mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
Merge branch 'main' into naaice
This commit is contained in:
commit
46f9cef3a9
@ -43,9 +43,9 @@ pages:
|
||||
lint:
|
||||
stage: static_analyze
|
||||
before_script:
|
||||
- apk add clang-extra-tools
|
||||
- apk add clang-extra-tools openmp-dev
|
||||
script:
|
||||
- mkdir lint && cd lint
|
||||
- cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_CLANG_TIDY="clang-tidy;-checks=cppcoreguidelines-*,clang-analyzer-*,performance-*, modernize-*" -DTUG_ENABLE_TESTING=OFF ..
|
||||
- cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_CLANG_TIDY="clang-tidy;-checks=cppcoreguidelines-*,clang-analyzer-*,performance-*" -DTUG_ENABLE_TESTING=OFF ..
|
||||
- make tug
|
||||
when: manual
|
||||
|
||||
@ -33,7 +33,15 @@ endif()
|
||||
|
||||
option(TUG_ENABLE_TESTING
|
||||
"Run tests after succesfull compilation"
|
||||
ON)
|
||||
OFF)
|
||||
|
||||
option(TUG_HANNESPHILIPP_EXAMPLES
|
||||
"Compile example applications"
|
||||
OFF)
|
||||
|
||||
option(TUG_NAAICE_EXAMPLE
|
||||
"Enables NAAICE examples with export of CSV files"
|
||||
OFF)
|
||||
|
||||
add_subdirectory(src)
|
||||
|
||||
@ -41,9 +49,9 @@ if(TUG_ENABLE_TESTING)
|
||||
add_subdirectory(test)
|
||||
endif()
|
||||
|
||||
add_subdirectory(examples)
|
||||
|
||||
option(TUG_NAAICE_EXAMPLE "Enables NAAICE examples with export of CSV files" OFF)
|
||||
if(TUG_HANNESPHILIPP_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
endif()
|
||||
|
||||
if (TUG_NAAICE_EXAMPLE)
|
||||
add_subdirectory(naaice)
|
||||
|
||||
339
LICENSE
Normal file
339
LICENSE
Normal file
@ -0,0 +1,339 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
tug
|
||||
Copyright (C) 2023 naaice
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
||||
@ -60,7 +60,7 @@ need to manually link your application/library to =tug=.
|
||||
into according =CMakeLists.txt= file:
|
||||
|
||||
#+BEGIN_SRC
|
||||
target_link_libraries(your_libapp tug)
|
||||
target_link_libraries(<your_target> tug)
|
||||
#+END_SRC
|
||||
|
||||
6. Build your application/library with =CMake=.
|
||||
@ -121,6 +121,3 @@ If you can't get access to this =gitlab= instance:
|
||||
Also provide us the SHA of the commit you've downloaded.
|
||||
|
||||
Thank you for your contributions in advance!
|
||||
|
||||
* License
|
||||
TODO?
|
||||
|
||||
@ -1 +0,0 @@
|
||||
Subproject commit b7c21ec5ceeadb4951b00396fc1e4642dd347e5f
|
||||
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 15 KiB |
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 23 KiB |
@ -1,224 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<div id="container"></div>
|
||||
|
||||
|
||||
<form>
|
||||
<label for="c_file">Select an output file: </label>
|
||||
<input type="file" id="c_file" name="c_file" accept="text/csv" />
|
||||
</form>
|
||||
|
||||
|
||||
<script type="module">
|
||||
|
||||
import * as d3 from "https://cdn.jsdelivr.net/npm/d3@7/+esm";
|
||||
|
||||
// Declare the chart dimensions and margins.
|
||||
const width = 600;
|
||||
const height = 600;
|
||||
const svgMargin = { top: 50, right: 50, bottom: 50, left: 50 };
|
||||
|
||||
var gridWidth = width - svgMargin.left - svgMargin.right;
|
||||
var gridHeight = height - svgMargin.top - svgMargin.bottom;
|
||||
const gap = 1;
|
||||
var state = 0;
|
||||
var numIterations = 0;
|
||||
var cellXcount = 0;
|
||||
var cellYcount = 0;
|
||||
var concentrations = [];
|
||||
|
||||
// Create the outer SVG container.
|
||||
const svg = d3.create("svg")
|
||||
.attr("width", width)
|
||||
.attr("height", height);
|
||||
|
||||
svg.append("rect")
|
||||
.attr("x", 0)
|
||||
.attr("y", 0)
|
||||
.attr("width", width)
|
||||
.attr("height", height)
|
||||
.attr("fill-opacity", 0)
|
||||
.attr("stroke-width", 4)
|
||||
.attr("stroke", "black");
|
||||
|
||||
var grid = svg.append("g")
|
||||
.attr("class", "grid")
|
||||
.attr("transform", `translate(${svgMargin.left}, ${svgMargin.top})`);
|
||||
|
||||
// color scale
|
||||
var colorScale = d3.scaleLinear()
|
||||
.range(["#d0d0ec", "#7f0000"])
|
||||
.domain([1, 2000]);
|
||||
function getColor(c, max) {
|
||||
if (c == -1) {
|
||||
return "#000000";
|
||||
}
|
||||
|
||||
colorScale.domain([0, max]);
|
||||
return colorScale(c);
|
||||
}
|
||||
|
||||
function calcMaxConcentrationInIteration(state) {
|
||||
var maxRow = concentrations[state].map(function(row){ return Math.max.apply(Math, row); });
|
||||
var maxC = Math.max.apply(null, maxRow);
|
||||
return maxC;
|
||||
}
|
||||
|
||||
// Load data from file
|
||||
async function createVisualFromFile(csv_input) {
|
||||
// console.log(csv_input);
|
||||
// var data = await d3.text(csv_input).then(function(csv){
|
||||
// return d3.dsvFormat(" ").parseRows(csv);
|
||||
// })
|
||||
var data = d3.dsvFormat(" ").parseRows(csv_input);
|
||||
// console.log(data);
|
||||
var leftBoundary = data[0];
|
||||
var rightBoundary = data[1];
|
||||
var topBoundary = data[2];
|
||||
var bottomBoundary = data[3];
|
||||
cellXcount = topBoundary.length;
|
||||
cellYcount = leftBoundary.length;
|
||||
concentrations = []; // reset concentrations
|
||||
grid.selectAll("rect").remove();
|
||||
svg.selectAll("rect").remove();
|
||||
state = 0;
|
||||
console.log(topBoundary);
|
||||
|
||||
var cellWidth = gridWidth / cellXcount;
|
||||
var cellHeight = gridHeight / cellYcount;
|
||||
var iteration = [];
|
||||
numIterations = (data.length - 6) / (cellYcount + 2);
|
||||
console.log(numIterations);
|
||||
for (let i = 0; i < numIterations; i++) {
|
||||
iteration = [];
|
||||
for (let j = 0; j < cellYcount; j++) {
|
||||
iteration.push(data[i * (cellYcount + 2) + 6 + j])
|
||||
}
|
||||
concentrations.push(iteration);
|
||||
}
|
||||
console.log(concentrations);
|
||||
|
||||
var maxC = calcMaxConcentrationInIteration(state);
|
||||
// Create grid
|
||||
for (let i = 0; i < cellYcount; i++) {
|
||||
for (let j = 0; j < cellXcount; j++) {
|
||||
grid.append("rect")
|
||||
.attr("x", i * cellWidth + gap/2)
|
||||
.attr("y", j * cellHeight + gap/2)
|
||||
.attr("width", cellWidth - gap)
|
||||
.attr("height", cellHeight - gap)
|
||||
.attr("fill", getColor(concentrations[state][i][j], maxC));
|
||||
}
|
||||
}
|
||||
|
||||
// Create Boundaries
|
||||
// left and right
|
||||
for (let j = 0; j < cellYcount; j++) {
|
||||
svg.append("rect")
|
||||
.attr("x", svgMargin.left - 10)
|
||||
.attr("y", svgMargin.top + j * cellHeight + gap/2)
|
||||
.attr("width", 7)
|
||||
.attr("height", cellHeight - gap)
|
||||
.attr("fill", getColor(leftBoundary[j], maxC));
|
||||
svg.append("rect")
|
||||
.attr("x", width - svgMargin.right + 3)
|
||||
.attr("y", svgMargin.top + j * cellHeight + gap/2)
|
||||
.attr("width", 7)
|
||||
.attr("height", cellHeight - gap)
|
||||
.attr("fill", getColor(rightBoundary[j], maxC));
|
||||
}
|
||||
|
||||
// top and bottom
|
||||
for (let i = 0; i < cellXcount; i++) {
|
||||
svg.append("rect")
|
||||
.attr("x", svgMargin.left + i * cellWidth + gap/2)
|
||||
.attr("y", svgMargin.top - 10)
|
||||
.attr("width", cellWidth - gap)
|
||||
.attr("height", 7)
|
||||
.attr("fill", getColor(topBoundary[i], maxC));
|
||||
svg.append("rect")
|
||||
.attr("x", svgMargin.left + i * cellWidth + gap/2)
|
||||
.attr("y", height - svgMargin.bottom + 3)
|
||||
.attr("width", cellWidth - gap)
|
||||
.attr("height", 7)
|
||||
.attr("fill", getColor(bottomBoundary[i], maxC));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function updateGrid(new_state) {
|
||||
var maxC = calcMaxConcentrationInIteration(new_state);
|
||||
console.log(maxC);
|
||||
grid.selectAll("rect")
|
||||
.attr("fill", function (d,i) {
|
||||
var row = Math.floor(i/20);
|
||||
var col = i%20;
|
||||
return getColor(concentrations[new_state][row][col], maxC);
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
// key events for changing grid iteration state
|
||||
addEventListener("keydown", (event) => {
|
||||
if (event.isComposing || event.keyCode === 81) {
|
||||
if (state > 0) {
|
||||
state -= 1;
|
||||
updateGrid(state);
|
||||
}
|
||||
}
|
||||
if (event.isComposing || event.keyCode === 69) {
|
||||
if (state < numIterations-1) {
|
||||
state += 1;
|
||||
updateGrid(state);
|
||||
}
|
||||
}
|
||||
if (event.isComposing || event.keyCode === 65) {
|
||||
if (state > 9) {
|
||||
state -= 10;
|
||||
} else {
|
||||
state = 0;
|
||||
}
|
||||
updateGrid(state);
|
||||
}
|
||||
if (event.isComposing || event.keyCode === 68) {
|
||||
if (state < numIterations-10) {
|
||||
state += 10;
|
||||
} else {
|
||||
state = numIterations-1;
|
||||
}
|
||||
updateGrid(state);
|
||||
}
|
||||
});
|
||||
|
||||
async function logFile() {
|
||||
var file = document.getElementById("c_file").files[0];
|
||||
const reader = new FileReader();
|
||||
reader.readAsText(file);
|
||||
console.log(reader.result);
|
||||
}
|
||||
|
||||
function reader(file, callback) {
|
||||
const fr = new FileReader();
|
||||
fr.onload = () => callback(null, fr.result);
|
||||
fr.onerror = (err) => callback(err);
|
||||
fr.readAsText(file);
|
||||
}
|
||||
|
||||
|
||||
// document.getElementById("c_file").addEventListener("change", logFile);
|
||||
document.getElementById("c_file").addEventListener("change", (evt) => {
|
||||
// No files, do nothing.
|
||||
if (!evt.target.files) {
|
||||
return;
|
||||
}
|
||||
reader(evt.target.files[0], (err, res) => {
|
||||
console.log(res); // Base64 `data:image/...` String result.
|
||||
createVisualFromFile(res);
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
|
||||
// Append the SVG element.
|
||||
container.append(svg.node());
|
||||
|
||||
</script>
|
||||
@ -22,7 +22,7 @@ subprocess.call('doxygen Doxyfile.in', shell=True)
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'TUG'
|
||||
copyright = 'MIT'
|
||||
copyright = 'GPL2'
|
||||
author = 'Philipp Ungrund, Hannes Signer'
|
||||
|
||||
|
||||
|
||||
@ -1,5 +1,8 @@
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// **************
|
||||
// **** GRID ****
|
||||
@ -9,12 +12,11 @@ int main(int argc, char *argv[]) {
|
||||
int cells = 20;
|
||||
Grid grid = Grid(cells);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(1,20,0);
|
||||
concentrations(0,0) = 2000;
|
||||
MatrixXd concentrations = MatrixXd::Constant(1, 20, 0);
|
||||
concentrations(0, 0) = 2000;
|
||||
// TODO add option to set concentrations with a vector in 1D case
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -24,13 +26,13 @@ int main(int argc, char *argv[]) {
|
||||
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
|
||||
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// set the timestep of the simulation
|
||||
simulation.setTimestep(0.1); // timestep
|
||||
@ -38,7 +40,8 @@ int main(int argc, char *argv[]) {
|
||||
// set the number of iterations
|
||||
simulation.setIterations(100);
|
||||
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
@ -1,5 +1,8 @@
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// EASY_PROFILER_ENABLE;
|
||||
// profiler::startListen();
|
||||
@ -10,25 +13,23 @@ int main(int argc, char *argv[]) {
|
||||
// create a grid with a 20 x 20 field
|
||||
int row = 40;
|
||||
int col = 50;
|
||||
Grid grid = Grid(row,col);
|
||||
Grid grid = Grid(row, col);
|
||||
|
||||
// (optional) set the domain, e.g.:
|
||||
// grid.setDomain(20, 20);
|
||||
|
||||
// (optional) set the concentrations, e.g.:
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
|
||||
// grid.setConcentrations(concentrations);
|
||||
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
|
||||
concentrations(10,10) = 2000;
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
|
||||
// #row,#col,value grid.setConcentrations(concentrations);
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(10, 10) = 2000;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
|
||||
// (optional) set alphas of the grid, e.g.:
|
||||
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
|
||||
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
|
||||
// grid.setAlpha(alphax, alphay);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -44,7 +45,6 @@ int main(int argc, char *argv[]) {
|
||||
// bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
|
||||
// bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
|
||||
|
||||
|
||||
// (optional) set boundary condition values for one side, e.g.:
|
||||
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
|
||||
@ -55,13 +55,13 @@ int main(int argc, char *argv[]) {
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, BTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// set the timestep of the simulation
|
||||
simulation.setTimestep(0.1); // timestep
|
||||
@ -69,7 +69,8 @@ int main(int argc, char *argv[]) {
|
||||
// set the number of iterations
|
||||
simulation.setIterations(300);
|
||||
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
@ -2,6 +2,7 @@ add_executable(FTCS_1D_proto_example FTCS_1D_proto_example.cpp)
|
||||
add_executable(FTCS_2D_proto_example FTCS_2D_proto_example.cpp)
|
||||
add_executable(BTCS_1D_proto_example BTCS_1D_proto_example.cpp)
|
||||
add_executable(BTCS_2D_proto_example BTCS_2D_proto_example.cpp)
|
||||
add_executable(CRNI_2D_proto_example CRNI_2D_proto_example.cpp)
|
||||
add_executable(reference-FTCS_2D_closed reference-FTCS_2D_closed.cpp)
|
||||
add_executable(profiling_openmp profiling_openmp.cpp)
|
||||
|
||||
@ -9,6 +10,7 @@ target_link_libraries(FTCS_1D_proto_example tug)
|
||||
target_link_libraries(FTCS_2D_proto_example tug)
|
||||
target_link_libraries(BTCS_1D_proto_example tug)
|
||||
target_link_libraries(BTCS_2D_proto_example tug)
|
||||
target_link_libraries(CRNI_2D_proto_example tug)
|
||||
target_link_libraries(reference-FTCS_2D_closed tug)
|
||||
target_link_libraries(profiling_openmp tug)
|
||||
|
||||
|
||||
27
examples/CRNI_2D_proto_example.cpp
Normal file
27
examples/CRNI_2D_proto_example.cpp
Normal file
@ -0,0 +1,27 @@
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
int row = 20;
|
||||
int col = 20;
|
||||
Grid grid(row, col);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(10, 10) = 2000;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
Boundary bc = Boundary(grid);
|
||||
bc.setBoundarySideClosed(BC_SIDE_LEFT);
|
||||
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
|
||||
bc.setBoundarySideClosed(BC_SIDE_TOP);
|
||||
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
|
||||
|
||||
Simulation simulation = Simulation(grid, bc, CRANK_NICOLSON_APPROACH);
|
||||
simulation.setTimestep(0.1);
|
||||
simulation.setIterations(50);
|
||||
simulation.setOutputCSV(CSV_OUTPUT_XTREME);
|
||||
|
||||
simulation.run();
|
||||
}
|
||||
@ -1,6 +1,9 @@
|
||||
#include "tug/Boundary.hpp"
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// **************
|
||||
// **** GRID ****
|
||||
@ -10,10 +13,9 @@ int main(int argc, char *argv[]) {
|
||||
int cells = 20;
|
||||
Grid grid = Grid(cells);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(1,20,20);
|
||||
MatrixXd concentrations = MatrixXd::Constant(1, 20, 20);
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -23,13 +25,13 @@ int main(int argc, char *argv[]) {
|
||||
bc.setBoundarySideConstant(BC_SIDE_LEFT, 1);
|
||||
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 1);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// (optional) set the timestep of the simulation
|
||||
simulation.setTimestep(0.1); // timestep
|
||||
@ -37,7 +39,8 @@ int main(int argc, char *argv[]) {
|
||||
// (optional) set the number of iterations
|
||||
simulation.setIterations(100);
|
||||
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
@ -1,14 +1,18 @@
|
||||
/**
|
||||
* @file FTCS_2D_proto_closed_mdl.cpp
|
||||
* @author Hannes Signer, Philipp Ungrund, MDL
|
||||
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
|
||||
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary
|
||||
* condition; optional command line argument: number of cols and rows
|
||||
*
|
||||
*/
|
||||
|
||||
#include <Eigen/Eigen>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int row = 64;
|
||||
@ -17,7 +21,7 @@ int main(int argc, char *argv[]) {
|
||||
// no cmd line argument, take col=row=64
|
||||
row = atoi(argv[1]);
|
||||
}
|
||||
int col=row;
|
||||
int col = row;
|
||||
|
||||
std::cout << "Nrow =" << row << std::endl;
|
||||
// **************
|
||||
@ -25,19 +29,20 @@ int main(int argc, char *argv[]) {
|
||||
// **************
|
||||
|
||||
// create a grid with a 20 x 20 field
|
||||
int n2 = row/2-1;
|
||||
Grid grid = Grid(row,col);
|
||||
int n2 = row / 2 - 1;
|
||||
Grid grid = Grid(row, col);
|
||||
|
||||
// (optional) set the domain, e.g.:
|
||||
// grid.setDomain(20, 20);
|
||||
|
||||
// (optional) set the concentrations, e.g.:
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
|
||||
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
|
||||
concentrations(n2,n2) = 1;
|
||||
concentrations(n2,n2+1) = 1;
|
||||
concentrations(n2+1,n2) = 1;
|
||||
concentrations(n2+1,n2+1) = 1;
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
|
||||
// #row,#col,value
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(n2, n2) = 1;
|
||||
concentrations(n2, n2 + 1) = 1;
|
||||
concentrations(n2 + 1, n2) = 1;
|
||||
concentrations(n2 + 1, n2 + 1) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
// (optional) set alphas of the grid, e.g.:
|
||||
@ -45,7 +50,6 @@ int main(int argc, char *argv[]) {
|
||||
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
|
||||
grid.setAlpha(alphax, alphay);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -59,13 +63,13 @@ int main(int argc, char *argv[]) {
