mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
Merge branch 'hannes-philipp' of git.gfz-potsdam.de:naaice/tug into hannes-philipp
This commit is contained in:
commit
4cb51f4241
@ -4,6 +4,7 @@ stages:
|
||||
- build
|
||||
- test
|
||||
- static_analyze
|
||||
- doc
|
||||
|
||||
build_release:
|
||||
stage: build
|
||||
@ -22,6 +23,23 @@ test:
|
||||
script:
|
||||
- ./build/test/testTug
|
||||
|
||||
pages:
|
||||
stage: doc
|
||||
image: python:slim
|
||||
before_script:
|
||||
- apt-get update && apt-get install --no-install-recommends -y graphviz imagemagick doxygen make
|
||||
- pip install --upgrade pip && pip install Sphinx Pillow breathe sphinx-rtd-theme
|
||||
- mkdir public
|
||||
script:
|
||||
- pushd docs_sphinx
|
||||
- make html
|
||||
- popd && mv docs_sphinx/_build/html/* public/
|
||||
artifacts:
|
||||
paths:
|
||||
- public
|
||||
rules:
|
||||
- if: $CI_COMMIT_REF_NAME == $CI_DEFAULT_BRANCH
|
||||
|
||||
lint:
|
||||
stage: static_analyze
|
||||
before_script:
|
||||
|
||||
@ -1,32 +0,0 @@
|
||||
# .readthedocs.yaml
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
# Set the OS, Python version and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.11"
|
||||
# You can also specify other tool versions:
|
||||
# nodejs: "19"
|
||||
# rust: "1.64"
|
||||
# golang: "1.19"
|
||||
|
||||
# Build documentation in the "docs/" directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs_sphinx/conf.py
|
||||
|
||||
# Optionally build your docs in additional formats such as PDF and ePub
|
||||
formats:
|
||||
- pdf
|
||||
# - epub
|
||||
|
||||
# Optional but recommended, declare the Python requirements required
|
||||
# to build your documentation
|
||||
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
|
||||
python:
|
||||
install:
|
||||
- requirements: docs_sphinx/requirements.txt
|
||||
@ -7,7 +7,8 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
find_package(Eigen3 REQUIRED NO_MODULE)
|
||||
find_package(OpenMP)
|
||||
find_package(easy_profiler)
|
||||
# find_package(easy_profiler)
|
||||
# option(EASY_OPTION_LOG "Verbose easy_profiler" 1)
|
||||
|
||||
## SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2 -mfma")
|
||||
option(TUG_USE_OPENMP "Compile with OpenMP support" ON)
|
||||
@ -40,4 +41,4 @@ if(TUG_ENABLE_TESTING)
|
||||
add_subdirectory(test)
|
||||
endif()
|
||||
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(examples)
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#+TITLE: Finite Difference Schemes for the numerical solution of heterogeneous diffusion equation in 2D
|
||||
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
|
||||
#+LATEX_HEADER: \usepackage{fullpage}
|
||||
#+LATEX_HEADER: \usepackage{charter}
|
||||
#+LATEX_HEADER: \usepackage{amsmath, systeme, cancel, xcolor}
|
||||
#+OPTIONS: toc:nil
|
||||
|
||||
|
||||
Binary file not shown.
@ -1,12 +1,12 @@
|
||||
#+TITLE: 2D Validation Examples
|
||||
#+TITLE: Validation Examples for 2D Heterogeneous Diffusion
|
||||
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
|
||||
#+DATE: 2023-07-31
|
||||
#+DATE: 2023-08-26
|
||||
#+STARTUP: inlineimages
|
||||
#+LATEX_CLASS_OPTIONS: [a4paper,9pt]
|
||||
#+LATEX_HEADER: \usepackage{fullpage}
|
||||
#+LATEX_HEADER: \usepackage{amsmath, systeme}
|
||||
#+LATEX_HEADER: \usepackage{graphicx}
|
||||
#+LATEX_HEADER: \usepackage{}
|
||||
#+LATEX_HEADER: \usepackage{charter}
|
||||
#+OPTIONS: toc:nil
|
||||
|
||||
|
||||
@ -38,7 +38,7 @@ constant in 4 quadrants:
|
||||
The relevant part of the R script used to produce these results is
|
||||
presented in listing 1; the whole script is at [[file:scripts/HetDiff.R]].
|
||||
A visualization of the output of the reference simulation is given in
|
||||
figure [[#fig:1][1]].
|
||||
figure [[fig:1][1]].
|
||||
|
||||
Note: all results from this script are stored in the =outc= matrix by
|
||||
the =deSolve= function. I stored a different version into
|
||||
@ -47,68 +47,69 @@ for each time step including initial conditions) and 121 rows, one for
|
||||
each domain element, with no headers.
