mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
Merge branch 'hannes-philipp' of git.gfz-potsdam.de:naaice/tug into hannes-philipp
This commit is contained in:
commit
60d01a83c4
@ -1,4 +1,4 @@
|
||||
image: sobc/gitlab-ci
|
||||
image: git.gfz-potsdam.de:5000/naaice/tug:ci
|
||||
|
||||
stages:
|
||||
- build
|
||||
@ -6,8 +6,6 @@ stages:
|
||||
- static_analyze
|
||||
|
||||
build_release:
|
||||
before_script:
|
||||
- apt-get update && apt-get install -y libeigen3-dev git
|
||||
stage: build
|
||||
artifacts:
|
||||
paths:
|
||||
@ -24,11 +22,11 @@ test:
|
||||
- ./build/test/testTug
|
||||
|
||||
lint:
|
||||
before_script:
|
||||
- apt-get update && apt-get install -y libeigen3-dev
|
||||
stage: static_analyze
|
||||
before_script:
|
||||
- apk add clang-extra-tools
|
||||
script:
|
||||
- mkdir lint && cd lint
|
||||
- cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_CLANG_TIDY="clang-tidy;-checks=cppcoreguidelines-*,clang-analyzer-*,performance-*,readability-*, modernize-*" -DTUG_ENABLE_TESTING=OFF ..
|
||||
- cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_CLANG_TIDY="clang-tidy;-checks=cppcoreguidelines-*,clang-analyzer-*,performance-*, modernize-*" -DTUG_ENABLE_TESTING=OFF ..
|
||||
- make tug
|
||||
when: manual
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
#+TITLE: Numerical solution of diffusion equation in 2D with ADI Scheme
|
||||
#+TITLE: Finite Difference Schemes for the numerical solution of heterogeneous diffusion equation in 2D
|
||||
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
|
||||
#+LATEX_HEADER: \usepackage{fullpage}
|
||||
#+LATEX_HEADER: \usepackage{amsmath, systeme}
|
||||
#+LATEX_HEADER: \usepackage{amsmath, systeme, cancel, xcolor}
|
||||
#+OPTIONS: toc:nil
|
||||
|
||||
|
||||
@ -308,8 +308,8 @@ form:
|
||||
|
||||
* Heterogeneous diffusion
|
||||
|
||||
If the diffusion coefficient $\alpha$ is spatially variable, [[eqn:1]] can
|
||||
be rewritten:
|
||||
If the diffusion coefficient $\alpha$ is spatially variable, equation
|
||||
[[eqn:1]] can be rewritten as:
|
||||
|
||||
#+NAME: eqn:hetdiff
|
||||
\begin{align}
|
||||
@ -391,8 +391,8 @@ concentrations.
|
||||
** Direct discretization
|
||||
|
||||
As noted in literature (LeVeque and Numerical Recipes) a better way is
|
||||
to discretize directly the physical problem ([[eqn:hetdiff]]) at points
|
||||
halfway between grid points:
|
||||
to discretize directly the physical problem (eq. [[eqn:hetdiff]]) at
|
||||
points halfway between grid points:
|
||||
|
||||
\begin{align*}
|
||||
\begin{cases}
|
||||
@ -401,15 +401,18 @@ halfway between grid points:
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
|
||||
\noindent A further differentiation gives us the centered
|
||||
\noindent A further differentiation gives us the spatially centered
|
||||
approximation of $\frac{\partial}{\partial x} \left(\alpha(x)
|
||||
\frac{\partial C }{\partial x}\right)$:
|
||||
|
||||
\begin{align*}
|
||||
#+NAME: eqn:CS_het
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial x} \left(\alpha(x)
|
||||
\frac{\partial C }{\partial x}\right)(x_i) & \simeq \frac{1}{\Delta x}\left[\alpha_{i+1/2} \left( \frac{C_{i+1} -C_{i}}{\Delta x} \right) - \alpha_{i-1/2} \left( \frac{C_{i} -C_{i-1}}{\Delta x} \right) \right]\\
|
||||
&\displaystyle =\frac{1}{\Delta x^2} \left[ \alpha_{i+1/2}C_{i+1} - (\alpha_{i+1/2}+\alpha_{i-1/2}) C_{i} + \alpha_{i-1/2}C_{i-1}\right]
|
||||
\end{align*}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\noindent The ADI scheme with this approach becomes:
|
||||
|
||||
@ -439,3 +442,98 @@ explicit terms, the two sweeps become:
|
||||
\end{aligned}
|
||||
\right.