|
||||
bc.setBoundarySideClosed(BC_SIDE_TOP);
|
||||
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// set the timestep of the simulation
|
||||
simulation.setTimestep(10000); // timestep
|
||||
@ -73,7 +77,8 @@ int main(int argc, char *argv[]) {
|
||||
// set the number of iterations
|
||||
simulation.setIterations(100);
|
||||
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
@ -1,16 +1,18 @@
|
||||
/**
|
||||
* @file FTCS_2D_proto_example.cpp
|
||||
* @author Hannes Signer, Philipp Ungrund
|
||||
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
|
||||
* and constant boundary condition
|
||||
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
|
||||
* approach and constant boundary condition
|
||||
*
|
||||
*/
|
||||
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
// #include <easy/profiler.h>
|
||||
// #define EASY_PROFILER_ENABLE ::profiler::setEnabled(true);
|
||||
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// EASY_PROFILER_ENABLE;
|
||||
// profiler::startListen();
|
||||
@ -21,25 +23,23 @@ int main(int argc, char *argv[]) {
|
||||
// create a grid with a 20 x 20 field
|
||||
int row = 20;
|
||||
int col = 20;
|
||||
Grid grid = Grid(row,col);
|
||||
Grid grid = Grid(row, col);
|
||||
|
||||
// (optional) set the domain, e.g.:
|
||||
// grid.setDomain(20, 20);
|
||||
|
||||
// (optional) set the concentrations, e.g.:
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
|
||||
// grid.setConcentrations(concentrations);
|
||||
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
|
||||
concentrations(0,0) = 1999;
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
|
||||
// #row,#col,value grid.setConcentrations(concentrations);
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(0, 0) = 1999;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
|
||||
// (optional) set alphas of the grid, e.g.:
|
||||
// MatrixXd alphax = MatrixXd::Constant(20,20,1); // row,col,value
|
||||
// MatrixXd alphay = MatrixXd::Constant(20,20,1); // row,col,value
|
||||
// grid.setAlpha(alphax, alphay);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -51,7 +51,6 @@ int main(int argc, char *argv[]) {
|
||||
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
|
||||
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
|
||||
|
||||
|
||||
// (optional) set boundary condition values for one side, e.g.:
|
||||
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
|
||||
@ -62,13 +61,13 @@ int main(int argc, char *argv[]) {
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// set the timestep of the simulation
|
||||
simulation.setTimestep(0.1); // timestep
|
||||
@ -76,10 +75,10 @@ int main(int argc, char *argv[]) {
|
||||
// set the number of iterations
|
||||
simulation.setIterations(10000);
|
||||
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
|
||||
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
// run the simulation
|
||||
|
||||
@ -1,13 +1,16 @@
|
||||
/**
|
||||
* @file FTCS_2D_proto_example.cpp
|
||||
* @author Hannes Signer, Philipp Ungrund
|
||||
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
|
||||
* and constant boundary condition
|
||||
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS
|
||||
* approach and constant boundary condition
|
||||
*
|
||||
*/
|
||||
|
||||
#include <Eigen/Eigen>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
// **************
|
||||
@ -17,19 +20,20 @@ int main(int argc, char *argv[]) {
|
||||
// create a grid with a 20 x 20 field
|
||||
int row = 64;
|
||||
int col = 64;
|
||||
int n2 = row/2-1;
|
||||
Grid grid = Grid(row,col);
|
||||
int n2 = row / 2 - 1;
|
||||
Grid grid = Grid(row, col);
|
||||
|
||||
// (optional) set the domain, e.g.:
|
||||
// grid.setDomain(20, 20);
|
||||
|
||||
// (optional) set the concentrations, e.g.:
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
|
||||
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
|
||||
concentrations(n2,n2) = 1;
|
||||
concentrations(n2,n2+1) = 1;
|
||||
concentrations(n2+1,n2) = 1;
|
||||
concentrations(n2+1,n2+1) = 1;
|
||||
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); //
|
||||
// #row,#col,value
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(n2, n2) = 1;
|
||||
concentrations(n2, n2 + 1) = 1;
|
||||
concentrations(n2 + 1, n2) = 1;
|
||||
concentrations(n2 + 1, n2 + 1) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
// (optional) set alphas of the grid, e.g.:
|
||||
@ -37,7 +41,6 @@ int main(int argc, char *argv[]) {
|
||||
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
|
||||
grid.setAlpha(alphax, alphay);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
@ -51,13 +54,13 @@ int main(int argc, char *argv[]) {
|
||||
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
|
||||
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
Simulation simulation =
|
||||
Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// (optional) set the timestep of the simulation
|
||||
simulation.setTimestep(1000); // timestep
|
||||
@ -65,7 +68,8 @@ int main(int argc, char *argv[]) {
|
||||
// (optional) set the number of iterations
|
||||
simulation.setIterations(5);
|
||||
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
|
||||
// CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
@ -1,31 +1,39 @@
|
||||
#include <tug/Simulation.hpp>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <Eigen/Eigen>
|
||||
#include <chrono>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int n[4] = {100, 500, 1000, 2000};
|
||||
int threads[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
|
||||
int iterations[1] = {5};
|
||||
int repetition = 1;
|
||||
int n[] = {2000};
|
||||
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
|
||||
int iterations[1] = {1};
|
||||
int repetition = 10;
|
||||
|
||||
for (int l = 0; l < size(threads); l++) {
|
||||
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
|
||||
ofstream myfile;
|
||||
myfile.open("testLarge.csv");
|
||||
myfile.open("speedup_1000.csv", std::ios::app);
|
||||
myfile << "Number threads: " << threads[l] << endl;
|
||||
|
||||
for (int i = 0; i < size(n); i++){
|
||||
for (int i = 0; i < size(n); i++) {
|
||||
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
|
||||
myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
|
||||
for(int j = 0; j < size(iterations); j++){
|
||||
// myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
|
||||
for (int j = 0; j < size(iterations); j++) {
|
||||
cout << "Iterations: " << iterations[j] << endl;
|
||||
myfile << "Iterations: " << iterations[j] << endl;
|
||||
for (int k = 0; k < repetition; k++){
|
||||
// myfile << "Iterations: " << iterations[j] << endl;
|
||||
for (int k = 0; k < repetition; k++) {
|
||||
cout << "Wiederholung: " << k << endl;
|
||||
Grid grid = Grid(n[i], n[i]);
|
||||
grid.setDomain(1, 1);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
|
||||
concentrations(n[i]/2,n[i]/2) = 1;
|
||||
concentrations(n[i] / 2, n[i] / 2) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
|
||||
|
||||
@ -34,28 +42,29 @@ int main(int argc, char *argv[]) {
|
||||
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
|
||||
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
|
||||
|
||||
if(argc == 2){
|
||||
if (argc == 2) {
|
||||
int numThreads = atoi(argv[1]);
|
||||
sim.setNumberThreads(numThreads);
|
||||
}
|
||||
else{
|
||||
sim.setNumberThreads(1);
|
||||
} else {
|
||||
sim.setNumberThreads(threads[l]);
|
||||
}
|
||||
|
||||
sim.setTimestep(0.001);
|
||||
sim.setTimestep(0.01);
|
||||
sim.setIterations(iterations[j]);
|
||||
sim.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
|
||||
auto begin = std::chrono::high_resolution_clock::now();
|
||||
sim.run();
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
|
||||
auto milliseconds =
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(end -
|
||||
begin);
|
||||
myfile << milliseconds.count() << endl;
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
myfile << endl;
|
||||
|
||||
}
|
||||
myfile.close();
|
||||
}
|
||||
}
|
||||
70
examples/profiling_speedup.cpp
Normal file
70
examples/profiling_speedup.cpp
Normal file
@ -0,0 +1,70 @@
|
||||
#include <Eigen/Eigen>
|
||||
#include <chrono>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
int n[] = {2000};
|
||||
int threads[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
|
||||
int iterations[1] = {1};
|
||||
int repetition = 10;
|
||||
|
||||
for (int l = 0; l < size(threads); l++) {
|
||||
// string filename = "ftcs_openmp_" + to_string(threads[l]) + ".csv";
|
||||
ofstream myfile;
|
||||
myfile.open("speedup_1000.csv", std::ios::app);
|
||||
myfile << "Number threads: " << threads[l] << endl;
|
||||
|
||||
for (int i = 0; i < size(n); i++) {
|
||||
cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
|
||||
// myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl;
|
||||
for (int j = 0; j < size(iterations); j++) {
|
||||
cout << "Iterations: " << iterations[j] << endl;
|
||||
// myfile << "Iterations: " << iterations[j] << endl;
|
||||
for (int k = 0; k < repetition; k++) {
|
||||
cout << "Wiederholung: " << k << endl;
|
||||
Grid grid = Grid(n[i], n[i]);
|
||||
grid.setDomain(1, 1);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0);
|
||||
concentrations(n[i] / 2, n[i] / 2) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5);
|
||||
|
||||
Boundary bc = Boundary(grid);
|
||||
|
||||
Simulation sim = Simulation(grid, bc, BTCS_APPROACH);
|
||||
sim.setSolver(THOMAS_ALGORITHM_SOLVER);
|
||||
|
||||
if (argc == 2) {
|
||||
int numThreads = atoi(argv[1]);
|
||||
sim.setNumberThreads(numThreads);
|
||||
} else {
|
||||
sim.setNumberThreads(threads[l]);
|
||||
}
|
||||
|
||||
sim.setTimestep(0.01);
|
||||
sim.setIterations(iterations[j]);
|
||||
sim.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
|
||||
auto begin = std::chrono::high_resolution_clock::now();
|
||||
sim.run();
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto milliseconds =
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(end -
|
||||
begin);
|
||||
myfile << milliseconds.count() << endl;
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
myfile << endl;
|
||||
}
|
||||
myfile.close();
|
||||
}
|
||||
}
|
||||
@ -1,8 +1,9 @@
|
||||
#include <tug/Simulation.hpp>
|
||||
#include "Eigen/Core"
|
||||
#include <iostream>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
int row = 50;
|
||||
@ -10,13 +11,12 @@ int main(int argc, char *argv[]) {
|
||||
int domain_row = 10;
|
||||
int domain_col = 10;
|
||||
|
||||
|
||||
// Grid
|
||||
Grid grid = Grid(row, col);
|
||||
grid.setDomain(domain_row, domain_col);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(5,5) = 1;
|
||||
concentrations(5, 5) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
|
||||
@ -37,11 +37,9 @@ int main(int argc, char *argv[]) {
|
||||
}
|
||||
grid.setAlpha(alpha, alpha);
|
||||
|
||||
|
||||
// Boundary
|
||||
Boundary bc = Boundary(grid);
|
||||
|
||||
|
||||
// Simulation
|
||||
Simulation sim = Simulation(grid, bc, FTCS_APPROACH);
|
||||
sim.setTimestep(0.001);
|
||||
@ -49,7 +47,6 @@ int main(int argc, char *argv[]) {
|
||||
sim.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
sim.setOutputConsole(CONSOLE_OUTPUT_OFF);
|
||||
|
||||
|
||||
// RUN
|
||||
sim.run();
|
||||
}
|
||||
@ -1,37 +1,26 @@
|
||||
/**
|
||||
* @file Boundary.hpp
|
||||
* @brief API of Boundary class, that holds all information for each boundary condition
|
||||
* at the edges of the diffusion grid.
|
||||
* @brief API of Boundary class, that holds all information for each boundary
|
||||
* condition at the edges of the diffusion grid.
|
||||
*
|
||||
*/
|
||||
#ifndef BOUNDARY_H_
|
||||
#define BOUNDARY_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include "Grid.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
#include <cstddef>
|
||||
|
||||
/**
|
||||
* @brief Enum defining the two implemented boundary conditions.
|
||||
*
|
||||
*/
|
||||
enum BC_TYPE {
|
||||
BC_TYPE_CLOSED,
|
||||
BC_TYPE_CONSTANT
|
||||
};
|
||||
enum BC_TYPE { BC_TYPE_CLOSED, BC_TYPE_CONSTANT };
|
||||
|
||||
/**
|
||||
* @brief Enum defining all 4 possible sides to a 1D and 2D grid.
|
||||
*
|
||||
*/
|
||||
enum BC_SIDE {
|
||||
BC_SIDE_LEFT,
|
||||
BC_SIDE_RIGHT,
|
||||
BC_SIDE_TOP,
|
||||
BC_SIDE_BOTTOM
|
||||
};
|
||||
enum BC_SIDE { BC_SIDE_LEFT, BC_SIDE_RIGHT, BC_SIDE_TOP, BC_SIDE_BOTTOM };
|
||||
|
||||
/**
|
||||
* This class defines the boundary conditions of individual boundary elements.
|
||||
@ -39,12 +28,12 @@ enum BC_SIDE {
|
||||
* The class serves as an auxiliary class for structuring the Boundary class.
|
||||
*/
|
||||
class BoundaryElement {
|
||||
public:
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Boundary Element object for the closed case.
|
||||
* The boundary type is here automatically set to the type
|
||||
* BC_TYPE_CLOSED, where the value takes NaN.
|
||||
* BC_TYPE_CLOSED, where the value takes -1 and does not hold any
|
||||
* physical meaning.
|
||||
*/
|
||||
BoundaryElement();
|
||||
|
||||
@ -91,23 +80,23 @@ class BoundaryElement {
|
||||
*/
|
||||
double getValue();
|
||||
|
||||
private:
|
||||
BC_TYPE type;
|
||||
double value;
|
||||
private:
|
||||
BC_TYPE type{BC_TYPE_CLOSED};
|
||||
double value{-1};
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* This class implements the functionality and management of the boundary
|
||||
* conditions in the grid to be simulated.
|
||||
*/
|
||||
class Boundary {
|
||||
public:
|
||||
public:
|
||||
/**
|
||||
* @brief Creates a boundary object based on the passed grid object and
|
||||
* initializes the boundaries as closed.
|
||||
*
|
||||
* @param grid Grid object on the basis of which the simulation is to take place.
|
||||
* @param grid Grid object on the basis of which the simulation takes place
|
||||
* and from which the dimensions (in 2D case) are taken.
|
||||
*/
|
||||
Boundary(Grid grid);
|
||||
|
||||
@ -125,7 +114,8 @@ class Boundary {
|
||||
* boundaries are set to the passed value.
|
||||
*
|
||||
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
|
||||
* @param value Concentration to be set for all elements of the specified page.
|
||||
* @param value Concentration to be set for all elements of the specified
|
||||
* page.
|
||||
*/
|
||||
void setBoundarySideConstant(BC_SIDE side, double value);
|
||||
|
||||
@ -135,7 +125,8 @@ class Boundary {
|
||||
*
|
||||
* @param side Side in which an element is to be defined as closed.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* boundary side. Must index an element of the corresponding
|
||||
* side.
|
||||
*/
|
||||
void setBoundaryElementClosed(BC_SIDE side, int index);
|
||||
|
||||
@ -146,8 +137,10 @@ class Boundary {
|
||||
*
|
||||
* @param side Side in which an element is to be defined as constant.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* @param value Concentration value to which the boundary element should be set.
|
||||
* boundary side. Must index an element of the corresponding
|
||||
side.
|
||||
* @param value Concentration value to which the boundary element should be
|
||||
set.
|
||||
*/
|
||||
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
|
||||
|
||||
@ -155,37 +148,42 @@ class Boundary {
|
||||
* @brief Returns the boundary condition of a specified side as a vector
|
||||
* of BoundarsElement objects.
|
||||
*
|
||||
* @param side Boundary side from which the boundary conditions are to be returned.
|
||||
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
|
||||
* @param side Boundary side from which the boundary conditions are to be
|
||||
* returned.
|
||||
* @return vector<BoundaryElement> Contains the boundary conditions as
|
||||
* BoundaryElement objects.
|
||||
*/
|
||||
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
|
||||
const std::vector<BoundaryElement> getBoundarySide(BC_SIDE side);
|
||||
|
||||
/**
|
||||
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some specific
|
||||
boundary is closed.
|
||||
* @brief Get thes Boundary Side Values as a vector. Value is -1 in case some
|
||||
specific boundary is closed.
|
||||
*
|
||||
* @param side Boundary side for which the values are to be returned.
|
||||
* @return VectorXd Vector with values as doubles.
|
||||
*/
|
||||
VectorXd getBoundarySideValues(BC_SIDE side);
|
||||
Eigen::VectorXd getBoundarySideValues(BC_SIDE side);
|
||||
|
||||
/**
|
||||
* @brief Returns the boundary condition of a specified element on a given side.
|
||||
* @brief Returns the boundary condition of a specified element on a given
|
||||
* side.
|
||||
*
|
||||
* @param side Boundary side in which the boundary condition is located.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* boundary side. Must index an element of the corresponding
|
||||
* side.
|
||||
* @return BoundaryElement Boundary condition as a BoundaryElement object.
|
||||
*/
|
||||
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
|
||||
|
||||
/**
|
||||
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
|
||||
BC_TYPE_CONSTANT.
|
||||
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED
|
||||
or BC_TYPE_CONSTANT.
|
||||
*
|
||||
* @param side Boundary side in which the boundary condition type is located.
|
||||
* @param index Index of the boundary element on the corresponding
|
||||
* boundary side. Must index an element of the corresponding side.
|
||||
* boundary side. Must index an element of the corresponding
|
||||
side.
