/
string createCSVfile();
/**
* @brief Writes the currently calculated concentration values of the grid
* into the CSV file with the passed filename.
*
* @param filename Name of the file to which the concentration values are
* to be written.
*/
void printConcentrationsCSV(string filename);
void printConcentrationsCSV(string filename);
/**
* @brief
*
* @return Grid
*/
void run();
/**
* @brief Method starts the simulation process with the previously set
* parameters.
*/
void run();
private:
double timestep;
int iterations;
int innerIterations;
CSV_OUTPUT csv_output;
CONSOLE_OUTPUT console_output;
TIME_MEASURE time_measure;

View File

@ -1,3 +1,4 @@
#include "TugUtils.hpp"
#include "tug/BoundaryCondition.hpp"
#include <iostream>
#include <omp.h>
@ -7,6 +8,7 @@
using namespace std;
BoundaryElement::BoundaryElement() {
this->type = BC_TYPE_CLOSED;
this->value = NAN;
}
@ -21,6 +23,14 @@ void BoundaryElement::setType(BC_TYPE type) {
}
void BoundaryElement::setValue(double value) {
if(value < 0){
throw_invalid_argument("No negative concentration allowed.");
}
if(type == BC_TYPE_CLOSED){
throw_invalid_argument(
"No constant boundary concentrations can be set for closed "
"boundaries. Please change type first.");
}
this->value = value;
}
@ -51,35 +61,76 @@ Boundary::Boundary(Grid grid) : grid(grid) {
}
void Boundary::setBoundarySideClosed(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
}
void Boundary::setBoundarySideConstant(BC_SIDE side, double value) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement(value));
}
void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
}
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
this->boundaries[side][index].setValue(value);
}
vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
return this->boundaries[side];
}
BoundaryElement Boundary::getBoundaryElement(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index];
}
BC_TYPE Boundary::getBoundaryElementType(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index].getType();
}
double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
if(boundaries[side][index].getType() != BC_TYPE_CONSTANT){
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
}
return this->boundaries[side][index].getValue();
}

View File

@ -273,160 +273,196 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep) {
double deltaRow = grid.getDeltaRow();
double deltaCol = grid.getDeltaCol();
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// MDL: here we have to compute the max time step
// double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
// double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
// double minDelta2 = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
// double maxAlphaX = grid.getAlphaX().maxCoeff();
// double maxAlphaY = grid.getAlphaY().maxCoeff();
// double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
// double CFL_MDL = minDelta2 / (4*maxAlpha); // Formula from Marco --> seems to be unstable
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
// cout << "FTCS_2D :: CFL condition MDL: " << CFL_MDL << endl;
// cout << "FTCS_2D :: CFL condition Wiki: " << CFL_Wiki << endl;
// double required_dt = timestep;
// cout << "FTCS_2D :: required dt=" << required_dt << endl;
// inner cells
// these are independent of the boundary condition type
omp_set_num_threads(10);
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
// int inner_iterations = 1;
// double timestep = timestep;
// if (required_dt > CFL_MDL) {
// inner_iterations = (int)ceil(required_dt / CFL_MDL);
// timestep = required_dt / (double)inner_iterations;
// cout << "FTCS_2D :: Required " << inner_iterations
// << " inner iterations with dt=" << timestep << endl;
// } else {
// cout << "FTCS_2D :: No inner iterations required, dt=" << required_dt
// << endl;
// }
// we loop for inner iterations
// for (int it =0; it < inner_iterations; ++it){
// cout << "FTCS_2D :: iteration " << it+1 << "/" << inner_iterations << endl;
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// inner cells
// these are independent of the boundary condition type
// omp_set_num_threads(10);
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
+ timestep / (deltaCol*deltaCol)
calcVerticalChange(grid, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
}
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
calcHorizontalChange(grid, row, col)
)
;
}
}
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// right without corners / looping over rows
// hold column constant at max index
col = colMax-1;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
calcVerticalChange(grid, row, col)
)
;
}
// right without corners / looping over rows
// hold column constant at max index
col = colMax-1;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for
for (int col=1; col<colMax-1;col++){
calcVerticalChange(grid, row, col)
)
;
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for
for (int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
* (
calcHorizontalChange(grid, row, col)
)
;
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax-1;
#pragma omp parallel for
for(int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax-1;
#pragma omp parallel for
for(int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
calcHorizontalChange(grid, row, col)
)
;
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax-1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
// corner bottom right
// hold row and column constant at max index
row = rowMax-1;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax-1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// corner bottom right
// hold row and column constant at max index
row = rowMax-1;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
// }
}