|
||||
|
||||
#+caption: Result of ReacTran/deSolve solution of the above problem at 4
|
||||
#+name: fig:1
|
||||
[[./images/deSolve_AlphaHet1.png]]
|
||||
|
||||
|
||||
#+name: lst:1
|
||||
#+begin_src R :language R :frame single :caption Listing 1, generate reference simulation using R packages deSolve/ReacTran :captionpos b :label lst:1
|
||||
library(ReacTran)
|
||||
library(deSolve)
|
||||
library(ReacTran)
|
||||
library(deSolve)
|
||||
|
||||
## harmonic mean
|
||||
harm <- function(x,y) {
|
||||
if (length(x) != 1 || length(y) != 1)
|
||||
stop("x & y have different lengths")
|
||||
2/(1/x+1/y)
|
||||
}
|
||||
|
||||
N <- 11 # number of grid cells
|
||||
ini <- 1 # initial value at x=0
|
||||
N2 <- ceiling(N/2)
|
||||
L <- 10 # domain side
|
||||
|
||||
## Define diff.coeff per cell, in 4 quadrants
|
||||
alphas <- matrix(0, N, N)
|
||||
alphas[1:N2, 1:N2] <- 1
|
||||
alphas[1:N2, seq(N2+1,N)] <- 0.1
|
||||
alphas[seq(N2+1,N), 1:N2] <- 0.01
|
||||
alphas[seq(N2+1,N), seq(N2+1,N)] <- 0.001
|
||||
|
||||
cmpharm <- function(x) {
|
||||
y <- c(0, x, 0)
|
||||
ret <- numeric(length(x)+1)
|
||||
for (i in seq(2, length(y))) {
|
||||
ret[i-1] <- harm(y[i], y[i-1])
|
||||
## harmonic mean
|
||||
harm <- function(x,y) {
|
||||
if (length(x) != 1 || length(y) != 1)
|
||||
stop("x & y have different lengths")
|
||||
2/(1/x+1/y)
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
## Construction of the 2D grid
|
||||
x.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
|
||||
y.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
|
||||
grid2D <- setup.grid.2D(x.grid, y.grid)
|
||||
dx <- dy <- L/N
|
||||
N <- 11 # number of grid cells
|
||||
ini <- 1 # initial value at x=0
|
||||
N2 <- ceiling(N/2)
|
||||
L <- 10 # domain side
|
||||
|
||||
D.grid <- list()
|
||||
## Diffusion coefs on x-interfaces
|
||||
D.grid$x.int <- apply(alphas, 1, cmpharm)
|
||||
## Diffusion coefs on y-interfaces
|
||||
D.grid$y.int <- t(apply(alphas, 2, cmpharm))
|
||||
## Define diff.coeff per cell, in 4 quadrants
|
||||
alphas <- matrix(0, N, N)
|
||||
alphas[1:N2, 1:N2] <- 1
|
||||
alphas[1:N2, seq(N2+1,N)] <- 0.1
|
||||
alphas[seq(N2+1,N), 1:N2] <- 0.01
|
||||
alphas[seq(N2+1,N), seq(N2+1,N)] <- 0.001
|
||||
|
||||
# The model
|
||||
Diff2Dc <- function(t, y, parms) {
|
||||
CONC <- matrix(nrow = N, ncol = N, data = y)
|
||||
dCONC <- tran.2D(CONC, dx = dx, dy = dy, D.grid = D.grid)$dC
|
||||
return(list(dCONC))
|
||||
}
|
||||
cmpharm <- function(x) {
|
||||
y <- c(0, x, 0)
|
||||
ret <- numeric(length(x)+1)
|
||||
for (i in seq(2, length(y))) {
|
||||
ret[i-1] <- harm(y[i], y[i-1])
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
## initial condition: 0 everywhere, except in central point
|
||||
y <- matrix(nrow = N, ncol = N, data = 0)
|
||||
y[N2, N2] <- ini # initial concentration in the central point...