|
||||
\end{equation}
|
||||
|
||||
\bigskip
|
||||
|
||||
\noindent The "interblock" diffusion coefficients $\alpha_{i+1/2,j}$
|
||||
can be arithmetic mean:
|
||||
|
||||
\[
|
||||
\displaystyle \alpha_{i+1/2, j} = \displaystyle \frac{\alpha_{i+1, j} + \alpha_{i, j}}{2}
|
||||
\]
|
||||
|
||||
\noindent or the harmonic mean:
|
||||
|
||||
\[
|
||||
\displaystyle \alpha_{i+1/2, j} = \displaystyle \frac{2}{\frac{1}{\alpha_{i+1, j}} + \frac{1}{\alpha_{i, j}}}
|
||||
\]
|
||||
|
||||
|
||||
|
||||
\pagebreak
|
||||
|
||||
* Explicit scheme for 2D heterogeneous diffusion
|
||||
|
||||
A classical explicit FTCS scheme (forward in time, central in space)
|
||||
for 2D heterogeneous diffusion can be expressed simply leveraging the
|
||||
discretization of equation [[eqn:CS_het]]:
|
||||
|
||||
#+NAME: eqn:2DHeterFTCS
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{C_{i,j}^{t+1} - C_{i,j}^{t}}{\Delta t} = & \frac{1}{\Delta x^2} \left[ \alpha^x_{i+1/2, j}C^t_{i+1, j} - (\alpha^x_{i+1/2, j} + \alpha^x_{i-1/2, j}) C^t_{i,j} + \alpha^x_{i-1/2,j}C^t_{i-1,j}\right] + \\
|
||||
& \frac{1}{\Delta y^2} \left[ \alpha^y_{i, j+1/2}C^t_{i, j+1} - (\alpha^y_{i, j+1/2} + \alpha^y_{i, j-1/2}) C^t_{i,j} + \alpha^y_{i,j-1/2}C^t_{i,j-1}\right]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
\noindent where in the RHS only the known concentrations at time $t$
|
||||
appear. Rearranging the terms, we get:
|
||||
|
||||
#+NAME: eqn:2DHeterFTCS_final
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
C_{i,j}^{t+1} = & C^t_{i,j} +\\
|
||||
& \frac{\Delta t}{\Delta x^2} \left[ \alpha^x_{i+1/2, j}C^t_{i+1, j} - (\alpha^x_{i+1/2, j} + \alpha^x_{i-1/2, j}) C^t_{i,j} + \alpha^x_{i-1/2,j}C^t_{i-1,j}\right] + \\
|
||||
& \frac{\Delta t}{\Delta y^2} \left[ \alpha^y_{i, j+1/2}C^t_{i, j+1} - (\alpha^y_{i, j+1/2} + \alpha^y_{i, j-1/2}) C^t_{i,j} + \alpha^y_{i,j-1/2}C^t_{i,j-1}\right]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
The Courant-Friedrichs-Lewy stability criterion for this scheme reads:
|
||||
#+NAME: eqn:CFL2DFTCS
|
||||
\begin{equation}
|
||||
\Delta t \leq \frac{(\Delta x^2, \Delta y^2)}{2 \max(\alpha_{i,j})}
|
||||
\end{equation}
|
||||
|
||||
** Boundary conditions
|
||||
|
||||
In analogy to the treatment of the 1D homogeneous FTCS scheme (cfr
|
||||
section 1), we need to differentiate the domain boundaries ($i=0$ and
|
||||
$i=n_x$; the same applies to $j$ of course) accounting for the
|
||||
discrepancy in the discretization.