|
||||
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
|
||||
*/
|
||||
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
|
||||
@ -203,11 +201,11 @@ class Boundary {
|
||||
*/
|
||||
double getBoundaryElementValue(BC_SIDE side, int index);
|
||||
|
||||
private:
|
||||
private:
|
||||
Grid grid; // Boundary is directly dependent on the dimensions of a predefined
|
||||
|
||||
vector<vector<BoundaryElement>> boundaries; // Vector with Boundary Element information
|
||||
std::vector<std::vector<BoundaryElement>>
|
||||
boundaries; // Vector with Boundary Element information
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif // BOUNDARY_H_
|
||||
|
||||
@ -1,3 +1,6 @@
|
||||
#ifndef GRID_H_
|
||||
#define GRID_H_
|
||||
|
||||
/**
|
||||
* @file Grid.hpp
|
||||
* @brief API of Grid class, that holds a matrix with concenctrations and a
|
||||
@ -8,24 +11,25 @@
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
// TODO document default values and perhaps adjust them
|
||||
class Grid {
|
||||
public:
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a new 1D-Grid object of a given length, which holds a matrix
|
||||
* with concentrations and a respective matrix of alpha coefficients.
|
||||
* @brief Constructs a new 1D-Grid object of a given length, which holds a
|
||||
* matrix with concentrations and a respective matrix of alpha coefficients.
|
||||
* The domain length is per default the same as the length. The
|
||||
* concentrations are all 20 by default and the alpha coefficients are 1.
|
||||
*
|
||||
* @param length Length of the 1D-Grid. Must be greater than 3.
|
||||
*/
|
||||
Grid(int length);
|
||||
|
||||
/**
|
||||
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a matrix
|
||||
* with concentrations and the respective matrices of alpha coefficient for
|
||||
* each direction.
|
||||
* @brief Constructs a new 2D-Grid object of given dimensions, which holds a
|
||||
* matrix with concentrations and the respective matrices of alpha coefficient
|
||||
* for each direction. The domain in x- and y-direction is per default equal
|
||||
* to the col length and row length, respectively. The concentrations are all
|
||||
* 20 by default across the entire grid and the alpha coefficients 1 in both
|
||||
* directions.
|
||||
*
|
||||
* @param row Length of the 2D-Grid in y-direction. Must be greater than 3.
|
||||
* @param col Length of the 2D-Grid in x-direction. Must be greater than 3.
|
||||
@ -35,11 +39,11 @@ class Grid {
|
||||
/**
|
||||
* @brief Sets the concentrations matrix for a 1D or 2D-Grid.
|
||||
*
|
||||
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix must
|
||||
* have correct dimensions as defined in row and col, or length,
|
||||
* respectively.
|
||||
* @param concentrations An Eigen3 MatrixXd holding the concentrations. Matrix
|
||||
* must have correct dimensions as defined in row and col. (Or length, in 1D
|
||||
* case).
|
||||
*/
|
||||
void setConcentrations(MatrixXd concentrations);
|
||||
void setConcentrations(const Eigen::MatrixXd &concentrations);
|
||||
|
||||
/**
|
||||
* @brief Gets the concentrations matrix for a Grid.
|
||||
@ -47,48 +51,51 @@ class Grid {
|
||||
* @return MatrixXd An Eigen3 matrix holding the concentrations and having the
|
||||
* same dimensions as the grid.
|
||||
*/
|
||||
MatrixXd getConcentrations();
|
||||
const Eigen::MatrixXd &getConcentrations() { return this->concentrations; }
|
||||
|
||||
/**
|
||||
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one dimensional.
|
||||
* @brief Set the alpha coefficients of a 1D-Grid. Grid must be one
|
||||
* dimensional.
|
||||
*
|
||||
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients. Matrix
|
||||
* columns must have same size as length of grid.
|
||||
* @param alpha An Eigen3 MatrixXd with 1 row holding the alpha coefficients.
|
||||
* Matrix columns must have same size as length of grid.
|
||||
*/
|
||||
void setAlpha(MatrixXd alpha);
|
||||
void setAlpha(const Eigen::MatrixXd &alpha);
|
||||
|
||||
/**
|
||||
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two dimensional.
|
||||
* @brief Set the alpha coefficients of a 2D-Grid. Grid must be two
|
||||
* dimensional.
|
||||
*
|
||||
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in x-direction.
|
||||
* Matrix must be of same size as the grid.
|
||||
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in y-direction.
|
||||
* Matrix must be of same size as the grid.
|
||||
* @param alphaX An Eigen3 MatrixXd holding the alpha coefficients in
|
||||
* x-direction. Matrix must be of same size as the grid.
|
||||
* @param alphaY An Eigen3 MatrixXd holding the alpha coefficients in
|
||||
* y-direction. Matrix must be of same size as the grid.
|
||||
*/
|
||||
void setAlpha(MatrixXd alphaX, MatrixXd alphaY);
|
||||
void setAlpha(const Eigen::MatrixXd &alphaX, const Eigen::MatrixXd &alphaY);
|
||||
|
||||
/**
|
||||
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one dimensional.
|
||||
* @brief Gets the matrix of alpha coefficients of a 1D-Grid. Grid must be one
|
||||
* dimensional.
|
||||
*
|
||||
* @return MatrixXd A matrix with 1 row holding the alpha coefficients.
|
||||
*/
|
||||
MatrixXd getAlpha();
|
||||
const Eigen::MatrixXd &getAlpha();
|
||||
|
||||
/**
|
||||
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid. Grid must be
|
||||
* two dimensional.
|
||||
* @brief Gets the matrix of alpha coefficients in x-direction of a 2D-Grid.
|
||||
* Grid must be two dimensional.
|
||||
*
|
||||
* @return MatrixXd A matrix holding the alpha coefficients in x-direction.
|
||||
*/
|
||||
MatrixXd getAlphaX();
|
||||
const Eigen::MatrixXd &getAlphaX();
|
||||
|
||||
/**
|
||||
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid. Grid must be
|
||||
* two dimensional.
|
||||
* @brief Gets the matrix of alpha coefficients in y-direction of a 2D-Grid.
|
||||
* Grid must be two dimensional.
|
||||
*
|
||||
* @return MatrixXd A matrix holding the alpha coefficients in y-direction.
|
||||
*/
|
||||
MatrixXd getAlphaY();
|
||||
const Eigen::MatrixXd &getAlphaY();
|
||||
|
||||
/**
|
||||
* @brief Gets the dimensions of the grid.
|
||||
@ -128,10 +135,12 @@ class Grid {
|
||||
/**
|
||||
* @brief Sets the domain size of a 2D-Grid. Grid must be two dimensional.
|
||||
*
|
||||
* @param domainRow A double value of the domain size in y-direction. Must be positive.
|
||||
* @param domainCol A double value of the domain size in x-direction. Must be positive.
|
||||
* @param domainRow A double value of the domain size in y-direction. Must be
|
||||
* positive.
|
||||
* @param domainCol A double value of the domain size in x-direction. Must be
|
||||
* positive.
|
||||
*/
|
||||
void setDomain(double domainRow,double domainCol);
|
||||
void setDomain(double domainRow, double domainCol);
|
||||
|
||||
/**
|
||||
* @brief Gets the delta value for 1D-Grid. Grid must be one dimensional.
|
||||
@ -154,18 +163,17 @@ class Grid {
|
||||
*/
|
||||
double getDeltaRow();
|
||||
|
||||
|
||||
private:
|
||||
|
||||
private:
|
||||
int col; // number of grid columns
|
||||
int row; // number of grid rows
|
||||
int row{1}; // number of grid rows
|
||||
int dim; // 1D or 2D
|
||||
double domainCol; // number of domain columns
|
||||
double domainRow; // number of domain rows
|
||||
double domainRow{0}; // number of domain rows
|
||||
double deltaCol; // delta in x-direction (between columns)
|
||||
double deltaRow; // delta in y-direction (between rows)
|
||||
MatrixXd concentrations; // Matrix holding grid concentrations
|
||||
MatrixXd alphaX; // Matrix holding alpha coefficients in x-direction
|
||||
MatrixXd alphaY; // Matrix holding alpha coefficients in y-direction
|
||||
|
||||
double deltaRow{0}; // delta in y-direction (between rows)
|
||||
Eigen::MatrixXd concentrations; // Matrix holding grid concentrations
|
||||
Eigen::MatrixXd alphaX; // Matrix holding alpha coefficients in x-direction
|
||||
Eigen::MatrixXd alphaY; // Matrix holding alpha coefficients in y-direction
|
||||
};
|
||||
|
||||
#endif // GRID_H_
|
||||
|
||||
@ -1,14 +1,24 @@
|
||||
/**
|
||||
* @file Simulation.hpp
|
||||
* @brief API of Simulation class, that holds all information regarding a specific simulation
|
||||
* run like its timestep, number of iterations and output options. Simulation object
|
||||
* also holds a predefined Grid and Boundary object.
|
||||
* @brief API of Simulation class, that holds all information regarding a
|
||||
* specific simulation run like its timestep, number of iterations and output
|
||||
* options. Simulation object also holds a predefined Grid and Boundary object.
|
||||
*
|
||||
*/
|
||||
#include "Boundary.hpp"
|
||||
#include <ios>
|
||||
|
||||
using namespace std;
|
||||
#ifndef SIMULATION_H_
|
||||
#define SIMULATION_H_
|
||||
|
||||
#include "Boundary.hpp"
|
||||
#include "Grid.hpp"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#else
|
||||
#define omp_get_num_procs() 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Enum defining the two implemented solution approaches.
|
||||
@ -26,7 +36,8 @@ enum APPROACH {
|
||||
*/
|
||||
enum SOLVER {
|
||||
EIGEN_LU_SOLVER, // EigenLU solver
|
||||
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for tridiagonal matrices
|
||||
THOMAS_ALGORITHM_SOLVER // Thomas Algorithm solver; more efficient for
|
||||
// tridiagonal matrices
|
||||
};
|
||||
|
||||
/**
|
||||
@ -37,7 +48,8 @@ enum CSV_OUTPUT {
|
||||
CSV_OUTPUT_OFF, // do not produce csv output
|
||||
CSV_OUTPUT_ON, // produce csv output with last concentration matrix
|
||||
CSV_OUTPUT_VERBOSE, // produce csv output with all concentration matrices
|
||||
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary conditions at beginning
|
||||
CSV_OUTPUT_XTREME // csv output like VERBOSE but additional boundary
|
||||
// conditions at beginning
|
||||
};
|
||||
|
||||
/**
|
||||
@ -66,12 +78,14 @@ enum TIME_MEASURE {
|
||||
*
|
||||
*/
|
||||
class Simulation {
|
||||
public:
|
||||
public:
|
||||
/**
|
||||
* @brief Set up a simulation environment. The timestep and number of iterations
|
||||
* must be set. For the BTCS approach, the Thomas algorithm is used as
|
||||
* the default linear equation solver as this is faster for tridiagonal
|
||||
* matrices. CSV output, console output and time measure are off by default.
|
||||
* @brief Set up a simulation environment. The timestep and number of
|
||||
* iterations must be set. For the BTCS approach, the Thomas algorithm is used
|
||||
* as the default linear equation solver as this is faster for tridiagonal
|
||||
* matrices. CSV output, console output and time measure are off by
|
||||
* default. Also, the number of cores is set to the maximum number of cores -1
|
||||
* by default.
|
||||
*
|
||||
* @param grid Valid grid object
|
||||
* @param bc Valid boundary condition object
|
||||
@ -96,21 +110,28 @@ class Simulation {
|
||||
void setOutputCSV(CSV_OUTPUT csv_output);
|
||||
|
||||
/**
|
||||
* @brief Set the options for outputting information to the console. Off by default.
|
||||
* @brief Set the options for outputting information to the console. Off by
|
||||
* default.
|
||||
*
|
||||
* @param console_output Valid output option. The following options can be set
|
||||
* here:
|
||||
* - CONSOLE_OUTPUT_OFF: do not print any output to console
|
||||
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
|
||||
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
|
||||
* - CONSOLE_OUTPUT_OFF: do not print any output to
|
||||
* console
|
||||
* - CONSOLE_OUTPUT_ON: print before and after
|
||||
* concentrations to console
|
||||
* - CONSOLE_OUTPUT_VERBOSE: print all concentration
|
||||
* matrices to console
|
||||
*/
|
||||
void setOutputConsole(CONSOLE_OUTPUT console_output);
|
||||
|
||||
// TODO document method
|
||||
/**
|
||||
* @brief Set the Time Measure object. Off by default.
|
||||
* @brief Set the Time Measure option. Off by default.
|
||||
*
|
||||
* @param time_measure
|
||||
* @param time_measure The following options are allowed:
|
||||
* - TIME_MEASURE_OFF: Time of simulation is not printed
|
||||
* to console
|
||||
* - TIME_MEASURE_ON: Time of simulation run is printed to
|
||||
* console
|
||||
*/
|
||||
void setTimeMeasure(TIME_MEASURE time_measure);
|
||||
|
||||
@ -138,11 +159,11 @@ class Simulation {
|
||||
void setIterations(int iterations);
|
||||
|
||||
/**
|
||||
* @brief Set the desired linear equation solver to be used for BTCS approach. Without effect
|
||||
* in case of FTCS approach.
|
||||
* @brief Set the desired linear equation solver to be used for BTCS approach.
|
||||
* Without effect in case of FTCS approach.
|
||||
*
|
||||
* @param solver Solver to be used. Default is Thomas Algorithm as it is more efficient for
|
||||
* tridiagonal Matrices.
|
||||
* @param solver Solver to be used. Default is Thomas Algorithm as it is more
|
||||
* efficient for tridiagonal Matrices.
|
||||
*/
|
||||
void setSolver(SOLVER solver);
|
||||
|
||||
@ -150,8 +171,9 @@ class Simulation {
|
||||
* @brief Set the number of desired openMP Threads.
|
||||
*
|
||||
* @param num_threads Number of desired threads. Must have a value between
|
||||
* 1 and the maximum available number of processors. The maximum number of
|
||||
* processors is set as the default case.
|
||||
* 1 and the maximum available number of processors. The
|
||||
* maximum number of processors is set as the default case during Simulation
|
||||
* construction.
|
||||
*/
|
||||
void setNumberThreads(int num_threads);
|
||||
|
||||
@ -168,16 +190,16 @@ class Simulation {
|
||||
*/
|
||||
void printConcentrationsConsole();
|
||||
|
||||
// TODO move create CSVfile to TugUtils
|
||||
/**
|
||||
* @brief Creates a CSV file with a name containing the current simulation
|
||||
* parameters. If the data name already exists, an additional counter is
|
||||
* appended to the name. The name of the file is built up as follows:
|
||||
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
|
||||
* parameters. If the data name already exists, an additional counter
|
||||
* is appended to the name. The name of the file is built up as follows:
|
||||
* <approach> + <number rows> + <number columns> + <number of
|
||||
* iterations>+<counter>.csv
|
||||
*
|
||||
* @return string Filename with given simulation parameter.
|
||||
* @return string Filename with configured simulation parameters.
|
||||
*/
|
||||
string createCSVfile();
|
||||
std::string createCSVfile();
|
||||
|
||||
/**
|
||||
* @brief Writes the currently calculated concentration values of the grid
|
||||
@ -186,7 +208,7 @@ class Simulation {
|
||||
* @param filename Name of the file to which the concentration values are
|
||||
* to be written.
