Improved doc about CFL for 2D FTCS scheme

This commit is contained in:
Marco De Lucia 2023-08-03 13:08:08 +02:00
parent 70268f58f3
commit 604d511f9a
2 changed files with 31 additions and 2 deletions

View File

@ -487,10 +487,39 @@ C_{i,j}^{t+1} = & C^t_{i,j} +\\
\end{aligned}
\end{equation}
The Courant-Friedrichs-Lewy stability criterion for this scheme reads:
The Courant-Friedrichs-Lewy stability criterion (cfr Lee, 2017) for
this scheme reads:
#+NAME: eqn:CFL2DFTCS_Lee
\begin{equation}
\Delta t \leq \frac{1}{2 \max(\alpha_{i,j})} \cdot \frac{1}{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}}
\end{equation}
Note that other derivations for the CFL condition are found in
literature. For example, the sources cited by [[https://en.wikipedia.org/wiki/FTCS_scheme][Wikipedia solution]] give:
#+NAME: eqn:CFL2DFTCS_wiki
\begin{equation}
\displaystyle \Delta t\leq {\frac {1}{4 \max(\alpha) \left({\frac {1}{\Delta x^{2}}}+{\frac {1}{\Delta y^{2}}}\right)}}
\end{equation}
We can produce a more restrictive condition than equation
[[eqn:CFL2DFTCS_Lee]] by considering the min of the $\Delta x$ and $\Delta
y$:
#+NAME: eqn:CFL2DFTCS
\begin{equation}
\Delta t \leq \frac{(\Delta x^2, \Delta y^2)}{2 \max(\alpha_{i,j})}
\Delta t \leq \frac{\min(\Delta x, \Delta y)^2}{4 \max(\alpha_{i,j})}
\end{equation}
In practice for the implementation it is advantageous to specify an
optional parameter $C$, $C \in [0, 1]$ so that the user can restrict
the "inner time stepping":
#+NAME: eqn:CFL2DFTCS_impl
\begin{equation}
\Delta t \leq C \cdot \frac{\min(\Delta x, \Delta y)^2}{4 \max(\alpha_{i,j})}
\end{equation}
** Boundary conditions

Binary file not shown.