|
||||
|
||||
For the zero-th (left) cell, whose center is at $x=dx/2$, we can
|
||||
evaluate the left gradient with the left boundary using such distance,
|
||||
calling $l$ the numerical value of a constant boundary condition,
|
||||
equation [[eqn:CS_het]] becomes:
|
||||
|
||||
#+NAME: eqn:2D_FTCS_left
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial x} \left(\alpha(x)
|
||||
\frac{\partial C }{\partial x}\right)(x_0) & \simeq \frac{1}{\Delta x}\left[\alpha_{i+1/2} \left( \frac{C_{i+1} -C_{i}}{\Delta x} \right) - \alpha_{i} \left( \frac{C_{i} - l }{\frac{\Delta x}{2}} \right) \right]\\
|
||||
&\displaystyle =\frac{1}{\Delta x^2} \left[ \alpha_{i+1/2}C_{i+1} - (\alpha_{i+1/2}+ 2\alpha_i) C_{i} + 2 \alpha_{i}\cdot l\right]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\noindent Similarly, for $i=n_x$,
|
||||
|
||||
#+NAME: eqn:2D_FTCS_right
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial x} \left(\alpha(x)
|
||||
\frac{\partial C }{\partial x}\right)(x_n) & \simeq \frac{1}{\Delta x}\left[\alpha_{i} \left( \frac{r -C_{i}}{\frac{\Delta x}{2}} \right) - \alpha_{i-1/2} \left( \frac{C_{i} - C_{i-1}} {\Delta x} \right) \right]\\
|
||||
&\displaystyle =\frac{1}{\Delta x^2} \left[ 2 \alpha_{i} r - (\alpha_{i+1/2}+ 2\alpha_i) C_{i} + \alpha_{i-1/2}\cdot C_{i-1}\right]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
If on the right boundary we have *closed* or Neumann condition, the
|
||||
left derivative becomes zero and we are left with:
|
||||
|
||||
#+NAME: eqn:2D_FTCS_rightclosed
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial x} \left(\alpha(x)
|
||||
\frac{\partial C }{\partial x}\right)(x_n) & \simeq \frac{1}{\Delta x}\left[\cancel{\alpha_{i+1/2} \left( \frac{C_{i+1} -C_{i}}{\Delta x} \right)} - \alpha_{i-1/2} \left( \frac{C_{i} -C_{i-1}}{\Delta x} \right) \right]\\
|
||||
&\displaystyle =\frac{\alpha_{i-1/2}}{\Delta x^2} (C_{i-1} - C_i)
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
||||
Binary file not shown.
@ -2,9 +2,11 @@ add_executable(first_example first_example.cpp)
|
||||
add_executable(second_example second_example.cpp)
|
||||
add_executable(boundary_example1D boundary_example1D.cpp)
|
||||
add_executable(FTCS_2D_proto_example FTCS_2D_proto_example.cpp)
|
||||
add_executable(FTCS_1D_proto_example FTCS_1D_proto_example.cpp)
|
||||
|
||||
target_link_libraries(first_example tug)
|
||||
target_link_libraries(second_example tug)
|
||||
target_link_libraries(boundary_example1D tug)
|
||||
target_link_libraries(FTCS_2D_proto_example tug)
|
||||
target_link_libraries(FTCS_1D_proto_example tug)
|
||||
target_link_libraries(FTCS_2D_proto_example easy_profiler)
|
||||
44
examples/FTCS_1D_proto_example.cpp
Normal file
44
examples/FTCS_1D_proto_example.cpp
Normal file
@ -0,0 +1,44 @@
|
||||
#include <tug/Simulation.hpp>
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// **************
|
||||
// **** GRID ****
|
||||
// **************
|
||||
|
||||
// create a linear grid with 20 cells
|
||||
int cells = 20;
|
||||
Grid grid = Grid(cells);
|
||||
|
||||
MatrixXd concentrations = MatrixXd::Constant(1,20,20);