|
||||
## Construction of the 2D grid
|
||||
x.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
|
||||
y.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
|
||||
grid2D <- setup.grid.2D(x.grid, y.grid)
|
||||
dx <- dy <- L/N
|
||||
|
||||
## solve for 10 time units
|
||||
times <- 0:10
|
||||
outc <- ode.2D(y = y, func = Diff2Dc, t = times, parms = NULL,
|
||||
dim = c(N, N), lrw = 1860000)
|
||||
D.grid <- list()
|
||||
## Diffusion coefs on x-interfaces
|
||||
D.grid$x.int <- apply(alphas, 1, cmpharm)
|
||||
## Diffusion coefs on y-interfaces
|
||||
D.grid$y.int <- t(apply(alphas, 2, cmpharm))
|
||||
|
||||
# The model
|
||||
Diff2Dc <- function(t, y, parms) {
|
||||
CONC <- matrix(nrow = N, ncol = N, data = y)
|
||||
dCONC <- tran.2D(CONC, dx = dx, dy = dy, D.grid = D.grid)$dC
|
||||
return(list(dCONC))
|
||||
}
|
||||
|
||||
## initial condition: 0 everywhere, except in central point
|
||||
y <- matrix(nrow = N, ncol = N, data = 0)
|
||||
y[N2, N2] <- ini # initial concentration in the central point...
|
||||
|
||||
## solve for 10 time units
|
||||
times <- 0:10
|
||||
outc <- ode.2D(y = y, func = Diff2Dc, t = times, parms = NULL,
|
||||
dim = c(N, N), lrw = 1860000)
|
||||
#+end_src
|
||||
|
||||
|
||||
@ -5,12 +5,26 @@
|
||||
|
||||
Welcome to Tug's documentation!
|
||||
===============================
|
||||
Welcome to the documentation of the TUG project, a simulation program
|
||||
for solving one- and two-dimensional diffusion problems with heterogeneous diffusion coefficients, more
|
||||
generally, for solving the following differential equation
|
||||
|
||||
Welcome to the documentation of the TUG project, a simulation program
|
||||
for solving transport equations in one- and two-dimensional uniform
|
||||
grids using cell centered finite differences.
|
||||
|
||||
---------
|
||||
Diffusion
|
||||
---------
|
||||
|
||||
TUG can solve diffusion problems with heterogeneous and anisotropic
|
||||
diffusion coefficients. The partial differential equation expressing
|
||||
diffusion reads:
|
||||
|
||||
.. math::
|
||||
\frac{\partial C}{\partial t} = \alpha_x \frac{\partial^2 C}{\partial x^2} + \alpha_y \frac{\partial^2 C}{\partial y^2}.
|
||||
\frac{\partial C}{\partial t} = \nabla \cdot \left[ \mathbf{\alpha} \nabla C \right]
|
||||
|
||||
In 2D, the equation reads:
|
||||
|
||||
.. math::
|
||||
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left[ \alpha_x \frac{\partial C}{\partial x}\right] + \frac{\partial}{\partial y}\left[ \alpha_y \frac{\partial C}{\partial y}\right]
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
@ -4,6 +4,7 @@ add_executable(BTCS_1D_proto_example BTCS_1D_proto_example.cpp)
|
||||
add_executable(BTCS_2D_proto_example BTCS_2D_proto_example.cpp)
|
||||
add_executable(reference-FTCS_2D_closed reference-FTCS_2D_closed.cpp)
|
||||
add_executable(profiling_openmp profiling_openmp.cpp)
|
||||
|
||||
target_link_libraries(FTCS_1D_proto_example tug)
|
||||
target_link_libraries(FTCS_2D_proto_example tug)
|
||||
target_link_libraries(BTCS_1D_proto_example tug)
|
||||
|
||||
@ -278,10 +278,10 @@ static VectorXd EigenLUAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
static VectorXd ThomasAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
uint32_t n = b.size();
|
||||
|
||||
VectorXd a_diag(n);
|
||||
VectorXd b_diag(n);
|
||||
VectorXd c_diag(n);
|
||||
VectorXd x_vec = b;
|
||||
Eigen::VectorXd a_diag(n);
|
||||
Eigen::VectorXd b_diag(n);
|
||||
Eigen::VectorXd c_diag(n);
|
||||
Eigen::VectorXd x_vec = b;
|
||||
|
||||
// Fill diagonals vectors
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
@ -367,7 +367,6 @@ static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b;
|
||||
|
||||
// const MatrixXd &alphaX = grid.getAlphaX(); // TODO check if this helps performance
|
||||
MatrixXd alphaX = grid.getAlphaX();
|
||||
MatrixXd alphaY = grid.getAlphaY();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
@ -385,7 +384,7 @@ static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, colMax, i, sx, sy);
|
||||
|
||||
SparseLU<SparseMatrix<double>> solver; // TODO what is this?
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
@ -417,10 +416,10 @@ static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solver
|
||||
|
||||
// entry point for EigenLU solver; differentiate between 1D and 2D grid
|
||||
static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else if (grid.getDim() == 1) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
@ -428,10 +427,10 @@ static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
|
||||
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
|
||||
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else if (grid.getDim() == 1) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user