|
||||
*/
|
||||
void printConcentrationsCSV(string filename);
|
||||
void printConcentrationsCSV(const std::string &filename);
|
||||
|
||||
/**
|
||||
* @brief Method starts the simulation process with the previously set
|
||||
@ -194,19 +216,21 @@ class Simulation {
|
||||
*/
|
||||
void run();
|
||||
|
||||
private:
|
||||
|
||||
double timestep;
|
||||
int iterations;
|
||||
int innerIterations;
|
||||
int numThreads;
|
||||
CSV_OUTPUT csv_output;
|
||||
CONSOLE_OUTPUT console_output;
|
||||
TIME_MEASURE time_measure;
|
||||
private:
|
||||
double timestep{-1};
|
||||
int iterations{-1};
|
||||
int innerIterations{1};
|
||||
int numThreads{omp_get_num_procs()};
|
||||
CSV_OUTPUT csv_output{CSV_OUTPUT_OFF};
|
||||
CONSOLE_OUTPUT console_output{CONSOLE_OUTPUT_OFF};
|
||||
TIME_MEASURE time_measure{TIME_MEASURE_OFF};
|
||||
|
||||
Grid &grid;
|
||||
Boundary &bc;
|
||||
APPROACH approach;
|
||||
SOLVER solver;
|
||||
SOLVER solver{THOMAS_ALGORITHM_SOLVER};
|
||||
|
||||
const std::vector<std::string> approach_names = {"FTCS", "BTCS", "CRNI"};
|
||||
};
|
||||
|
||||
#endif // SIMULATION_H_
|
||||
|
||||
@ -286,7 +286,11 @@ ADIHetDir <- function(field, dt, iter, alpha) {
|
||||
return(out)
|
||||
}
|
||||
|
||||
harm <- function(x,y) 1/(1/x+1/y)
|
||||
harm <- function(x,y) {
|
||||
if (length(x) != 1 || length(y) != 1)
|
||||
stop("x & z have different lengths")
|
||||
2/(1/x+1/y)
|
||||
}
|
||||
|
||||
harm(1,4)
|
||||
|
||||
@ -428,10 +432,10 @@ FTCS_2D <- function(field, dt, iter, alpha) {
|
||||
## res[i,j] *(mean(alpha[i,j+1],alpha[i,j])+mean(alpha[i,j-1],alpha[i,j])) +
|
||||
## res[i,j-1]*mean(alpha[i,j-1],alpha[i,j]))
|
||||
tmp[i,j] <- res[i,j] +
|
||||
+ tsteps[innerit]/dx/dx * ((res[i+1,j]-res[i,j]) * mean(alpha[i+1,j],alpha[i,j]) -
|
||||
(res[i,j]-res[i-1,j]) * mean(alpha[i-1,j],alpha[i,j])) +
|
||||
+ tsteps[innerit]/dx/dx * ((res[i,j+1]-res[i,j]) * mean(alpha[i,j+1],alpha[i,j]) -
|
||||
(res[i,j]-res[i,j-1]) * mean(alpha[i,j-1],alpha[i,j]))
|
||||
+ tsteps[innerit]/dx/dx * ((res[i+1,j]-res[i,j]) * harm(alpha[i+1,j],alpha[i,j]) -
|
||||
(res[i,j]-res[i-1,j]) * harm(alpha[i-1,j],alpha[i,j])) +
|
||||
+ tsteps[innerit]/dx/dx * ((res[i,j+1]-res[i,j]) * harm(alpha[i,j+1],alpha[i,j]) -
|
||||
(res[i,j]-res[i,j-1]) * harm(alpha[i,j-1],alpha[i,j]))
|
||||
}
|
||||
}
|
||||
## swap back tmp to res for the next inner iteration
|
||||
|
||||
418
src/BTCS.cpp
Normal file
418
src/BTCS.cpp
Normal file
@ -0,0 +1,418 @@
|
||||
/**
|
||||
* @file BTCSv2.cpp
|
||||
* @brief Implementation of heterogenous BTCS (backward time-centered space)
|
||||
* solution of diffusion equation in 1D and 2D space. Internally the
|
||||
* alternating-direction implicit (ADI) method is used. Version 2, because
|
||||
* Version 1 was an implementation for the homogeneous BTCS solution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "Schemes.hpp"
|
||||
#include "TugUtils.hpp"
|
||||
|
||||
#include <Eigen/src/Core/util/Meta.h>
|
||||
#include <cstddef>
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <tug/Grid.hpp>
|
||||
#include <utility>
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#else
|
||||
#define omp_get_thread_num() 0
|
||||
#endif
|
||||
|
||||
// calculates coefficient for boundary in constant case
|
||||
template <class T>
|
||||
constexpr std::pair<T, T> calcBoundaryCoeffConstant(T alpha_center,
|
||||
T alpha_side, T sx) {
|
||||
const T centerCoeff = 1 + sx * (calcAlphaIntercell(alpha_center, alpha_side) +
|
||||
2 * alpha_center);
|
||||
const T sideCoeff = -sx * calcAlphaIntercell(alpha_center, alpha_side);
|
||||
|
||||
return {centerCoeff, sideCoeff};
|
||||
}
|
||||
|
||||
// calculates coefficient for boundary in closed case
|
||||
template <class T>
|
||||
constexpr std::pair<T, T> calcBoundaryCoeffClosed(T alpha_center, T alpha_side,
|
||||
T sx) {
|
||||
const T centerCoeff = 1 + sx * calcAlphaIntercell(alpha_center, alpha_side);
|
||||
|
||||
const T sideCoeff = -sx * calcAlphaIntercell(alpha_center, alpha_side);
|
||||
|
||||
return {centerCoeff, sideCoeff};
|
||||
}
|
||||
|
||||
// creates coefficient matrix for next time step from alphas in x-direction
|
||||
static Eigen::SparseMatrix<double>
|
||||
createCoeffMatrix(Eigen::MatrixXd &alpha, std::vector<BoundaryElement> &bcLeft,
|
||||
std::vector<BoundaryElement> &bcRight, int numCols,
|
||||
int rowIndex, double sx) {
|
||||
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
Eigen::SparseMatrix<double> cm(numCols, numCols);
|
||||
cm.reserve(Eigen::VectorXi::Constant(numCols, 3));
|
||||
|
||||
// left column
|
||||
|
||||
switch (bcLeft[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcBoundaryCoeffConstant(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcBoundaryCoeffClosed(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
|
||||
// inner columns
|
||||
int n = numCols - 1;
|
||||
for (int i = 1; i < n; i++) {
|
||||
cm.insert(i, i - 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
|
||||
cm.insert(i, i) =
|
||||
1 +
|
||||
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
|
||||
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
|
||||
cm.insert(i, i + 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
|
||||
}
|
||||
|
||||
// right column
|
||||
|
||||
switch (bcRight[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
auto [centerCoeffBottom, leftCoeffBottom] = calcBoundaryCoeffConstant(
|
||||
alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
auto [centerCoeffBottom, leftCoeffBottom] =
|
||||
calcBoundaryCoeffClosed(alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
|
||||
cm.makeCompressed(); // important for Eigen solver
|
||||
|
||||
return cm;
|
||||
}
|
||||
|
||||
// calculates explicit concentration at boundary in closed case
|
||||
template <typename T>
|
||||
constexpr T calcExplicitConcentrationsBoundaryClosed(T conc_center,
|
||||
T alpha_center,
|
||||
T alpha_neigbor, T sy) {
|
||||
return sy * calcAlphaIntercell(alpha_center, alpha_neigbor) * conc_center +
|
||||
(1 - sy * (calcAlphaIntercell(alpha_center, alpha_neigbor))) *
|
||||
conc_center;
|
||||
}
|
||||
|
||||
// calculates explicity concentration at boundary in constant case
|
||||
template <typename T>
|
||||
constexpr T calcExplicitConcentrationsBoundaryConstant(T conc_center, T conc_bc,
|
||||
T alpha_center,
|
||||
T alpha_neighbor, T sy) {
|
||||
return sy * calcAlphaIntercell(alpha_center, alpha_neighbor) * conc_center +
|
||||
(1 - sy * (calcAlphaIntercell(alpha_center, alpha_center) +
|
||||
2 * alpha_center)) *
|
||||
conc_center +
|
||||
sy * alpha_center * conc_bc;
|
||||
}
|
||||
|
||||
// creates a solution vector for next time step from the current state of
|
||||
// concentrations
|
||||
static Eigen::VectorXd createSolutionVector(
|
||||
Eigen::MatrixXd &concentrations, Eigen::MatrixXd &alphaX,
|
||||
Eigen::MatrixXd &alphaY, std::vector<BoundaryElement> &bcLeft,
|
||||
std::vector<BoundaryElement> &bcRight, std::vector<BoundaryElement> &bcTop,
|
||||
std::vector<BoundaryElement> &bcBottom, int length, int rowIndex, double sx,
|
||||
double sy) {
|
||||
|
||||
Eigen::VectorXd sv(length);
|
||||
const std::size_t numRows = concentrations.rows();
|
||||
|
||||
// inner rows
|
||||
if (rowIndex > 0 && rowIndex < numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
sv(i) =
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex, i), alphaY(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex + 1, i) +
|
||||
(1 - sy * (calcAlphaIntercell(alphaY(rowIndex, i),
|
||||
alphaY(rowIndex + 1, i)) +
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i),
|
||||
alphaY(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i), alphaY(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
}
|
||||
}
|
||||
|
||||
// first row
|
||||
else if (rowIndex == 0) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
switch (bcTop[i].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
sv(i) = calcExplicitConcentrationsBoundaryConstant(
|
||||
concentrations(rowIndex, i), bcTop[i].getValue(),
|
||||
alphaY(rowIndex, i), alphaY(rowIndex + 1, i), sy);
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
sv(i) = calcExplicitConcentrationsBoundaryClosed(
|
||||
concentrations(rowIndex, i), alphaY(rowIndex, i),
|
||||
alphaY(rowIndex + 1, i), sy);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// last row
|
||||
else if (rowIndex == numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
switch (bcBottom[i].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
sv(i) = calcExplicitConcentrationsBoundaryConstant(
|
||||
concentrations(rowIndex, i), bcBottom[i].getValue(),
|
||||
alphaY(rowIndex, i), alphaY(rowIndex - 1, i), sy);
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
sv(i) = calcExplicitConcentrationsBoundaryClosed(
|
||||
concentrations(rowIndex, i), alphaY(rowIndex, i),
|
||||
alphaY(rowIndex - 1, i), sy);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// first column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(0) += 2 * sx * alphaX(rowIndex, 0) * bcLeft[rowIndex].getValue();
|
||||
}
|
||||
|
||||
// last column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(length - 1) +=
|
||||
2 * sx * alphaX(rowIndex, length - 1) * bcRight[rowIndex].getValue();
|
||||
}
|
||||
|
||||
return sv;
|
||||
}
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// use of EigenLU solver
|
||||
static Eigen::VectorXd EigenLUAlgorithm(Eigen::SparseMatrix<double> &A,
|
||||
Eigen::VectorXd &b) {
|
||||
|
||||
Eigen::SparseLU<Eigen::SparseMatrix<double>> solver;
|
||||
solver.analyzePattern(A);
|
||||
solver.factorize(A);
|
||||
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// implementation of Thomas Algorithm
|
||||
static Eigen::VectorXd ThomasAlgorithm(Eigen::SparseMatrix<double> &A,
|
||||
Eigen::VectorXd &b) {
|
||||
Eigen::Index n = b.size();
|
||||
|
||||
Eigen::VectorXd a_diag(n);
|
||||
Eigen::VectorXd b_diag(n);
|
||||
Eigen::VectorXd c_diag(n);
|
||||
Eigen::VectorXd x_vec = b;
|
||||
|
||||
// Fill diagonals vectors
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
c_diag[0] = A.coeff(0, 1);
|
||||
|
||||
for (Eigen::Index i = 1; i < n - 1; i++) {
|
||||
a_diag[i] = A.coeff(i, i - 1);
|
||||
b_diag[i] = A.coeff(i, i);
|
||||
c_diag[i] = A.coeff(i, i + 1);
|
||||
}
|
||||
a_diag[n - 1] = A.coeff(n - 1, n - 2);
|
||||
b_diag[n - 1] = A.coeff(n - 1, n - 1);
|
||||
|
||||
// start solving - c_diag and x_vec are overwritten
|
||||
n--;
|
||||
c_diag[0] /= b_diag[0];
|
||||
x_vec[0] /= b_diag[0];
|
||||
|
||||
for (Eigen::Index i = 1; i < n; i++) {
|
||||
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
|
||||
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
|
||||
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
|
||||
}
|
||||
|
||||
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
|
||||
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
|
||||
|
||||
for (Eigen::Index i = n; i-- > 0;) {
|
||||
x_vec[i] -= c_diag[i] * x_vec[i + 1];
|
||||
}
|
||||
|
||||
return x_vec;
|
||||
}
|
||||
|
||||
// BTCS solution for 1D grid
|
||||
static void
|
||||
BTCS_1D(Grid &grid, Boundary &bc, double timestep,
|
||||
Eigen::VectorXd (*solverFunc)(Eigen::SparseMatrix<double> &A,
|
||||
Eigen::VectorXd &b)) {
|
||||
int length = grid.getLength();
|
||||
double sx = timestep / (grid.getDelta() * grid.getDelta());
|
||||
|
||||
Eigen::VectorXd concentrations_t1(length);
|
||||
|
||||
Eigen::SparseMatrix<double> A;
|
||||
Eigen::VectorXd b(length);
|
||||
|
||||
Eigen::MatrixXd alpha = grid.getAlpha();
|
||||
std::vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
std::vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
|
||||
Eigen::MatrixXd concentrations = grid.getConcentrations();
|
||||
int rowIndex = 0;
|
||||
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex,
|
||||
sx); // this is exactly same as in 2D
|
||||
for (int i = 0; i < length; i++) {
|
||||
b(i) = concentrations(0, i);
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(0) += 2 * sx * alpha(0, 0) * bcLeft[0].getValue();
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(length - 1) += 2 * sx * alpha(0, length - 1) * bcRight[0].getValue();
|
||||
}
|
||||
|
||||
concentrations_t1 = solverFunc(A, b);
|
||||
|
||||
for (int j = 0; j < length; j++) {
|
||||
concentrations(0, j) = concentrations_t1(j);
|
||||
}
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
// BTCS solution for 2D grid
|
||||
static void
|
||||
BTCS_2D(Grid &grid, Boundary &bc, double timestep,
|
||||
Eigen::VectorXd (*solverFunc)(Eigen::SparseMatrix<double> &A,
|
||||
Eigen::VectorXd &b),
|
||||
int numThreads) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
|
||||
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
|
||||
|
||||
Eigen::MatrixXd concentrations_t1 =
|
||||
Eigen::MatrixXd::Constant(rowMax, colMax, 0);
|
||||
Eigen::VectorXd row_t1(colMax);
|
||||
|
||||
Eigen::SparseMatrix<double> A;
|
||||
Eigen::VectorXd b;
|
||||
|
||||
Eigen::MatrixXd alphaX = grid.getAlphaX();
|
||||
Eigen::MatrixXd alphaY = grid.getAlphaY();
|
||||
std::vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
std::vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
std::vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
|
||||
std::vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
|
||||
|
||||
Eigen::MatrixXd concentrations = grid.getConcentrations();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
|
||||
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, colMax, i, sx, sy);
|
||||
|
||||
Eigen::SparseLU<Eigen::SparseMatrix<double>> solver;
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations_t1.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations_t1.transposeInPlace();
|
||||
concentrations.transposeInPlace();
|
||||
alphaX.transposeInPlace();
|
||||
alphaY.transposeInPlace();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
|
||||
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
|
||||
bcLeft, bcRight, rowMax, i, sy, sx);
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations.transposeInPlace();
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
// entry point for EigenLU solver; differentiate between 1D and 2D grid
|
||||
void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
|
||||
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
|
||||
void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
487
src/BTCSv2.cpp
487
src/BTCSv2.cpp
@ -1,487 +0,0 @@
|
||||
/**
|
||||
* @file BTCSv2.cpp
|
||||
* @brief Implementation of heterogenous BTCS (backward time-centered space)
|
||||
* solution of diffusion equation in 1D and 2D space. Internally the
|
||||
* alternating-direction implicit (ADI) method is used. Version 2, because
|
||||
* Version 1 was an implementation for the homogeneous BTCS solution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "FTCS.cpp"
|
||||
#include <omp.h>
|
||||
#include <tug/Boundary.hpp>
|
||||
|
||||
#ifdef WRITE_THOMAS_CSV
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#endif
|
||||
|
||||
#define NUM_THREADS_BTCS 10
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
// calculates coefficient for left boundary in constant case
|
||||
static tuple<double, double>
|
||||
calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
|
||||
centerCoeff =
|
||||
1 + sx * (calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1)) +
|
||||
2 * alpha(rowIndex, 0));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
|
||||
return {centerCoeff, rightCoeff};
|
||||
}
|
||||
|
||||
// calculates coefficient for left boundary in closed case
|
||||
static tuple<double, double>
|
||||
calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
|
||||
centerCoeff =
|
||||
1 + sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
|
||||
return {centerCoeff, rightCoeff};
|
||||
}
|
||||
|
||||
// calculates coefficient for right boundary in constant case
|
||||
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha,
|
||||
int rowIndex, int n,
|
||||
double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
|
||||
leftCoeff =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
centerCoeff =
|
||||
1 + sx * (calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n)) +
|
||||
2 * alpha(rowIndex, n));
|
||||
|
||||
return {leftCoeff, centerCoeff};
|
||||
}
|
||||
|
||||
// calculates coefficient for right boundary in closed case
|
||||
static tuple<double, double>
|
||||
calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
|
||||
leftCoeff =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
centerCoeff =
|
||||
1 + sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
|
||||
return {leftCoeff, centerCoeff};
|
||||
}
|
||||
|
||||
// creates coefficient matrix for next time step from alphas in x-direction
|
||||
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha,
|
||||
vector<BoundaryElement> &bcLeft,
|
||||
vector<BoundaryElement> &bcRight,
|
||||
int numCols, int rowIndex,
|
||||
double sx) {
|
||||
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
SparseMatrix<double> cm(numCols, numCols);
|
||||
cm.reserve(VectorXi::Constant(numCols, 3));
|
||||
|
||||
// left column
|
||||
BC_TYPE type = bcLeft[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
|
||||
// inner columns
|
||||
int n = numCols - 1;
|
||||
for (int i = 1; i < n; i++) {
|
||||
cm.insert(i, i - 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
|
||||
cm.insert(i, i) =
|
||||
1 +
|
||||
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
|
||||
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
|
||||
cm.insert(i, i + 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
|
||||
}
|
||||
|
||||
// right column
|
||||
type = bcRight[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] =
|
||||
calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] =
|
||||
calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
|
||||
cm.makeCompressed(); // important for Eigen solver
|
||||
|
||||
return cm;
|
||||
}
|
||||
|
||||
// calculates explicity concentration at top boundary in constant case
|
||||
static double calcExplicitConcentrationsTopBoundaryConstant(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, vector<BoundaryElement> &bcTop,
|
||||
int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex, i) +
|
||||
(1 -
|
||||
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) +
|
||||
2 * alpha(rowIndex, i))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * alpha(rowIndex, i) * bcTop[i].getValue();
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// calculates explicit concentration at top boundary in closed case
|
||||
static double calcExplicitConcentrationsTopBoundaryClosed(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex, i) +
|
||||
(1 -
|
||||
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)))) *
|
||||
concentrations(rowIndex, i);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// calculates explicit concentration at bottom boundary in constant case
|
||||
static double calcExplicitConcentrationsBottomBoundaryConstant(
|
||||
MatrixXd &concentrations, MatrixXd &alpha,
|
||||
vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * alpha(rowIndex, i) * bcBottom[i].getValue() +
|
||||
(1 -
|
||||
sy * (2 * alpha(rowIndex, i) +
|
||||
calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// calculates explicit concentration at bottom boundary in closed case
|
||||
static double calcExplicitConcentrationsBottomBoundaryClosed(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = (1 -
|
||||
sy * (+calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// creates a solution vector for next time step from the current state of
|
||||
// concentrations
|
||||
static VectorXd createSolutionVector(
|
||||
MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
|
||||
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
|
||||
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
|
||||
int length, int rowIndex, double sx, double sy) {
|
||||
|
||||
VectorXd sv(length);
|
||||
int numRows = concentrations.rows();
|
||||
BC_TYPE type;
|
||||
|
||||
// inner rows
|
||||
if (rowIndex > 0 && rowIndex < numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
sv(i) =
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex, i), alphaY(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex + 1, i) +
|
||||
(1 - sy * (calcAlphaIntercell(alphaY(rowIndex, i),
|
||||
alphaY(rowIndex + 1, i)) +
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i),
|
||||
alphaY(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i), alphaY(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
}
|
||||
}
|
||||
|
||||
// first row
|
||||
else if (rowIndex == 0) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcTop[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(
|
||||
concentrations, alphaY, bcTop, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(
|
||||
concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// last row
|
||||
else if (rowIndex == numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcBottom[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(
|
||||
concentrations, alphaY, bcBottom, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(
|
||||
concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// first column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(0) += 2 * sx * alphaX(rowIndex, 0) * bcLeft[rowIndex].getValue();
|
||||
}
|
||||
|
||||
// last column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(length - 1) +=
|
||||
2 * sx * alphaX(rowIndex, length - 1) * bcRight[rowIndex].getValue();
|
||||
}
|
||||
|
||||
return sv;
|
||||
}
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// use of EigenLU solver
|
||||
static VectorXd EigenLUAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
solver.analyzePattern(A);
|
||||
solver.factorize(A);
|
||||
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// implementation of Thomas Algorithm
|
||||
static VectorXd ThomasAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
uint32_t n = b.size();
|
||||
|
||||
Eigen::VectorXd a_diag(n);
|
||||
Eigen::VectorXd b_diag(n);
|
||||
Eigen::VectorXd c_diag(n);
|
||||
Eigen::VectorXd x_vec = b;
|
||||
|
||||
// Fill diagonals vectors
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
c_diag[0] = A.coeff(0, 1);
|
||||
|
||||
for (int i = 1; i < n - 1; i++) {
|
||||
a_diag[i] = A.coeff(i, i - 1);
|
||||
b_diag[i] = A.coeff(i, i);
|
||||
c_diag[i] = A.coeff(i, i + 1);
|
||||
}
|
||||
a_diag[n - 1] = A.coeff(n - 1, n - 2);
|
||||
b_diag[n - 1] = A.coeff(n - 1, n - 1);
|
||||
|
||||
// HACK: write CSV to file
|
||||
#ifdef WRITE_THOMAS_CSV
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
static std::uint32_t file_index = 0;
|
||||
std::string file_name = "Thomas_" + std::to_string(file_index++) + ".csv";
|
||||
|
||||
std::ofstream out_file;
|
||||
|
||||
out_file.open(file_name, std::ofstream::trunc | std::ofstream::out);
|
||||
|
||||
// print header
|
||||
out_file << "Aa, Ab, Ac, b\n";
|
||||
|
||||
// iterate through all elements
|
||||
for (std::size_t i = 0; i < n; i++) {
|
||||
out_file << a_diag[i] << ", " << b_diag[i] << ", " << c_diag[i] << ", "
|
||||
<< b[i] << "\n";
|
||||
}
|
||||
|
||||
out_file.close();
|
||||
#endif
|
||||
|
||||
// start solving - c_diag and x_vec are overwritten
|
||||
n--;
|
||||
c_diag[0] /= b_diag[0];
|
||||
x_vec[0] /= b_diag[0];
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
|
||||
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
|
||||
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
|
||||
}
|
||||
|
||||
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
|
||||
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
|
||||
|
||||
for (int i = n; i-- > 0;) {
|
||||
x_vec[i] -= c_diag[i] * x_vec[i + 1];
|
||||
}
|
||||
|
||||
return x_vec;
|
||||
}
|
||||
|
||||
// BTCS solution for 1D grid
|
||||
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep,
|
||||
VectorXd (*solverFunc)(SparseMatrix<double> &A,
|
||||
VectorXd &b)) {
|
||||
int length = grid.getLength();
|
||||
double sx = timestep / (grid.getDelta() * grid.getDelta());
|
||||
|
||||
VectorXd concentrations_t1(length);
|
||||
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b(length);
|
||||
|
||||
MatrixXd alpha = grid.getAlpha();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
int rowIndex = 0;
|
||||
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex,
|
||||
sx); // this is exactly same as in 2D
|
||||
for (int i = 0; i < length; i++) {
|
||||
b(i) = concentrations(0, i);
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(0) += 2 * sx * alpha(0, 0) * bcLeft[0].getValue();
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(length - 1) += 2 * sx * alpha(0, length - 1) * bcRight[0].getValue();
|
||||
}
|
||||
|
||||
concentrations_t1 = solverFunc(A, b);
|
||||
|
||||
for (int j = 0; j < length; j++) {
|
||||
concentrations(0, j) = concentrations_t1(j);
|
||||
}
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
// BTCS solution for 2D grid
|
||||
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep,
|
||||
VectorXd (*solverFunc)(SparseMatrix<double> &A,
|
||||
VectorXd &b),
|
||||
int numThreads) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
|
||||
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
|
||||
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
VectorXd row_t1(colMax);
|
||||
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b;
|
||||
|
||||
MatrixXd alphaX = grid.getAlphaX();
|
||||
MatrixXd alphaY = grid.getAlphaY();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
|
||||
vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
|
||||
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
|
||||
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, colMax, i, sx, sy);
|
||||
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations_t1.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations_t1.transposeInPlace();
|
||||
concentrations.transposeInPlace();
|
||||
alphaX.transposeInPlace();
|
||||
alphaY.transposeInPlace();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
|
||||
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
|
||||
bcLeft, bcRight, rowMax, i, sy, sx);
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations.transposeInPlace();
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
// entry point for EigenLU solver; differentiate between 1D and 2D grid
|
||||
static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
|
||||
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
|
||||
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep,
|
||||
int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
117
src/Boundary.cpp
117
src/Boundary.cpp
@ -1,31 +1,21 @@
|
||||
#include "TugUtils.hpp"
|
||||
#include <iostream>
|
||||
#include <omp.h>
|
||||
#include <tug/Boundary.hpp>
|
||||
|
||||
#include <cstddef>
|
||||
#include <stdexcept>
|
||||
#include <tug/Boundary.hpp>
|
||||
|
||||
using namespace std;
|
||||
BoundaryElement::BoundaryElement() {}
|
||||
|
||||
BoundaryElement::BoundaryElement() {
|
||||
BoundaryElement::BoundaryElement(double _value)
|
||||
: value(_value), type(BC_TYPE_CONSTANT) {}
|
||||
|
||||
this->type = BC_TYPE_CLOSED;
|
||||
this->value = NAN;
|
||||
}
|
||||
|
||||
BoundaryElement::BoundaryElement(double value) {
|
||||
this->type = BC_TYPE_CONSTANT;
|
||||
this->value = value;
|
||||
}
|
||||
|
||||
void BoundaryElement::setType(BC_TYPE type) {
|
||||
this->type = type;
|
||||
}
|
||||
void BoundaryElement::setType(BC_TYPE type) { this->type = type; }
|
||||
|
||||
void BoundaryElement::setValue(double value) {
|
||||
if(value < 0){
|
||||
if (value < 0) {
|
||||
throw_invalid_argument("No negative concentration allowed.");
|
||||
}
|
||||
if(type == BC_TYPE_CLOSED){
|
||||
if (type == BC_TYPE_CLOSED) {
|
||||
throw_invalid_argument(
|
||||
"No constant boundary concentrations can be set for closed "
|
||||
"boundaries. Please change type first.");
|
||||
@ -33,88 +23,83 @@ void BoundaryElement::setValue(double value) {
|
||||
this->value = value;
|
||||
}
|
||||
|
||||
BC_TYPE BoundaryElement::getType() {
|
||||
return this->type;
|
||||
}
|
||||
BC_TYPE BoundaryElement::getType() { return this->type; }
|
||||
|
||||
double BoundaryElement::getValue() {
|
||||
return this->value;
|
||||
}
|
||||
double BoundaryElement::getValue() { return this->value; }
|
||||
|
||||
Boundary::Boundary(Grid grid) : grid(grid) {
|
||||
//probably to DEBUG assignment grid
|
||||
|
||||
if (grid.getDim() == 1) {
|
||||
this->boundaries = vector<vector<BoundaryElement>>(2);
|
||||
this->boundaries = std::vector<std::vector<BoundaryElement>>(
|
||||
2); // in 1D only left and right boundary
|
||||
|
||||
this->boundaries[BC_SIDE_LEFT].push_back(BoundaryElement());
|
||||
this->boundaries[BC_SIDE_RIGHT].push_back(BoundaryElement());
|
||||
} else if (grid.getDim() == 2) {
|
||||
this->boundaries = vector<vector<BoundaryElement>>(4);
|
||||
this->boundaries = std::vector<std::vector<BoundaryElement>>(4);
|
||||
|
||||
this->boundaries[BC_SIDE_LEFT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_RIGHT] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_TOP] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_BOTTOM] = vector<BoundaryElement>(grid.getCol(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_LEFT] =
|
||||
std::vector<BoundaryElement>(grid.getRow(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_RIGHT] =
|
||||
std::vector<BoundaryElement>(grid.getRow(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_TOP] =
|
||||
std::vector<BoundaryElement>(grid.getCol(), BoundaryElement());
|
||||
this->boundaries[BC_SIDE_BOTTOM] =
|
||||
std::vector<BoundaryElement>(grid.getCol(), BoundaryElement());
|
||||
}
|
||||
}
|
||||
|
||||
void Boundary::setBoundarySideClosed(BC_SIDE side) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
if (grid.getDim() == 1) {
|
||||
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional case, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
}
|
||||
}
|
||||
|
||||
int n;
|
||||
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
|
||||
n = grid.getRow();
|
||||
} else {
|
||||
n = grid.getCol();
|
||||
}
|
||||
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement());
|
||||
const bool is_vertical = side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT;
|
||||
const int n = is_vertical ? grid.getRow() : grid.getCol();
|
||||
|
||||
this->boundaries[side] = std::vector<BoundaryElement>(n, BoundaryElement());
|
||||
}
|
||||
|
||||
void Boundary::setBoundarySideConstant(BC_SIDE side, double value) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
if (grid.getDim() == 1) {
|
||||
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional case, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
}
|
||||
}
|
||||
|
||||
int n;
|
||||
if (side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT) {
|
||||
n = grid.getRow();
|
||||
} else {
|
||||
n = grid.getCol();
|
||||
}
|
||||
this->boundaries[side] = vector<BoundaryElement>(n, BoundaryElement(value));
|
||||
const bool is_vertical = side == BC_SIDE_LEFT || side == BC_SIDE_RIGHT;
|
||||
const int n = is_vertical ? grid.getRow() : grid.getCol();
|
||||
|
||||
this->boundaries[side] =
|
||||
std::vector<BoundaryElement>(n, BoundaryElement(value));
|
||||
}
|
||||
|
||||
void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
|
||||
// tests whether the index really points to an element of the boundary side.
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
if ((boundaries[side].size() < index) || index < 0) {
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
|
||||
}
|
||||
|
||||
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
|
||||
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index,
|
||||
double value) {
|
||||
// tests whether the index really points to an element of the boundary side.
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
if ((boundaries[side].size() < index) || index < 0) {
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
|
||||
this->boundaries[side][index].setValue(value);
|
||||
}
|
||||
|
||||
vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
|
||||
if(grid.getDim() == 1){
|
||||
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
|
||||
const std::vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
|
||||
if (grid.getDim() == 1) {
|
||||
if ((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)) {
|
||||
throw_invalid_argument(
|
||||
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
|
||||
"BC_SIDE_RIGHT borders exist.");
|
||||
@ -123,9 +108,9 @@ vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
|
||||
return this->boundaries[side];
|
||||
}
|
||||
|
||||
VectorXd Boundary::getBoundarySideValues(BC_SIDE side) {
|
||||
int length = boundaries[side].size();
|
||||
VectorXd values(length);
|
||||
Eigen::VectorXd Boundary::getBoundarySideValues(BC_SIDE side) {
|
||||
const std::size_t length = boundaries[side].size();
|
||||
Eigen::VectorXd values(length);
|
||||
|
||||
for (int i = 0; i < length; i++) {
|
||||
if (getBoundaryElementType(side, i) == BC_TYPE_CLOSED) {
|
||||
@ -139,26 +124,26 @@ VectorXd Boundary::getBoundarySideValues(BC_SIDE side) {
|
||||
}
|
||||
|
||||
BoundaryElement Boundary::getBoundaryElement(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
if ((boundaries[side].size() < index) || index < 0) {
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
return this->boundaries[side][index];
|
||||
}
|
||||
|
||||
BC_TYPE Boundary::getBoundaryElementType(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
if ((boundaries[side].size() < index) || index < 0) {
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
return this->boundaries[side][index].getType();
|
||||
}
|
||||
|
||||
double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
|
||||
if((boundaries[side].size() < index) || index < 0){
|
||||
if ((boundaries[side].size() < index) || index < 0) {
|
||||
throw_invalid_argument("Index is selected either too large or too small.");
|
||||
}
|
||||
if(boundaries[side][index].getType() != BC_TYPE_CONSTANT){
|
||||
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
|
||||
if (boundaries[side][index].getType() != BC_TYPE_CONSTANT) {
|
||||
throw_invalid_argument(
|
||||
"A value can only be output if it is a constant boundary condition.");
|
||||
}
|
||||
return this->boundaries[side][index].getValue();
|
||||
}
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
add_library(tug Boundary.cpp Grid.cpp Simulation.cpp FTCS.cpp BTCSv2.cpp)
|
||||
add_library(tug Boundary.cpp Grid.cpp Simulation.cpp FTCS.cpp BTCS.cpp)
|
||||
|
||||
IF(TUG_NAAICE_EXAMPLE)
|
||||
target_compile_definitions(tug PRIVATE WRITE_THOMAS_CSV)
|
||||
@ -10,4 +10,4 @@ if(TUG_USE_OPENMP AND OpenMP_CXX_FOUND)
|
||||
target_link_libraries(tug OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
target_include_directories(tug PUBLIC ../include)
|
||||
target_include_directories(tug PUBLIC ${PROJECT_SOURCE_DIR}/include)
|
||||
|
||||
456
src/FTCS.cpp
456
src/FTCS.cpp
@ -1,87 +1,85 @@
|
||||
/**
|
||||
* @file FTCS.cpp
|
||||
* @brief Implementation of heterogenous FTCS (forward time-centered space) solution
|
||||
* of diffusion equation in 1D and 2D space.
|
||||
* @brief Implementation of heterogenous FTCS (forward time-centered space)
|
||||
* solution of diffusion equation in 1D and 2D space.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "Schemes.hpp"
|
||||
#include "TugUtils.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <iostream>
|
||||
#include <tug/Boundary.hpp>
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
|
||||
#define NUM_THREADS 6
|
||||
|
||||
using namespace std;
|
||||
|
||||
#else
|
||||
#define omp_get_thread_num() 0
|
||||
#endif
|
||||
|
||||
// calculates horizontal change on one cell independent of boundary type
|
||||
static double calcHorizontalChange(Grid &grid, int &row, int &col) {
|
||||
static inline double calcHorizontalChange(Grid &grid, int &row, int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1);
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col + 1) -
|
||||
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
|
||||
grid.getAlphaX()(row, col)) +
|
||||
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
|
||||
grid.getAlphaX()(row, col))) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col - 1);
|
||||
}
|
||||
|
||||
|
||||
// calculates vertical change on one cell independent of boundary type
|
||||
static double calcVerticalChange(Grid &grid, int &row, int &col) {
|
||||
static inline double calcVerticalChange(Grid &grid, int &row, int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row-1,col);
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
|
||||
grid.getAlphaY()(row, col)) *
|
||||
grid.getConcentrations()(row + 1, col) -
|
||||
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
|
||||
grid.getAlphaY()(row, col)) +
|
||||
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
|
||||
grid.getAlphaY()(row, col))) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
calcAlphaIntercell(grid.getAlphaY()(row - 1, col),
|
||||
grid.getAlphaY()(row, col)) *
|
||||
grid.getConcentrations()(row - 1, col);
|
||||
}
|
||||
|
||||
|
||||
// calculates horizontal change on one cell with a constant left boundary
|
||||
static double calcHorizontalChangeLeftBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcHorizontalChangeLeftBoundaryConstant(Grid &grid,
|
||||
Boundary &bc,
|
||||
int &row,
|
||||
int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col + 1) -
|
||||
(calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
|
||||
grid.getAlphaX()(row, col)) +
|
||||
2 * grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
2 * grid.getAlphaX()(row, col) *
|
||||
bc.getBoundaryElementValue(BC_SIDE_LEFT, row);
|
||||
}
|
||||
|
||||
|
||||
// calculates horizontal change on one cell with a closed left boundary
|
||||
static double calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
static inline double
|
||||
calcHorizontalChangeLeftBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaX()(row, col+1), grid.getAlphaX()(row, col))
|
||||
* (grid.getConcentrations()(row, col+1) - grid.getConcentrations()(row, col));
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaX()(row, col + 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
(grid.getConcentrations()(row, col + 1) -
|
||||
grid.getConcentrations()(row, col));
|
||||
}
|
||||
|
||||
|
||||
// checks boundary condition type for a cell on the left edge of grid
|
||||
static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc,
|
||||
int &row, int &col) {
|
||||
if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CONSTANT) {
|
||||
return calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col);
|
||||
} else if (bc.getBoundaryElementType(BC_SIDE_LEFT, col) == BC_TYPE_CLOSED) {
|
||||
@ -91,37 +89,36 @@ static double calcHorizontalChangeLeftBoundary(Grid &grid, Boundary &bc, int &ro
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// calculates horizontal change on one cell with a constant right boundary
|
||||
static double calcHorizontalChangeRightBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcHorizontalChangeRightBoundaryConstant(Grid &grid,
|
||||
Boundary &bc,
|
||||
int &row,
|
||||
int &col) {
|
||||
|
||||
double result =
|
||||
2 * grid.getAlphaX()(row,col) * bc.getBoundaryElementValue(BC_SIDE_RIGHT, row)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1);
|
||||
|
||||
return result;
|
||||
return 2 * grid.getAlphaX()(row, col) *
|
||||
bc.getBoundaryElementValue(BC_SIDE_RIGHT, row) -
|
||||
(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
|
||||
grid.getAlphaX()(row, col)) +
|
||||
2 * grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
grid.getConcentrations()(row, col - 1);
|
||||
}
|
||||
|
||||
|
||||
// calculates horizontal change on one cell with a closed right boundary
|
||||
static double calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
static inline double
|
||||
calcHorizontalChangeRightBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
|
||||
double result =
|
||||
- (calcAlphaIntercell(grid.getAlphaX()(row, col-1), grid.getAlphaX()(row, col))
|
||||
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row, col-1)));
|
||||
|
||||
return result;
|
||||
return -(calcAlphaIntercell(grid.getAlphaX()(row, col - 1),
|
||||
grid.getAlphaX()(row, col)) *
|
||||
(grid.getConcentrations()(row, col) -
|
||||
grid.getConcentrations()(row, col - 1)));
|
||||
}
|
||||
|
||||
|
||||
// checks boundary condition type for a cell on the right edge of grid
|
||||
static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc,
|
||||
int &row, int &col) {
|
||||
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CONSTANT) {
|
||||
return calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col);
|
||||
} else if (bc.getBoundaryElementType(BC_SIDE_RIGHT, col) == BC_TYPE_CLOSED) {
|
||||
@ -131,37 +128,35 @@ static double calcHorizontalChangeRightBoundary(Grid &grid, Boundary &bc, int &r
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// calculates vertical change on one cell with a constant top boundary
|
||||
static double calcVerticalChangeTopBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcVerticalChangeTopBoundaryConstant(Grid &grid,
|
||||
Boundary &bc,
|
||||
int &row, int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
|
||||
+ 2 * grid.getAlphaY()(row, col)
|
||||
)
|
||||
* grid.getConcentrations()(row, col)
|
||||
+ 2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_TOP, col);
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
|
||||
grid.getAlphaY()(row, col)) *
|
||||
grid.getConcentrations()(row + 1, col) -
|
||||
(calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
|
||||
grid.getAlphaY()(row, col)) +
|
||||
2 * grid.getAlphaY()(row, col)) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
2 * grid.getAlphaY()(row, col) *
|
||||
bc.getBoundaryElementValue(BC_SIDE_TOP, col);
|
||||
}
|
||||
|
||||
|
||||
// calculates vertical change on one cell with a closed top boundary
|
||||
static double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
static inline double calcVerticalChangeTopBoundaryClosed(Grid &grid, int &row,
|
||||
int &col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getConcentrations()(row, col))
|
||||
* (grid.getConcentrations()(row+1, col) - grid.getConcentrations()(row, col));
|
||||
|
||||
return result;
|
||||
return calcAlphaIntercell(grid.getAlphaY()(row + 1, col),