|
||||
grid.setConcentrations(concentrations);
|
||||
|
||||
|
||||
// ******************
|
||||
// **** BOUNDARY ****
|
||||
// ******************
|
||||
|
||||
// create a boundary with constant values
|
||||
Boundary bc = Boundary(grid, BC_TYPE_CONSTANT);
|
||||
|
||||
|
||||
// ************************
|
||||
// **** SIMULATION ENV ****
|
||||
// ************************
|
||||
|
||||
// set up a simulation environment
|
||||
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
|
||||
|
||||
// (optional) set the timestep of the simulation
|
||||
simulation.setTimestep(0.1); // timestep
|
||||
|
||||
// (optional) set the number of iterations
|
||||
simulation.setIterations(100);
|
||||
|
||||
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
|
||||
simulation.setOutputCSV(CSV_OUTPUT_OFF);
|
||||
|
||||
// **** RUN SIMULATION ****
|
||||
|
||||
// run the simulation
|
||||
simulation.run();
|
||||
}
|
||||
@ -49,12 +49,12 @@ int main(int argc, char *argv[]) {
|
||||
// (optional) set boundary condition values for one side, e.g.:
|
||||
// VectorXd bc_left_values = VectorXd::Constant(20,1); // length,value
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_left_values); // side,values
|
||||
VectorXd bc_zero_values = VectorXd::Constant(20,0);
|
||||
bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
|
||||
bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
|
||||
VectorXd bc_front_values = VectorXd::Constant(20,2000);
|
||||
bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
|
||||
bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
|
||||
// VectorXd bc_zero_values = VectorXd::Constant(20,0);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_LEFT, bc_zero_values);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_RIGHT, bc_zero_values);
|
||||
// VectorXd bc_front_values = VectorXd::Constant(20,2000);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_TOP, bc_front_values);
|
||||
// bc.setBoundaryConditionValue(BC_SIDE_BOTTOM, bc_zero_values);
|
||||
|
||||
|
||||
// ************************
|
||||
|
||||
@ -4,6 +4,7 @@
|
||||
#include <Eigen/Core>
|
||||
#include "Grid.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
enum BC_TYPE {
|
||||
@ -18,6 +19,45 @@ enum BC_SIDE {
|
||||
BC_SIDE_BOTTOM
|
||||
};
|
||||
|
||||
/*******************************************
|
||||
class WallElement {
|
||||
public:
|
||||
WallElement() {
|
||||
this->type = BC_TYPE_CLOSED;
|
||||
this->value = 0;
|
||||
}
|
||||
|
||||
WallElement(double value) {
|
||||
this->type = BC_TYPE_CONSTANT;
|
||||
this->value = value;
|
||||
}
|
||||
|
||||
BC_TYPE getType() {
|
||||
return this->type;
|
||||
}
|
||||
|
||||
double getValue() {
|
||||
return this->value;
|
||||
}
|
||||
|
||||
private:
|
||||
BC_TYPE type;
|
||||
double value;
|
||||
};
|
||||
|
||||
class BoundaryWall {
|
||||
public:
|
||||
BoundaryWall(int length) {
|
||||
// create array with length many wall elements
|
||||
}
|
||||
|
||||
private:
|
||||
BC_SIDE side;
|
||||
int length;
|
||||
vector<WallElement> wall;
|
||||
};