View File

@ -1,3 +1,5 @@
#include <cmath>
#include <cstddef>
#include <filesystem>
#include <stdexcept>
#include <string>
@ -11,28 +13,20 @@
using namespace std;
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
this->approach = approach;
this->timestep = -1; // error per default
this->iterations = -1;
this->innerIterations = 1;
//TODO calculate max time step
double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDelta = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
double maxAlphaX = grid.getAlphaX().maxCoeff();
double maxAlphaY = grid.getAlphaY().maxCoeff();
double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
double maxStableTimestepMdl = minDelta / (2*maxAlpha); // Formula from Marco --> seems to be unstable
double maxStableTimestep = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
// cout << "Max stable time step MDL: " << maxStableTimestepMdl << endl;
// cout << "Max stable time step: " << maxStableTimestep << endl;
this->timestep = maxStableTimestep;
// MDL no: we need to distinguish between "required dt" and
// "number of (outer) iterations" at which the user needs an
// output and the actual CFL-allowed timestep and consequently the
// number of "inner" iterations which the explicit FTCS needs to
// reach them. The following, at least at the moment, cannot be
// computed here since "timestep" is not yet set when this
// function is called. I brought everything into "FTCS_2D"!
this->iterations = 1000;
this->csv_output = CSV_OUTPUT_OFF;
this->console_output = CONSOLE_OUTPUT_OFF;
this->time_measure = TIME_MEASURE_OFF;
@ -64,8 +58,59 @@ void Simulation::setTimeMeasure(TIME_MEASURE time_measure) {
}
void Simulation::setTimestep(double timestep) {
//TODO check timestep in FTCS for max value
this->timestep = timestep;
if(timestep <= 0){
throw_invalid_argument("Timestep has to be greater than zero.");
}
double deltaRowSquare;
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDeltaSquare;
double maxAlphaX, maxAlphaY, maxAlpha;
if (grid.getDim() == 2) {
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
minDeltaSquare = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
maxAlphaX = grid.getAlphaX().maxCoeff();
maxAlphaY = grid.getAlphaY().maxCoeff();
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
} else if (grid.getDim() == 1) {
minDeltaSquare = deltaColSquare;
maxAlpha = grid.getAlpha().maxCoeff();
} else {
throw_invalid_argument("Critical error: Undefined number of dimensions!");
}
// TODO check formula 1D case
double CFL_MDL = minDeltaSquare / (4*maxAlpha); // Formula from Marco --> seems to be unstable
double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
cout << "FTCS_2D :: CFL condition MDL: " << CFL_MDL << endl;
cout << "FTCS_2D :: CFL condition Wiki: " << CFL_Wiki << endl;
cout << "FTCS_2D :: required dt=" << timestep << endl;
if (timestep > CFL_MDL) {
this->innerIterations = (int)ceil(timestep / CFL_MDL);
this->timestep = timestep / (double)innerIterations;
cerr << "Warning: Timestep was adjusted, because of stability "
"conditions. Time duration was approximately preserved by "
"adjusting internal number of iterations."
<< endl;
cout << "FTCS_2D :: Required " << this->innerIterations
<< " inner iterations with dt=" << this->timestep << endl;
} else {
this->timestep = timestep;
cout << "FTCS_2D :: No inner iterations required, dt=" << timestep << endl;
}
}
double Simulation::getTimestep() {
@ -73,6 +118,9 @@ double Simulation::getTimestep() {
}
void Simulation::setIterations(int iterations) {
if(iterations <= 0){
throw_invalid_argument("Number of iterations must be greater than zero.");
}
this->iterations = iterations;
}
@ -145,6 +193,13 @@ void Simulation::printConcentrationsCSV(string filename) {
}
void Simulation::run() {
if (this->timestep == -1) {
throw_invalid_argument("Timestep is not set!");
}
if (this->iterations == -1) {
throw_invalid_argument("Number of iterations are not set!");
}
string filename;
if (this->console_output > CONSOLE_OUTPUT_OFF) {
printConcentrationsConsole();
@ -155,7 +210,9 @@ void Simulation::run() {
if (approach == FTCS_APPROACH) {
auto begin = std::chrono::high_resolution_clock::now();
for (int i = 0; i < iterations; i++) {
for (int i = 0; i < iterations * innerIterations; i++) {
// MDL: distinguish between "outer" and "inner" iterations
// std::cout << ":: run(): Outer iteration " << i+1 << "/" << iterations << endl;
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
@ -163,11 +220,13 @@ void Simulation::run() {
printConcentrationsCSV(filename);
}
FTCS(grid, bc, timestep);
FTCS(this->grid, this->bc, this->timestep);
}
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
std::cout << milliseconds.count() << endl;
// MDL: meaningful stdout messages
std::cout << ":: run() finished in " << milliseconds.count() << "ms" << endl;
} else if (approach == BTCS_APPROACH) {

68
test/testBoundary.cpp Normal file
View File

@ -0,0 +1,68 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Boundary.hpp>
#include <string>
#include <typeinfo>
#include <iostream>
TEST_CASE("BoundaryElement"){
SUBCASE("Closed case"){
BoundaryElement boundaryElementClosed = BoundaryElement();
CHECK_NOTHROW(BoundaryElement());
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
}
SUBCASE("Constant case"){
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
CHECK_NOTHROW(BoundaryElement(0.1));
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
CHECK_EQ(boundaryElementConstant.getValue(), 0.1);
CHECK_NOTHROW(boundaryElementConstant.setValue(0.2));
CHECK_EQ(boundaryElementConstant.getValue(), 0.2);
}
}
TEST_CASE("Boundary Class"){
Grid grid1D = Grid(10);
Grid grid2D = Grid(10, 12);
Boundary boundary1D = Boundary(grid1D);
Boundary boundary2D = Boundary(grid2D);
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
SUBCASE("Boundaries 1D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_THROWS(boundary1D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
SUBCASE("Boundaries 2D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
}

View File

@ -63,3 +63,35 @@ TEST_CASE("equality to reference matrix") {
Grid grid = setupSimulation();
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
}
TEST_CASE("Initialize environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
CHECK_NOTHROW(Simulation sim(grid, boundary, FTCS_APPROACH));
}
TEST_CASE("Simulation environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
Simulation sim(grid, boundary, FTCS_APPROACH);
SUBCASE("default paremeters"){
CHECK_EQ(sim.getIterations(), -1);
}
SUBCASE("set iterations"){
CHECK_NOTHROW(sim.setIterations(2000));
CHECK_EQ(sim.getIterations(), 2000);
CHECK_THROWS(sim.setIterations(-300));
}
SUBCASE("set timestep"){
CHECK_NOTHROW(sim.setTimestep(0.1));
CHECK_EQ(sim.getTimestep(), 0.1);
CHECK_THROWS(sim.setTimestep(-0.3));
}
}