|
||||
grid.getConcentrations()(row, col)) *
|
||||
(grid.getConcentrations()(row + 1, col) -
|
||||
grid.getConcentrations()(row, col));
|
||||
}
|
||||
|
||||
|
||||
// checks boundary condition type for a cell on the top edge of grid
|
||||
static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc,
|
||||
int &row, int &col) {
|
||||
if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CONSTANT) {
|
||||
return calcVerticalChangeTopBoundaryConstant(grid, bc, row, col);
|
||||
} else if (bc.getBoundaryElementType(BC_SIDE_TOP, col) == BC_TYPE_CLOSED) {
|
||||
@ -171,37 +166,36 @@ static double calcVerticalChangeTopBoundary(Grid &grid, Boundary &bc, int &row,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// calculates vertical change on one cell with a constant bottom boundary
|
||||
static double calcVerticalChangeBottomBoundaryConstant(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcVerticalChangeBottomBoundaryConstant(Grid &grid,
|
||||
Boundary &bc,
|
||||
int &row,
|
||||
int &col) {
|
||||
|
||||
double result =
|
||||
2 * grid.getAlphaY()(row, col) * bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
|
||||
+ 2 * grid.getAlphaY()(row, col)
|
||||
)
|
||||
* grid.getConcentrations()(row, col)
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
|
||||
* grid.getConcentrations()(row-1,col);
|
||||
|
||||
return result;
|
||||
return 2 * grid.getAlphaY()(row, col) *
|
||||
bc.getBoundaryElementValue(BC_SIDE_BOTTOM, col) -
|
||||
(calcAlphaIntercell(grid.getAlphaY()(row, col),
|
||||
grid.getAlphaY()(row - 1, col)) +
|
||||
2 * grid.getAlphaY()(row, col)) *
|
||||
grid.getConcentrations()(row, col) +
|
||||
calcAlphaIntercell(grid.getAlphaY()(row, col),
|
||||
grid.getAlphaY()(row - 1, col)) *
|
||||
grid.getConcentrations()(row - 1, col);
|
||||
}
|
||||
|
||||
|
||||
// calculates vertical change on one cell with a closed bottom boundary
|
||||
static double calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
static inline double
|
||||
calcVerticalChangeBottomBoundaryClosed(Grid &grid, int &row, int &col) {
|
||||
|
||||
double result =
|
||||
- (calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
|
||||
* (grid.getConcentrations()(row, col) - grid.getConcentrations()(row-1, col)));
|
||||
|
||||
return result;
|
||||
return -(calcAlphaIntercell(grid.getAlphaY()(row, col),
|
||||
grid.getAlphaY()(row - 1, col)) *
|
||||
(grid.getConcentrations()(row, col) -
|
||||
grid.getConcentrations()(row - 1, col)));
|
||||
}
|
||||
|
||||
|
||||
// checks boundary condition type for a cell on the bottom edge of grid
|
||||
static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc, int &row, int &col) {
|
||||
static inline double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc,
|
||||
int &row, int &col) {
|
||||
if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CONSTANT) {
|
||||
return calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col);
|
||||
} else if (bc.getBoundaryElementType(BC_SIDE_BOTTOM, col) == BC_TYPE_CLOSED) {
|
||||
@ -211,79 +205,66 @@ static double calcVerticalChangeBottomBoundary(Grid &grid, Boundary &bc, int &ro
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// FTCS solution for 1D grid
|
||||
static void FTCS_1D(Grid &grid, Boundary &bc, double ×tep) {
|
||||
int colMax = grid.getCol();
|
||||
double deltaCol = grid.getDeltaCol();
|
||||
|
||||
// matrix for concentrations at time t+1
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(1, colMax, 0);
|
||||
Eigen::MatrixXd concentrations_t1 = Eigen::MatrixXd::Constant(1, colMax, 0);
|
||||
|
||||
// only one row in 1D case -> row constant at index 0
|
||||
int row = 0;
|
||||
|
||||
// inner cells
|
||||
// independent of boundary condition type
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int col = 1; col < colMax - 1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChange(grid, row, col));
|
||||
}
|
||||
|
||||
// left boundary; hold column constant at index 0
|
||||
int col = 0;
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeLeftBoundary(grid, bc, row, col));
|
||||
|
||||
// right boundary; hold column constant at max index
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
col = colMax - 1;
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeRightBoundary(grid, bc, row, col));
|
||||
|
||||
// overwrite obsolete concentrations
|
||||
grid.setConcentrations(concentrations_t1);
|
||||
}
|
||||
|
||||
|
||||
// FTCS solution for 2D grid
|
||||
static void FTCS_2D(Grid &grid, Boundary &bc, double ×tep, int numThreads) {
|
||||
static void FTCS_2D(Grid &grid, Boundary &bc, double ×tep,
|
||||
int numThreads) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double deltaRow = grid.getDeltaRow();
|
||||
double deltaCol = grid.getDeltaCol();
|
||||
|
||||
// matrix for concentrations at time t+1
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
Eigen::MatrixXd concentrations_t1 =
|
||||
Eigen::MatrixXd::Constant(rowMax, colMax, 0);
|
||||
|
||||
// inner cells
|
||||
// these are independent of the boundary condition type
|
||||
// omp_set_num_threads(10);
|
||||
#pragma omp parallel for num_threads(numThreads)
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int row = 1; row < rowMax - 1; row++) {
|
||||
for (int col = 1; col < colMax - 1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChange(grid, row, col)) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChange(grid, row, col));
|
||||
}
|
||||
}
|
||||
|
||||
@ -292,144 +273,109 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double ×tep, int numThreads)
|
||||
// hold column constant at index 0
|
||||
int col = 0;
|
||||
#pragma omp parallel for num_threads(numThreads)
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int row = 1; row < rowMax - 1; row++) {
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
|
||||
}
|
||||
|
||||
// right without corners / looping over rows
|
||||
// hold column constant at max index
|
||||
col = colMax-1;
|
||||
col = colMax - 1;
|
||||
#pragma omp parallel for num_threads(numThreads)
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int row = 1; row < rowMax - 1; row++) {
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) * (calcVerticalChange(grid, row, col));
|
||||
}
|
||||
|
||||
|
||||
// top without corners / looping over columns
|
||||
// hold row constant at index 0
|
||||
int row = 0;
|
||||
#pragma omp parallel for num_threads(numThreads)
|
||||
for (int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int col = 1; col < colMax - 1; col++) {
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeTopBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChange(grid, row, col));
|
||||
}
|
||||
|
||||
// bottom without corners / looping over columns
|
||||
// hold row constant at max index
|
||||
row = rowMax-1;
|
||||
row = rowMax - 1;
|
||||
#pragma omp parallel for num_threads(numThreads)
|
||||
for(int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
for (int col = 1; col < colMax - 1; col++) {
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeBottomBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChange(grid, row, col));
|
||||
}
|
||||
|
||||
// corner top left
|
||||
// hold row and column constant at 0
|
||||
row = 0;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeTopBoundary(grid, bc, row, col));
|
||||
|
||||
// corner top right
|
||||
// hold row constant at 0 and column constant at max index
|
||||
row = 0;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
col = colMax - 1;
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeTopBoundary(grid, bc, row, col));
|
||||
|
||||
// corner bottom left
|
||||
// hold row constant at max index and column constant at 0
|
||||
row = rowMax-1;
|
||||
row = rowMax - 1;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeLeftBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
|
||||
|
||||
// corner bottom right
|
||||
// hold row and column constant at max index
|
||||
row = rowMax-1;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundary(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundary(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
row = rowMax - 1;
|
||||
col = colMax - 1;
|
||||
concentrations_t1(row, col) =
|
||||
grid.getConcentrations()(row, col) +
|
||||
timestep / (deltaCol * deltaCol) *
|
||||
(calcHorizontalChangeRightBoundary(grid, bc, row, col)) +
|
||||
timestep / (deltaRow * deltaRow) *
|
||||
(calcVerticalChangeBottomBoundary(grid, bc, row, col));
|
||||
|
||||
// overwrite obsolete concentrations
|
||||
grid.setConcentrations(concentrations_t1);
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
// entry point; differentiate between 1D and 2D grid
|
||||
static void FTCS(Grid &grid, Boundary &bc, double ×tep, int &numThreads) {
|
||||
void FTCS(Grid &grid, Boundary &bc, double ×tep, int &numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
FTCS_1D(grid, bc, timestep);
|
||||
} else if (grid.getDim() == 2) {
|
||||
FTCS_2D(grid, bc, timestep, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
|
||||
123
src/Grid.cpp
123
src/Grid.cpp
@ -1,137 +1,140 @@
|
||||
#include "TugUtils.hpp"
|
||||
#include <tug/Grid.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <tug/Grid.hpp>
|
||||
|
||||
Grid::Grid(int length) {
|
||||
constexpr double MAT_INIT_VAL = 0;
|
||||
|
||||
Grid::Grid(int length) : col(length), domainCol(length) {
|
||||
if (length <= 3) {
|
||||
throw_invalid_argument("Given grid length too small. Must be greater than 3.");
|
||||
throw_invalid_argument(
|
||||
"Given grid length too small. Must be greater than 3.");
|
||||
}
|
||||
|
||||
this->row = 1;
|
||||
this->col = length;
|
||||
this->domainCol = length; // default: same size as length
|
||||
this->deltaCol = double(this->domainCol)/double(this->col); // -> 1
|
||||
this->dim = 1;
|
||||
this->deltaCol = double(this->domainCol) / double(this->col); // -> 1
|
||||
|
||||
this->concentrations = MatrixXd::Constant(1, col, 20);
|
||||
this->alphaX = MatrixXd::Constant(1, col, 1);
|
||||
this->concentrations = Eigen::MatrixXd::Constant(1, col, MAT_INIT_VAL);
|
||||
this->alphaX = Eigen::MatrixXd::Constant(1, col, MAT_INIT_VAL);
|
||||
}
|
||||
|
||||
Grid::Grid(int row, int col) {
|
||||
Grid::Grid(int _row, int _col)
|
||||
: row(_row), col(_col), domainRow(_row), domainCol(_col) {
|
||||
if (row <= 3 || col <= 3) {
|
||||
throw_invalid_argument("Given grid dimensions too small. Must each be greater than 3.");
|
||||
throw_invalid_argument(
|
||||
"Given grid dimensions too small. Must each be greater than 3.");
|
||||
}
|
||||
|
||||
this->row = row;
|
||||
this->col = col;
|
||||
this->domainRow = row; // default: same size as row
|
||||
this->domainCol = col; // default: same size as col
|
||||
this->deltaRow = double(this->domainRow)/double(this->row); // -> 1
|
||||
this->deltaCol = double(this->domainCol)/double(this->col); // -> 1
|
||||
this->dim = 2;
|
||||
this->deltaRow = double(this->domainRow) / double(this->row); // -> 1
|
||||
this->deltaCol = double(this->domainCol) / double(this->col); // -> 1
|
||||
|
||||
this->concentrations = MatrixXd::Constant(row, col, 20);
|
||||
this->alphaX = MatrixXd::Constant(row, col, 1);
|
||||
this->alphaY = MatrixXd::Constant(row, col, 1);
|
||||
this->concentrations = Eigen::MatrixXd::Constant(row, col, MAT_INIT_VAL);
|
||||
this->alphaX = Eigen::MatrixXd::Constant(row, col, MAT_INIT_VAL);
|
||||
this->alphaY = Eigen::MatrixXd::Constant(row, col, MAT_INIT_VAL);
|
||||
}
|
||||
|
||||
void Grid::setConcentrations(MatrixXd concentrations) {
|
||||
if (concentrations.rows() != this->row || concentrations.cols() != this->col) {
|
||||
throw_invalid_argument("Given matrix of concentrations mismatch with Grid dimensions!");
|
||||
void Grid::setConcentrations(const Eigen::MatrixXd &concentrations) {
|
||||
if (concentrations.rows() != this->row ||
|
||||
concentrations.cols() != this->col) {
|
||||
throw_invalid_argument(
|
||||
"Given matrix of concentrations mismatch with Grid dimensions!");
|
||||
}
|
||||
|
||||
this->concentrations = concentrations;
|
||||
}
|
||||
|
||||
MatrixXd Grid::getConcentrations() {
|
||||
return this->concentrations;
|
||||
}
|
||||
|
||||
void Grid::setAlpha(MatrixXd alpha) {
|
||||
void Grid::setAlpha(const Eigen::MatrixXd &alpha) {
|
||||
if (dim != 1) {
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably use 2D setter function!");
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably "
|
||||
"use 2D setter function!");
|
||||
}
|
||||
if (alpha.rows() != 1 || alpha.cols() != this->col) {
|
||||
throw_invalid_argument("Given matrix of alpha coefficients mismatch with Grid dimensions!");
|
||||
throw_invalid_argument(
|
||||
"Given matrix of alpha coefficients mismatch with Grid dimensions!");
|
||||
}
|
||||
|
||||
this->alphaX = alpha;
|
||||
}
|
||||
|
||||
void Grid::setAlpha(MatrixXd alphaX, MatrixXd alphaY) {
|
||||
void Grid::setAlpha(const Eigen::MatrixXd &alphaX,
|
||||
const Eigen::MatrixXd &alphaY) {
|
||||
if (dim != 2) {
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably use 1D setter function!");
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably "
|
||||
"use 1D setter function!");
|
||||
}
|
||||
if (alphaX.rows() != this->row || alphaX.cols() != this->col) {
|
||||
throw_invalid_argument("Given matrix of alpha coefficients in x-direction mismatch with GRid dimensions!");
|
||||
throw_invalid_argument("Given matrix of alpha coefficients in x-direction "
|
||||
"mismatch with GRid dimensions!");
|
||||
}
|
||||
if (alphaY.rows() != this->row || alphaY.cols() != this->col) {
|
||||
throw_invalid_argument("Given matrix of alpha coefficients in y-direction mismatch with GRid dimensions!");
|
||||
throw_invalid_argument("Given matrix of alpha coefficients in y-direction "
|
||||
"mismatch with GRid dimensions!");
|
||||
}
|
||||
|
||||
this->alphaX = alphaX;
|
||||
this->alphaY = alphaY;
|
||||
}
|
||||
|
||||
MatrixXd Grid::getAlpha() {
|
||||
const Eigen::MatrixXd &Grid::getAlpha() {
|
||||
if (dim != 1) {
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably use either getAlphaX() or getAlphaY()!");
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably "
|
||||
"use either getAlphaX() or getAlphaY()!");
|
||||
}
|
||||
|
||||
return this->alphaX;
|
||||
}
|
||||
|
||||
MatrixXd Grid::getAlphaX() {
|
||||
const Eigen::MatrixXd &Grid::getAlphaX() {
|
||||
if (dim != 2) {
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
|
||||
throw_invalid_argument(
|
||||
"Grid is not two dimensional, you should probably use getAlpha()!");
|
||||
}
|
||||
|
||||
return this->alphaX;
|
||||
}
|
||||
|
||||
MatrixXd Grid::getAlphaY() {
|
||||
const Eigen::MatrixXd &Grid::getAlphaY() {
|
||||
if (dim != 2) {
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably use getAlpha()!");
|
||||
throw_invalid_argument(
|
||||
"Grid is not two dimensional, you should probably use getAlpha()!");
|
||||
}
|
||||
|
||||
return this->alphaY;
|
||||
}
|
||||
|
||||
int Grid::getDim() {
|
||||
return dim;
|
||||
}
|
||||
int Grid::getDim() { return dim; }
|
||||
|
||||
int Grid::getLength() {
|
||||
if (dim != 1) {
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably use getRow() or getCol()!");
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably "
|
||||
"use getRow() or getCol()!");
|
||||
}
|
||||
|
||||
return col;
|
||||
}
|
||||
|
||||
int Grid::getRow() {
|
||||
return row;
|
||||
}
|
||||
int Grid::getRow() { return row; }
|
||||
|
||||
int Grid::getCol() {
|
||||
return col;
|
||||
}
|
||||
int Grid::getCol() { return col; }
|
||||
|
||||
void Grid::setDomain(double domainLength) {
|
||||
if (dim != 1) {
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probaly use the 2D domain setter!");
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probaly "
|
||||
"use the 2D domain setter!");
|
||||
}
|
||||
if (domainLength <= 0) {
|
||||
throw_invalid_argument("Given domain length is not positive!");
|
||||
}
|
||||
|
||||
this->domainCol = domainLength;
|
||||
this->deltaCol = double(this->domainCol)/double(this->col);
|
||||
this->deltaCol = double(this->domainCol) / double(this->col);
|
||||
}
|
||||
|
||||
void Grid::setDomain(double domainRow, double domainCol) {
|
||||
if (dim != 2) {
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably use the 1D domain setter!");
|
||||
throw_invalid_argument("Grid is not two dimensional, you should probably "
|
||||
"use the 1D domain setter!");
|
||||
}
|
||||
if (domainRow <= 0 || domainCol <= 0) {
|
||||
throw_invalid_argument("Given domain size is not positive!");
|
||||
@ -139,25 +142,25 @@ void Grid::setDomain(double domainRow, double domainCol) {
|
||||
|
||||
this->domainRow = domainRow;
|
||||
this->domainCol = domainCol;
|
||||
this->deltaRow = double(this->domainRow)/double(this->row);
|
||||
this->deltaCol = double(this->domainCol)/double(this->col);
|
||||
this->deltaRow = double(this->domainRow) / double(this->row);
|
||||
this->deltaCol = double(this->domainCol) / double(this->col);
|
||||
}
|
||||
|
||||
double Grid::getDelta() {
|
||||
if (dim != 1) {
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably use the 2D delta getters");
|
||||
throw_invalid_argument("Grid is not one dimensional, you should probably "
|
||||
"use the 2D delta getters");
|
||||
}
|
||||
|
||||
return this->deltaCol;
|
||||
}
|
||||
|
||||
double Grid::getDeltaCol() {
|
||||
return this->deltaCol;
|
||||
}
|
||||
double Grid::getDeltaCol() { return this->deltaCol; }
|
||||
|
||||
double Grid::getDeltaRow() {
|
||||
if (dim != 2) {
|
||||
throw_invalid_argument("Grid is not two dimensional, meaning there is no delta in y-direction!");
|
||||
throw_invalid_argument("Grid is not two dimensional, meaning there is no "
|
||||
"delta in y-direction!");
|
||||
}
|
||||
|
||||
return this->deltaRow;
|
||||
|
||||
28
src/Schemes.hpp
Normal file
28
src/Schemes.hpp
Normal file
@ -0,0 +1,28 @@
|
||||
/**
|
||||
* @file BTCSv2.cpp
|
||||
* @brief Implementation of heterogenous BTCS (backward time-centered space)
|
||||
* solution of diffusion equation in 1D and 2D space. Internally the
|
||||
* alternating-direction implicit (ADI) method is used. Version 2, because
|
||||
* Version 1 was an implementation for the homogeneous BTCS solution.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef SCHEMES_H_
|
||||
#define SCHEMES_H_
|
||||
|
||||
#include "TugUtils.hpp"
|
||||
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <tug/Grid.hpp>
|
||||
|
||||
// entry point; differentiate between 1D and 2D grid
|
||||
extern void FTCS(Grid &grid, Boundary &bc, double ×tep, int &numThreads);
|
||||
|
||||
// entry point for EigenLU solver; differentiate between 1D and 2D grid
|
||||
extern void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads);
|
||||
|
||||
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
|
||||
extern void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep,
|
||||
int numThreads);
|
||||
|
||||
#endif // SCHEMES_H_
|
||||
@ -1,34 +1,19 @@
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
|
||||
#include <tug/Simulation.hpp>
|
||||
#include <omp.h>
|
||||
|
||||
#include <fstream>
|
||||
#include "Schemes.hpp"
|
||||
#include "TugUtils.hpp"
|
||||
|
||||
#ifndef SIMULATION_H_
|
||||
#define SIMULATION_H_
|
||||
|
||||
#include "BTCSv2.cpp"
|
||||
|
||||
|
||||
using namespace std;
|
||||
|
||||
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
|
||||
|
||||
this->approach = approach;
|
||||
this->solver = THOMAS_ALGORITHM_SOLVER;
|
||||
this->timestep = -1; // error per default
|
||||
this->iterations = -1;
|
||||
this->innerIterations = 1;
|
||||
this->numThreads = omp_get_num_procs();
|
||||
|
||||
this->csv_output = CSV_OUTPUT_OFF;
|
||||
this->console_output = CONSOLE_OUTPUT_OFF;
|
||||
this->time_measure = TIME_MEASURE_OFF;
|
||||
}
|
||||
Simulation::Simulation(Grid &_grid, Boundary &_bc, APPROACH _approach)
|
||||
: grid(_grid), bc(_bc), approach(_approach) {}
|
||||
|
||||
void Simulation::setOutputCSV(CSV_OUTPUT csv_output) {
|
||||
if (csv_output < CSV_OUTPUT_OFF && csv_output > CSV_OUTPUT_VERBOSE) {
|
||||
@ -39,7 +24,8 @@ void Simulation::setOutputCSV(CSV_OUTPUT csv_output) {
|
||||
}
|
||||
|
||||
void Simulation::setOutputConsole(CONSOLE_OUTPUT console_output) {
|
||||
if (console_output < CONSOLE_OUTPUT_OFF && console_output > CONSOLE_OUTPUT_VERBOSE) {
|
||||
if (console_output < CONSOLE_OUTPUT_OFF &&
|
||||
console_output > CONSOLE_OUTPUT_VERBOSE) {
|
||||
throw_invalid_argument("Invalid console output option given!");
|
||||
}
|
||||
|
||||
@ -55,76 +41,81 @@ void Simulation::setTimeMeasure(TIME_MEASURE time_measure) {
|
||||
}
|
||||
|
||||
void Simulation::setTimestep(double timestep) {
|
||||
if(timestep <= 0){
|
||||
if (timestep <= 0) {
|
||||
throw_invalid_argument("Timestep has to be greater than zero.");
|
||||
}
|
||||
|
||||
if (approach == FTCS_APPROACH) {
|
||||
if (approach == FTCS_APPROACH || approach == CRANK_NICOLSON_APPROACH) {
|
||||
|
||||
double deltaRowSquare;
|
||||
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
||||
double minDeltaSquare;
|
||||
double maxAlphaX, maxAlphaY, maxAlpha;
|
||||
string dim;
|
||||
const double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
||||
// will be 0 if 1D, else ...