|
||||
***********************/
|
||||
|
||||
class Boundary {
|
||||
public:
|
||||
|
||||
@ -55,6 +95,10 @@ class Boundary {
|
||||
|
||||
private:
|
||||
Grid grid;
|
||||
|
||||
// need a way to save the bc type and value for each single 'boundary cell'
|
||||
// perhaps an array for each side with structs containing the bc type as well as a value
|
||||
// or another object that contains one boundary side
|
||||
BC_TYPE type;
|
||||
VectorXd left, right, top, bottom;
|
||||
};
|
||||
|
||||
@ -458,7 +458,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
"version": "3.11.4"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
## Time-stamp: "Last modified 2023-01-05 17:52:55 delucia"
|
||||
## Time-stamp: "Last modified 2023-05-11 17:31:41 delucia"
|
||||
|
||||
## Brutal implementation of 2D ADI scheme
|
||||
## Square NxN grid with dx=dy=1
|
||||
@ -272,8 +272,8 @@ ADIHetDir <- function(field, dt, iter, alpha) {
|
||||
|
||||
for (it in seq(1, iter)) {
|
||||
for (i in seq(2, ny-1)) {
|
||||
Aij <- cbind(harm(alpha[i,], alpha[i-1,]), harm(alpha[i,], alpha[i+1,]))
|
||||
Bij <- cbind(harm(alpha[,i], alpha[,i-1]), harm(alpha[,i], alpha[,i+1]))
|
||||
Aij <- cbind(colMeans(rbind(alpha[i,], alpha[i-1,])), colMeans(rbind(alpha[i,], alpha[i+1,])))
|
||||
Bij <- cbind(rowMeans(cbind(alpha[,i], alpha[,i-1])), rowMeans(cbind(alpha[,i], alpha[,i+1])))
|
||||
tmpX[i,] <- SweepByRowHetDir(i, res, dt=dt, Aij, Bij)
|
||||
}
|
||||
resY <- t(tmpX)
|
||||
@ -321,22 +321,27 @@ SweepByRowHetDir <- function(i, field, dt, Aij, Bij) {
|
||||
## adi2 <- ADI(n=51, dt=10, iter=200, alpha=1E-3)
|
||||
## ref2 <- DoRef(n=51, alpha=1E-3, dt=10, iter=200)
|
||||
|
||||
n <- 5
|
||||
n <- 51
|
||||
field <- matrix(0, n, n)
|
||||
alphas <- matrix(1E-5*runif(n*n, 1,2), n, n)
|
||||
|
||||
alphas1 <- matrix(3E-5, n, 25)
|
||||
alphas2 <- matrix(1E-5, n, 26)
|
||||
|
||||
alphas <- cbind(alphas1, alphas2)
|
||||
## dim(field)
|
||||
## dim(alphas)
|
||||
## all.equal(dim(field), dim(alphas))
|
||||
|
||||
## alphas1 <- matrix(3E-5, n, 25)
|
||||
## alphas2 <- matrix(1E-5, n, 26)
|
||||
|
||||
## alphas <- cbind(alphas1, alphas2)
|
||||
|
||||
## for (i in seq(1,nrow(alphas)))
|
||||
## alphas[i,] <- seq(1E-7,1E-3, length=n)
|
||||
|
||||
#diag(alphas) <- rep(1E-2, n)
|
||||
|
||||
adih <- ADIHetDir(field=field, dt=10, iter=200, alpha=alphas)
|
||||
adi2 <- ADI(n=n, dt=10, iter=200, alpha=1E-5)
|
||||
adih <- ADIHetDir(field=field, dt=20, iter=500, alpha=alphas)
|
||||
adi2 <- ADI(n=n, dt=20, iter=500, alpha=1E-5)
|
||||
|
||||
|
||||
par(mfrow=c(1,3))
|
||||
@ -347,6 +352,17 @@ plot(adih[[length(adih)]], adi2[[length(adi2)]], pch=4, log="xy")
|
||||
abline(0,1)
|
||||
|
||||
|
||||
cchet <- lapply(adih, round, digits=6)
|
||||
cchom <- lapply(adi2, round, digits=6)
|
||||
|
||||
plot(cchet[[length(cchet)]], cchom[[length(cchom)]], pch=4, log="xy", xlim=c(1e-6,1), ylim=c(1e-6,1))
|
||||
abline(0,1)
|
||||
|
||||
cchet[[500]]
|
||||
|
||||
str(adih)
|
||||
|
||||
|
||||
sapply(adih, sum)
|
||||
sapply(adi2, sum)
|
||||
|
||||
@ -360,3 +376,108 @@ image(adih[[length(adih)]])
|
||||
points(0.5,0.5, col="red",pch=4)
|
||||
|
||||
options(width=110)
|
||||
|
||||
|
||||
FTCS_2D <- function(field, dt, iter, alpha) {
|
||||
|
||||
if (!all.equal(dim(field), dim(alpha)))
|
||||
stop("field and alpha are not matrix")
|
||||
|
||||
## now both field and alpha must be nx*ny matrices
|
||||
nx <- ncol(field)
|
||||
ny <- nrow(field)
|
||||
dx <- dy <- 1
|
||||
|
||||
## find out the center of the grid to apply conc=1
|
||||
cenx <- ceiling(nx/2)
|
||||
ceny <- ceiling(ny/2)
|
||||
field[cenx, ceny] <- 1
|
||||
|
||||
## prepare containers for computations and outputs
|
||||
tmp <- res <- field
|
||||
|
||||
cflt <- 1/max(alpha)/4
|
||||
cat(":: CFL allowable time step: ", cflt,"\n")
|
||||
|
||||
## inner iterations
|
||||
inner <- floor(dt/cflt)
|
||||
if (inner == 0) {
|
||||
## dt < cflt, no inner iterations
|
||||
inner <- 1
|
||||
tsteps <- dt
|
||||
cat(":: No inner iter. required\n")
|
||||
} else {
|
||||
tsteps <- c(rep(cflt, inner), dt-inner*cflt)
|
||||
cat(":: Number of inner iter. required: ", inner,"\n")
|
||||
}
|
||||
|
||||
|
||||
out <- vector(mode="list", length=iter)
|
||||
|
||||
for (it in seq(1, iter)) {
|
||||
cat(":: outer it: ", it)
|
||||
|
||||
for (innerit in seq_len(inner)) {
|
||||
for (i in seq(2, ny-1)) {
|
||||
for (j in seq(2, nx-1)) {
|
||||
## tmp[i,j] <- res[i,j] +
|
||||
## + tsteps[innerit]/dx/dx * (res[i+1,j]*mean(alpha[i+1,j],alpha[i,j]) -
|
||||
## res[i,j] *(mean(alpha[i+1,j],alpha[i,j])+mean(alpha[i-1,j],alpha[i,j])) +
|
||||
## res[i-1,j]*mean(alpha[i-1,j],alpha[i,j])) +
|
||||
## + tsteps[innerit]/dy/dy * (res[i,j+1]*mean(alpha[i,j+1],alpha[i,j]) -
|
||||
## res[i,j] *(mean(alpha[i,j+1],alpha[i,j])+mean(alpha[i,j-1],alpha[i,j])) +
|
||||
## res[i,j-1]*mean(alpha[i,j-1],alpha[i,j]))
|
||||
tmp[i,j] <- res[i,j] +
|
||||
+ tsteps[innerit]/dx/dx * ((res[i+1,j]-res[i,j]) * mean(alpha[i+1,j],alpha[i,j]) -
|
||||
(res[i,j]-res[i-1,j]) * mean(alpha[i-1,j],alpha[i,j])) +
|
||||
+ tsteps[innerit]/dx/dx * ((res[i,j+1]-res[i,j]) * mean(alpha[i,j+1],alpha[i,j]) -
|
||||
(res[i,j]-res[i,j-1]) * mean(alpha[i,j-1],alpha[i,j]))
|
||||
}
|
||||
}
|
||||
## swap back tmp to res for the next inner iteration
|
||||
res <- tmp
|
||||
}
|
||||
cat("- done\n")
|
||||
## at end of inner it we store
|
||||
out[[it]] <- res
|
||||
}
|
||||
|
||||
return(out)
|
||||
}
|
||||
|
||||
## testing that FTCS with homog alphas reverts to ADI/Reference sim
|
||||
n <- 51
|
||||
field <- matrix(0, n, n)
|
||||
alphas <- matrix(1E-3, n, n)
|
||||
|
||||
adi2 <- ADI(n=51, dt=100, iter=20, alpha=1E-3)
|
||||
|
||||
ref <- DoRef(n=51, alpha=1E-3, dt=100, iter=20)
|
||||
|
||||
adihet <- ADIHetDir(field=field, dt=100, iter=20, alpha=alphas)
|
||||
|
||||
ftcsh <- FTCS_2D(field=field, dt=100, iter=20, alpha=alphas)
|
||||
|
||||
|
||||
par(mfrow=c(2,4))
|
||||
image(ref, main="Reference ODE.2D")
|
||||
points(0.5,0.5, col="red",pch=4)
|
||||
image(ftcsh[[length(ftcsh)]], main="FTCS 2D")
|
||||
points(0.5,0.5, col="red",pch=4)
|
||||
image(adihet[[length(adihet)]], main="ADI Heter.")