|
||||
const double deltaRowSquare = grid.getDim() != 1
|
||||
? grid.getDeltaRow() * grid.getDeltaRow()
|
||||
: deltaColSquare;
|
||||
const double minDeltaSquare =
|
||||
(deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
|
||||
|
||||
double maxAlpha = std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
// determine maximum alpha
|
||||
if (grid.getDim() == 2) {
|
||||
dim = "2D";
|
||||
|
||||
deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
|
||||
|
||||
minDeltaSquare = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
|
||||
maxAlphaX = grid.getAlphaX().maxCoeff();
|
||||
maxAlphaY = grid.getAlphaY().maxCoeff();
|
||||
const double maxAlphaX = grid.getAlphaX().maxCoeff();
|
||||
const double maxAlphaY = grid.getAlphaY().maxCoeff();
|
||||
maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
|
||||
|
||||
} else if (grid.getDim() == 1) {
|
||||
dim = "1D";
|
||||
minDeltaSquare = deltaColSquare;
|
||||
maxAlpha = grid.getAlpha().maxCoeff();
|
||||
|
||||
} else {
|
||||
throw_invalid_argument("Critical error: Undefined number of dimensions!");
|
||||
}
|
||||
|
||||
const std::string dim = std::to_string(grid.getDim()) + "D";
|
||||
|
||||
// Courant-Friedrichs-Lewy condition
|
||||
double cfl = minDeltaSquare / (4*maxAlpha);
|
||||
double cfl = minDeltaSquare / (4 * maxAlpha);
|
||||
|
||||
// stability equation from Wikipedia; might be useful if applied cfl does not work in some cases
|
||||
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare)));
|
||||
// stability equation from Wikipedia; might be useful if applied cfl does
|
||||
// not work in some cases double CFL_Wiki = 1 / (4 * maxAlpha *
|
||||
// ((1/deltaRowSquare) + (1/deltaColSquare)));
|
||||
|
||||
cout << "FTCS_" << dim << " :: CFL condition MDL: " << cfl << endl;
|
||||
cout << "FTCS_" << dim << " :: required dt=" << timestep << endl;
|
||||
const std::string &approachPrefix = this->approach_names[approach];
|
||||
std::cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl
|
||||
<< std::endl;
|
||||
std::cout << approachPrefix << "_" << dim << " :: required dt=" << timestep
|
||||
<< std::endl;
|
||||
|
||||
if (timestep > cfl) {
|
||||
|
||||
this->innerIterations = (int)ceil(timestep / cfl);
|
||||
this->timestep = timestep / (double)innerIterations;
|
||||
|
||||
cerr << "Warning :: Timestep was adjusted, because of stability "
|
||||
std::cerr << "Warning :: Timestep was adjusted, because of stability "
|
||||
"conditions. Time duration was approximately preserved by "
|
||||
"adjusting internal number of iterations."
|
||||
<< endl;
|
||||
cout << "FTCS_" << dim << " :: Required " << this->innerIterations
|
||||
<< " inner iterations with dt=" << this->timestep << endl;
|
||||
<< std::endl;
|
||||
std::cout << approachPrefix << "_" << dim << " :: Required "
|
||||
<< this->innerIterations
|
||||
<< " inner iterations with dt=" << this->timestep << std::endl;
|
||||
|
||||
} else {
|
||||
|
||||
this->timestep = timestep;
|
||||
cout << "FTCS_" << dim << " :: No inner iterations required, dt=" << timestep << endl;
|
||||
|
||||
std::cout << approachPrefix << "_" << dim
|
||||
<< " :: No inner iterations required, dt=" << timestep
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
} else {
|
||||
this->timestep = timestep;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
double Simulation::getTimestep() {
|
||||
return this->timestep;
|
||||
}
|
||||
double Simulation::getTimestep() { return this->timestep; }
|
||||
|
||||
void Simulation::setIterations(int iterations) {
|
||||
if(iterations <= 0){
|
||||
if (iterations <= 0) {
|
||||
throw_invalid_argument("Number of iterations must be greater than zero.");
|
||||
}
|
||||
this->iterations = iterations;
|
||||
@ -132,50 +123,55 @@ void Simulation::setIterations(int iterations) {
|
||||
|
||||
void Simulation::setSolver(SOLVER solver) {
|
||||
if (this->approach == FTCS_APPROACH) {
|
||||
cerr << "Warning: Solver was set, but FTCS approach initialized. Setting the solver "
|
||||
std::cerr
|
||||
<< "Warning: Solver was set, but FTCS approach initialized. Setting "
|
||||
"the solver "
|
||||
"is thus without effect."
|
||||
<< endl;
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
this->solver = solver;
|
||||
}
|
||||
|
||||
void Simulation::setNumberThreads(int numThreads){
|
||||
if(numThreads>0 && numThreads<=omp_get_num_procs()){
|
||||
this->numThreads=numThreads;
|
||||
}
|
||||
else{
|
||||
void Simulation::setNumberThreads(int numThreads) {
|
||||
if (numThreads > 0 && numThreads <= omp_get_num_procs()) {
|
||||
this->numThreads = numThreads;
|
||||
} else {
|
||||
int maxThreadNumber = omp_get_num_procs();
|
||||
std::string outputMessage =
|
||||
"Number of threads exceeds the number of processor cores (" +
|
||||
std::to_string(maxThreadNumber) + ") or is less than 1.";
|
||||
|
||||
throw_invalid_argument("Number of threads exceeds the number of processor cores or is less than 1.");
|
||||
throw_invalid_argument(outputMessage);
|
||||
}
|
||||
}
|
||||
|
||||
int Simulation::getIterations() {
|
||||
return this->iterations;
|
||||
}
|
||||
int Simulation::getIterations() { return this->iterations; }
|
||||
|
||||
void Simulation::printConcentrationsConsole() {
|
||||
cout << grid.getConcentrations() << endl;
|
||||
cout << endl;
|
||||
std::cout << grid.getConcentrations() << std::endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
string Simulation::createCSVfile() {
|
||||
ofstream file;
|
||||
std::string Simulation::createCSVfile() {
|
||||
std::ofstream file;
|
||||
int appendIdent = 0;
|
||||
string appendIdentString;
|
||||
std::string appendIdentString;
|
||||
|
||||
string approachString = (approach == 0) ? "FTCS" : "BTCS";
|
||||
string row = to_string(grid.getRow());
|
||||
string col = to_string(grid.getCol());
|
||||
string numIterations = to_string(iterations);
|
||||
// string approachString = (approach == 0) ? "FTCS" : "BTCS";
|
||||
const std::string &approachString = this->approach_names[approach];
|
||||
std::string row = std::to_string(grid.getRow());
|
||||
std::string col = std::to_string(grid.getCol());
|
||||
std::string numIterations = std::to_string(iterations);
|
||||
|
||||
string filename = approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
|
||||
std::string filename =
|
||||
approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
|
||||
|
||||
while (filesystem::exists(filename)) {
|
||||
while (std::filesystem::exists(filename)) {
|
||||
appendIdent += 1;
|
||||
appendIdentString = to_string(appendIdent);
|
||||
filename = approachString + "_" + row + "_" + col + "_" + numIterations + "-" + appendIdentString + ".csv";
|
||||
appendIdentString = std::to_string(appendIdent);
|
||||
filename = approachString + "_" + row + "_" + col + "_" + numIterations +
|
||||
"-" + appendIdentString + ".csv";
|
||||
}
|
||||
|
||||
file.open(filename);
|
||||
@ -183,15 +179,20 @@ string Simulation::createCSVfile() {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// adds lines at the beginning of verbose output csv that represent the boundary conditions and their values
|
||||
// -1 in case of closed boundary
|
||||
// adds lines at the beginning of verbose output csv that represent the
|
||||
// boundary conditions and their values -1 in case of closed boundary
|
||||
if (csv_output == CSV_OUTPUT_XTREME) {
|
||||
IOFormat one_row(StreamPrecision, DontAlignCols, "", " ");
|
||||
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row) << endl; // boundary left
|
||||
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row) << endl; // boundary right
|
||||
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row) << endl; // boundary top
|
||||
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row) << endl; // boundary bottom
|
||||
file << endl << endl;
|
||||
Eigen::IOFormat one_row(Eigen::StreamPrecision, Eigen::DontAlignCols, "",
|
||||
" ");
|
||||
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row)
|
||||
<< std::endl; // boundary left
|
||||
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row)
|
||||
<< std::endl; // boundary right
|
||||
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row)
|
||||
<< std::endl; // boundary top
|
||||
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row)
|
||||
<< std::endl; // boundary bottom
|
||||
file << std::endl << std::endl;
|
||||
}
|
||||
|
||||
file.close();
|
||||
@ -199,17 +200,17 @@ string Simulation::createCSVfile() {
|
||||
return filename;
|
||||
}
|
||||
|
||||
void Simulation::printConcentrationsCSV(string filename) {
|
||||
ofstream file;
|
||||
void Simulation::printConcentrationsCSV(const std::string &filename) {
|
||||
std::ofstream file;
|
||||
|
||||
file.open(filename, std::ios_base::app);
|
||||
if (!file) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
IOFormat do_not_align(StreamPrecision, DontAlignCols);
|
||||
file << grid.getConcentrations().format(do_not_align) << endl;
|
||||
file << endl << endl;
|
||||
Eigen::IOFormat do_not_align(Eigen::StreamPrecision, Eigen::DontAlignCols);
|
||||
file << grid.getConcentrations().format(do_not_align) << std::endl;
|
||||
file << std::endl << std::endl;
|
||||
file.close();
|
||||
}
|
||||
|
||||
@ -221,7 +222,7 @@ void Simulation::run() {
|
||||
throw_invalid_argument("Number of iterations are not set!");
|
||||
}
|
||||
|
||||
string filename;
|
||||
std::string filename;
|
||||
if (this->console_output > CONSOLE_OUTPUT_OFF) {
|
||||
printConcentrationsConsole();
|
||||
}
|
||||
@ -244,8 +245,8 @@ void Simulation::run() {
|
||||
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
|
||||
|
||||
// if (i % (iterations * innerIterations / 100) == 0) {
|
||||
// double percentage = (double)i / ((double)iterations * (double)innerIterations) * 100;
|
||||
// if ((int)percentage % 10 == 0) {
|
||||
// double percentage = (double)i / ((double)iterations *
|
||||
// (double)innerIterations) * 100; if ((int)percentage % 10 == 0) {
|
||||
// cout << "Progress: " << percentage << "%" << endl;
|
||||
// }
|
||||
// }
|
||||
@ -263,7 +264,6 @@ void Simulation::run() {
|
||||
}
|
||||
|
||||
BTCS_LU(this->grid, this->bc, this->timestep, this->numThreads);
|
||||
|
||||
}
|
||||
} else if (solver == THOMAS_ALGORITHM_SOLVER) {
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
@ -275,18 +275,41 @@ void Simulation::run() {
|
||||
}
|
||||
|
||||
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
} else if (approach == CRANK_NICOLSON_APPROACH) { // Crank-Nicolson case
|
||||
|
||||
// TODO
|
||||
double beta = 0.5;
|
||||
|
||||
// TODO this implementation is very inefficient!
|
||||
// a separate implementation that sets up a specific tridiagonal matrix for
|
||||
// Crank-Nicolson would be better
|
||||
Eigen::MatrixXd concentrations;
|
||||
Eigen::MatrixXd concentrationsFTCS;
|
||||
Eigen::MatrixXd concentrationsResult;
|
||||
for (int i = 0; i < iterations * innerIterations; i++) {
|
||||
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
||||
printConcentrationsConsole();
|
||||
}
|
||||
if (csv_output >= CSV_OUTPUT_VERBOSE) {
|
||||
printConcentrationsCSV(filename);
|
||||
}
|
||||
|
||||
concentrations = grid.getConcentrations();
|
||||
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
|
||||
concentrationsFTCS = grid.getConcentrations();
|
||||
grid.setConcentrations(concentrations);
|
||||
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
|
||||
concentrationsResult =
|
||||
beta * concentrationsFTCS + (1 - beta) * grid.getConcentrations();
|
||||
grid.setConcentrations(concentrationsResult);
|
||||
}
|
||||
}
|
||||
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
|
||||
auto milliseconds =
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
|
||||
|
||||
if (this->console_output > CONSOLE_OUTPUT_OFF) {
|
||||
printConcentrationsConsole();
|
||||
@ -295,11 +318,9 @@ void Simulation::run() {
|
||||
printConcentrationsCSV(filename);
|
||||
}
|
||||
if (this->time_measure > TIME_MEASURE_OFF) {
|
||||
string approachString = (approach == 0) ? "FTCS" : "BTCS";
|
||||
string dimString = (grid.getDim() == 1) ? "-1D" : "-2D";
|
||||
cout << approachString << dimString << ":: run() finished in " << milliseconds.count() << "ms" << endl;
|
||||
const std::string &approachString = this->approach_names[approach];
|
||||
const std::string dimString = std::to_string(grid.getDim()) + "D";
|
||||
std::cout << approachString << dimString << ":: run() finished in "
|
||||
<< milliseconds.count() << "ms" << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
#ifndef BTCSUTILS_H_
|
||||
#define BTCSUTILS_H_
|
||||
#ifndef TUGUTILS_H_
|
||||
#define TUGUTILS_H_
|
||||
|
||||
#include <chrono>
|
||||
#include <stdexcept>
|
||||
@ -23,13 +23,15 @@
|
||||
start); \
|
||||
duration.count(); \
|
||||
})
|
||||
#endif // BTCSUTILS_H_
|
||||
|
||||
// calculates arithmetic or harmonic mean of alpha between two cells
|
||||
static double calcAlphaIntercell(double &alpha1, double &alpha2, bool useHarmonic = true) {
|
||||
template <typename T>
|
||||
constexpr T calcAlphaIntercell(T alpha1, T alpha2,
|
||||
bool useHarmonic = true) {
|
||||
if (useHarmonic) {
|
||||
return double(2) / ((double(1)/alpha1) + (double(1)/alpha2));
|
||||
return double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
|
||||
} else {
|
||||
return 0.5 * (alpha1 + alpha2);
|
||||
}
|
||||
}
|
||||
#endif // TUGUTILS_H_
|
||||
|
||||
@ -11,15 +11,15 @@ if(NOT DOCTEST_LIB)
|
||||
FetchContent_MakeAvailable(DocTest)
|
||||
endif()
|
||||
|
||||
add_executable(testTug setup.cpp testSimulation.cpp testGrid.cpp testFTCS.cpp)
|
||||
add_executable(testTug setup.cpp testSimulation.cpp testGrid.cpp testFTCS.cpp testBoundary.cpp)
|
||||
target_link_libraries(testTug doctest tug)
|
||||
|
||||
# get relative path of the CSV file
|
||||
get_filename_component(testSimulationCSV "FTCS_11_11_7000.csv" REALPATH CACHE)
|
||||
get_filename_component(testSimulationCSV "FTCS_11_11_7000.csv" REALPATH)
|
||||
# set relative path in header file
|
||||
configure_file(testSimulation.hpp.in testSimulation.hpp)
|
||||
# include test directory with generated header file from above
|
||||
target_include_directories(testTug PUBLIC "${CMAKE_CURRENT_BINARY_DIR}")
|
||||
target_include_directories(testTug PUBLIC "${CMAKE_CURRENT_BINARY_DIR}" "${PROJECT_SOURCE_DIR}/src")
|
||||
|
||||
add_custom_target(
|
||||
check
|
||||
|
||||
@ -1,47 +0,0 @@
|
||||
#include <ios>
|
||||
#include <iostream>
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Dense>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
MatrixXd CSV2Eigen(string file2Convert) {
|
||||
|
||||
vector<double> matrixEntries;
|
||||
|
||||
ifstream matrixDataFile(file2Convert);
|
||||
if (matrixDataFile.fail()) {
|
||||
throw invalid_argument("File probably non-existent!");
|
||||
}
|
||||
|
||||
string matrixRowString;
|
||||
string matrixEntry;
|
||||
int matrixRowNumber = 0;
|
||||
|
||||
while(getline(matrixDataFile, matrixRowString)){
|
||||
stringstream matrixRowStringStream(matrixRowString);
|
||||
while(getline(matrixRowStringStream, matrixEntry, ' ')){
|
||||
matrixEntries.push_back(stod(matrixEntry));
|
||||
}
|
||||
if (matrixRowString.length() > 1) {
|
||||
matrixRowNumber++;
|
||||
}
|
||||
}
|
||||
|
||||
return Map<Matrix<double, Dynamic, Dynamic, RowMajor>>(matrixEntries.data(), matrixRowNumber, matrixEntries.size() / matrixRowNumber);
|
||||
}
|
||||
|
||||
bool checkSimilarity(MatrixXd a, MatrixXd b, double precision=1e-5) {
|
||||
return a.isApprox(b, precision);
|
||||
}
|
||||
|
||||
bool checkSimilarityV2(MatrixXd a, MatrixXd b, double maxDiff) {
|
||||
|
||||
MatrixXd diff = a - b;
|
||||
double maxCoeff = diff.maxCoeff();
|
||||
return abs(maxCoeff) < maxDiff;
|
||||
}
|
||||
49
test/TestUtils.hpp
Normal file
49
test/TestUtils.hpp
Normal file
@ -0,0 +1,49 @@
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Dense>
|
||||
#include <fstream>
|
||||
#include <ios>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
|
||||
inline Eigen::MatrixXd CSV2Eigen(std::string file2Convert) {
|
||||
|
||||
std::vector<double> matrixEntries;
|
||||
|
||||
std::ifstream matrixDataFile(file2Convert);
|
||||
if (matrixDataFile.fail()) {
|
||||
throw std::invalid_argument("File probably non-existent!");
|
||||
}
|
||||
|
||||
std::string matrixRowString;
|
||||
std::string matrixEntry;
|
||||
int matrixRowNumber = 0;
|
||||
|
||||
while (getline(matrixDataFile, matrixRowString)) {
|
||||
std::stringstream matrixRowStringStream(matrixRowString);
|
||||
while (getline(matrixRowStringStream, matrixEntry, ' ')) {
|
||||
matrixEntries.push_back(stod(matrixEntry));
|
||||
}
|
||||
if (matrixRowString.length() > 1) {
|
||||
matrixRowNumber++;
|
||||
}
|
||||
}
|
||||
|
||||
return Eigen::Map<
|
||||
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
|
||||
matrixEntries.data(), matrixRowNumber,
|
||||
matrixEntries.size() / matrixRowNumber);
|
||||
}
|
||||
|
||||
inline bool checkSimilarity(Eigen::MatrixXd a, Eigen::MatrixXd b,
|
||||
double precision = 1e-5) {
|
||||
return a.isApprox(b, precision);
|
||||
}
|
||||
|
||||
inline bool checkSimilarityV2(Eigen::MatrixXd a, Eigen::MatrixXd b,
|
||||
double maxDiff) {
|
||||
|
||||
Eigen::MatrixXd diff = a - b;
|
||||
double maxCoeff = diff.maxCoeff();
|
||||
return abs(maxCoeff) < maxDiff;
|
||||
}
|
||||
@ -1,21 +1,23 @@
|
||||
#include <stdio.h>
|
||||
#include <doctest/doctest.h>
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <string>
|
||||
#include <typeinfo>
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <typeinfo>
|
||||
|
||||
TEST_CASE("BoundaryElement"){
|
||||
using namespace std;
|
||||
|
||||
SUBCASE("Closed case"){
|
||||
TEST_CASE("BoundaryElement") {
|
||||
|
||||
SUBCASE("Closed case") {
|
||||
BoundaryElement boundaryElementClosed = BoundaryElement();
|
||||
CHECK_NOTHROW(BoundaryElement());
|
||||
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
|
||||
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
|
||||
CHECK_EQ(boundaryElementClosed.getValue(), -1);
|
||||
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
|
||||
}
|
||||
|
||||
SUBCASE("Constant case"){
|
||||
SUBCASE("Constant case") {
|
||||
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
|
||||
CHECK_NOTHROW(BoundaryElement(0.1));
|
||||
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
|
||||
@ -25,18 +27,19 @@ TEST_CASE("BoundaryElement"){
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Boundary Class"){
|
||||
TEST_CASE("Boundary Class") {
|
||||
Grid grid1D = Grid(10);
|
||||
Grid grid2D = Grid(10, 12);
|
||||
Boundary boundary1D = Boundary(grid1D);
|
||||
Boundary boundary2D = Boundary(grid2D);
|
||||
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
|
||||
|
||||
SUBCASE("Boundaries 1D case"){
|
||||
SUBCASE("Boundaries 1D case") {
|
||||
CHECK_NOTHROW(Boundary boundary(grid1D));
|
||||
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
|
||||
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
|
||||
BC_TYPE_CLOSED);
|
||||
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
|
||||
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
|
||||
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
|
||||
@ -44,17 +47,20 @@ TEST_CASE("Boundary Class"){
|
||||
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
|
||||
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
|
||||
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
|
||||
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0),
|
||||
BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
|
||||
boundary1DVector[0].getType());
|
||||
}
|
||||
|
||||
SUBCASE("Boundaries 2D case"){
|
||||
SUBCASE("Boundaries 2D case") {
|
||||
CHECK_NOTHROW(Boundary boundary(grid1D));
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
|
||||
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
|
||||
BC_TYPE_CLOSED);
|
||||
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
|
||||
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
|
||||
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
|
||||
@ -62,7 +68,9 @@ TEST_CASE("Boundary Class"){
|
||||
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
|
||||
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
|
||||
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
|
||||
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0),
|
||||
BC_TYPE_CONSTANT);
|
||||
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(),
|
||||
boundary1DVector[0].getType());
|
||||
}
|
||||
}
|
||||
@ -1,5 +1,6 @@
|
||||
#include <TugUtils.hpp>
|
||||
|
||||
#include <doctest/doctest.h>
|
||||
#include <../src/FTCS.cpp>
|
||||
#include <limits>
|
||||
|
||||
TEST_CASE("Maths") {
|
||||
@ -7,13 +8,13 @@ TEST_CASE("Maths") {
|
||||
double alpha1 = 10;
|
||||
double alpha2 = 20;
|
||||
double average = 15;
|
||||
double harmonicMean = double(2) / ((double(1)/alpha1)+(double(1)/alpha2));
|
||||
double harmonicMean =
|
||||
double(2) / ((double(1) / alpha1) + (double(1) / alpha2));
|
||||
|
||||
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) - harmonicMean);
|
||||
// CHECK(difference < std::numeric_limits<double>::epsilon());
|
||||
// double difference = std::fabs(calcAlphaIntercell(alpha1, alpha2) -
|
||||
// harmonicMean); CHECK(difference <
|
||||
// std::numeric_limits<double>::epsilon());
|
||||
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2), harmonicMean);
|
||||
CHECK_EQ(calcAlphaIntercell(alpha1, alpha2, false), average);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
@ -1,6 +1,10 @@
|
||||
#include <Eigen/Core>
|
||||
#include <doctest/doctest.h>
|
||||
#include <tug/Grid.hpp>
|
||||
#include <Eigen/Core>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
|
||||
TEST_CASE("1D Grid, too small length") {
|
||||
int l = 2;
|
||||
@ -74,7 +78,7 @@ TEST_CASE("1D Grid") {
|
||||
CHECK_THROWS(grid.setDomain(d, d));
|
||||
|
||||
grid.setDomain(d);
|
||||
CHECK_EQ(grid.getDeltaCol(), double(d)/double(l));
|
||||
CHECK_EQ(grid.getDeltaCol(), double(d) / double(l));
|
||||
CHECK_THROWS(grid.getDeltaRow());
|
||||
|
||||
// set too small domain
|
||||
@ -112,13 +116,12 @@ TEST_CASE("2D Grid quadratic") {
|
||||
MatrixXd concentrations = MatrixXd::Constant(rc, rc, 2);
|
||||
CHECK_NOTHROW(grid.setConcentrations(concentrations));
|
||||
|
||||
|
||||
// false concentrations matrix
|
||||
MatrixXd wConcentrations = MatrixXd::Constant(rc, rc+3, 1);
|
||||
MatrixXd wConcentrations = MatrixXd::Constant(rc, rc + 3, 1);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
wConcentrations = MatrixXd::Constant(rc+3, rc, 4);
|
||||
wConcentrations = MatrixXd::Constant(rc + 3, rc, 4);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
wConcentrations = MatrixXd::Constant(rc+2, rc+4, 6);
|
||||
wConcentrations = MatrixXd::Constant(rc + 2, rc + 4, 6);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
}
|
||||
|
||||
@ -136,9 +139,9 @@ TEST_CASE("2D Grid quadratic") {
|
||||
CHECK_THROWS(grid.getAlpha());
|
||||
|
||||
// false alpha matrices
|
||||
alphax = MatrixXd::Constant(rc+3, rc+1, 3);
|
||||
alphax = MatrixXd::Constant(rc + 3, rc + 1, 3);
|
||||
CHECK_THROWS(grid.setAlpha(alphax, alphay));
|
||||
alphay = MatrixXd::Constant(rc+2, rc+1, 3);
|
||||
alphay = MatrixXd::Constant(rc + 2, rc + 1, 3);
|
||||
CHECK_THROWS(grid.setAlpha(alphax, alphay));
|
||||
}
|
||||
|
||||
@ -153,8 +156,8 @@ TEST_CASE("2D Grid quadratic") {
|
||||
CHECK_NOTHROW(grid.setDomain(dr, dc));
|
||||
|
||||
grid.setDomain(dr, dc);
|
||||
CHECK_EQ(grid.getDeltaCol(), double(dc)/double(rc));
|
||||
CHECK_EQ(grid.getDeltaRow(), double(dr)/double(rc));
|
||||
CHECK_EQ(grid.getDeltaCol(), double(dc) / double(rc));
|
||||
CHECK_EQ(grid.getDeltaRow(), double(dr) / double(rc));
|
||||
|
||||
// set too small domain
|
||||
dr = 0;
|
||||
@ -195,13 +198,12 @@ TEST_CASE("2D Grid non-quadratic") {
|
||||
MatrixXd concentrations = MatrixXd::Constant(r, c, 2);
|
||||
CHECK_NOTHROW(grid.setConcentrations(concentrations));
|
||||
|
||||
|
||||
// false concentrations matrix
|
||||
MatrixXd wConcentrations = MatrixXd::Constant(r, c+3, 6);
|
||||
MatrixXd wConcentrations = MatrixXd::Constant(r, c + 3, 6);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
wConcentrations = MatrixXd::Constant(r+3, c, 3);
|
||||
wConcentrations = MatrixXd::Constant(r + 3, c, 3);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
wConcentrations = MatrixXd::Constant(r+2, c+4, 2);
|
||||
wConcentrations = MatrixXd::Constant(r + 2, c + 4, 2);
|
||||
CHECK_THROWS(grid.setConcentrations(wConcentrations));
|
||||
}
|
||||
|
||||
@ -219,9 +221,9 @@ TEST_CASE("2D Grid non-quadratic") {
|
||||
CHECK_THROWS(grid.getAlpha());
|
||||
|
||||
// false alpha matrices
|
||||
alphax = MatrixXd::Constant(r+3, c+1, 3);
|
||||
alphax = MatrixXd::Constant(r + 3, c + 1, 3);
|
||||
CHECK_THROWS(grid.setAlpha(alphax, alphay));
|
||||
alphay = MatrixXd::Constant(r+2, c+1, 5);
|
||||
alphay = MatrixXd::Constant(r + 2, c + 1, 5);
|
||||
CHECK_THROWS(grid.setAlpha(alphax, alphay));
|
||||
}
|
||||
|
||||
@ -236,8 +238,8 @@ TEST_CASE("2D Grid non-quadratic") {
|
||||
CHECK_NOTHROW(grid.setDomain(dr, dc));
|
||||
|
||||
grid.setDomain(dr, dc);
|
||||
CHECK_EQ(grid.getDeltaCol(), double(dc)/double(c));
|
||||
CHECK_EQ(grid.getDeltaRow(), double(dr)/double(r));
|
||||
CHECK_EQ(grid.getDeltaCol(), double(dc) / double(c));
|
||||
CHECK_EQ(grid.getDeltaRow(), double(dr) / double(r));
|
||||
|
||||
// set too small domain
|
||||
dr = 0;
|
||||
|
||||
@ -1,25 +1,29 @@
|
||||
#include <stdio.h>
|
||||
#include "TestUtils.hpp"
|
||||
|
||||
#include <doctest/doctest.h>
|
||||
#include <tug/Simulation.hpp>
|
||||
#include "TestUtils.cpp"
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
// include the configured header file
|
||||
#include <testSimulation.hpp>
|
||||
|
||||
static Grid setupSimulation(APPROACH approach, double timestep, int iterations) {
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
static Grid setupSimulation(APPROACH approach, double timestep,
|
||||
int iterations) {
|
||||
int row = 11;
|
||||
int col = 11;
|
||||
int domain_row = 10;
|
||||
int domain_col = 10;
|
||||
|
||||
|
||||
// Grid
|
||||
Grid grid = Grid(row, col);
|
||||
grid.setDomain(domain_row, domain_col);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(row, col, 0);
|
||||
concentrations(5,5) = 1;
|
||||
concentrations(5, 5) = 1;
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
MatrixXd alpha = MatrixXd::Constant(row, col, 1);
|
||||
@ -40,28 +44,27 @@ static Grid setupSimulation(APPROACH approach, double timestep, int iterations)
|
||||
}
|
||||
grid.setAlpha(alpha, alpha);
|
||||
|
||||
|
||||
// Boundary
|
||||
Boundary bc = Boundary(grid);
|
||||
|
||||
|
||||
// Simulation
|
||||
Simulation sim = Simulation(grid, bc, approach);
|
||||
sim.setOutputConsole(CONSOLE_OUTPUT_ON);
|
||||
// sim.setOutputConsole(CONSOLE_OUTPUT_ON);
|
||||
sim.setTimestep(timestep);
|
||||
sim.setIterations(iterations);
|
||||
sim.run();
|
||||
|
||||
// RUN
|
||||
return grid;
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("equality to reference matrix with FTCS") {
|
||||
// set string from the header file
|
||||
string test_path = testSimulationCSVDir;
|
||||
MatrixXd reference = CSV2Eigen(test_path);
|
||||
cout << "FTCS Test: " << endl;
|
||||
Grid grid = setupSimulation(FTCS_APPROACH, 0.001, 7000);
|
||||
cout << endl;
|
||||
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
|
||||
}
|
||||
|
||||
@ -69,11 +72,13 @@ TEST_CASE("equality to reference matrix with BTCS") {
|
||||
// set string from the header file
|
||||
string test_path = testSimulationCSVDir;
|
||||
MatrixXd reference = CSV2Eigen(test_path);
|
||||
cout << "BTCS Test: " << endl;
|
||||
Grid grid = setupSimulation(BTCS_APPROACH, 1, 7);
|
||||
cout << endl;
|
||||
CHECK(checkSimilarityV2(reference, grid.getConcentrations(), 0.01) == true);
|
||||
}
|
||||
|
||||
TEST_CASE("Initialize environment"){
|
||||
TEST_CASE("Initialize environment") {
|
||||
int rc = 12;
|
||||
Grid grid(rc, rc);
|
||||
Boundary boundary(grid);
|
||||
@ -81,26 +86,23 @@ TEST_CASE("Initialize environment"){
|
||||
CHECK_NOTHROW(Simulation sim(grid, boundary, BTCS_APPROACH));
|
||||
}
|
||||
|
||||
TEST_CASE("Simulation environment"){
|
||||
TEST_CASE("Simulation environment") {
|
||||
int rc = 12;
|
||||
Grid grid(rc, rc);
|
||||
Boundary boundary(grid);
|
||||
Simulation sim(grid, boundary, FTCS_APPROACH);
|
||||
|
||||
SUBCASE("default paremeters"){
|
||||
CHECK_EQ(sim.getIterations(), -1);
|
||||
}
|
||||
SUBCASE("default paremeters") { CHECK_EQ(sim.getIterations(), -1); }
|
||||
|
||||
SUBCASE("set iterations"){
|
||||
SUBCASE("set iterations") {
|
||||
CHECK_NOTHROW(sim.setIterations(2000));
|
||||
CHECK_EQ(sim.getIterations(), 2000);
|
||||
CHECK_THROWS(sim.setIterations(-300));
|
||||
}
|
||||
|
||||
SUBCASE("set timestep"){
|
||||
SUBCASE("set timestep") {
|
||||
CHECK_NOTHROW(sim.setTimestep(0.1));
|
||||
CHECK_EQ(sim.getTimestep(), 0.1);
|
||||
CHECK_THROWS(sim.setTimestep(-0.3));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user