|
||||
points(0.5,0.5, col="red",pch=4)
|
||||
image(adi2[[length(adi2)]], main="ADI Homog.", col=terrain.colors(12))
|
||||
points(0.5,0.5, col="red",pch=4)
|
||||
plot(ftcsh[[length(ftcsh)]], ref, pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
|
||||
main = "FTCS_2D vs ref", xlab="FTCS 2D", ylab="Reference")
|
||||
abline(0,1)
|
||||
plot(ftcsh[[length(ftcsh)]], adihet[[length(adihet)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
|
||||
main = "FTCS_2D vs ADI Het", xlab="FTCS 2D", ylab="ADI 2D Heter.")
|
||||
abline(0,1)
|
||||
plot(ftcsh[[length(ftcsh)]], adi2[[length(adi2)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
|
||||
main = "FTCS_2D vs ADI Hom", xlab="FTCS 2D", ylab="ADI 2D Hom.")
|
||||
abline(0,1)
|
||||
plot(adihet[[length(adihet)]], adi2[[length(adi2)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
|
||||
main = "ADI Het vs ADI Hom", xlab="ADI Het", ylab="ADI 2D Hom.")
|
||||
abline(0,1)
|
||||
|
||||
|
||||
366
src/FTCS.cpp
366
src/FTCS.cpp
@ -4,7 +4,7 @@
|
||||
|
||||
using namespace std;
|
||||
|
||||
double calc_alpha_intercell(double alpha1, double alpha2, bool useHarmonic = false) {
|
||||
double calcAlphaIntercell(double alpha1, double alpha2, bool useHarmonic = false) {
|
||||
if (useHarmonic) {
|
||||
return 2 / ((1/alpha1) + (1/alpha2));
|
||||
} else {
|
||||
@ -12,7 +12,168 @@ double calc_alpha_intercell(double alpha1, double alpha2, bool useHarmonic = fal
|
||||
}
|
||||
}
|
||||
|
||||
MatrixXd FTCS_constant(Grid grid, Boundary bc, double timestep) {
|
||||
|
||||
double calcHorizontalChange(Grid grid, int row, int col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcVerticalChange(Grid grid, int row, int col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row-1,col);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcHorizontalChangeLeftBoundaryConstant(Grid grid, Boundary bc, int row, int col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_LEFT)(row);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcHorizontalChangeLeftBoundaryClosed() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
double calcHorizontalChangeRightBoundaryConstant(Grid grid, Boundary bc, int row, int col) {
|
||||
|
||||
double result =
|
||||
2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_RIGHT)(row)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calcAlphaIntercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcHorizontalChangeRightBoundaryClosed() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
double calcVerticalChangeTopBoundaryConstant(Grid grid, Boundary bc, int row, int col) {
|
||||
|
||||
double result =
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row+1, col), grid.getAlphaY()(row, col))
|
||||
+ 2 * grid.getAlphaY()(row, col)
|
||||
)
|
||||
* grid.getConcentrations()(row, col)
|
||||
+ 2 * grid.getAlphaY()(row, col) * bc.getBoundaryConditionValue(BC_SIDE_TOP)(col);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcVerticalChangeTopBoundaryClosed() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
double calcVerticalChangeBottomBoundaryConstant(Grid grid, Boundary bc, int row, int col) {
|
||||
|
||||
double result =
|
||||
2 * grid.getAlphaY()(row, col) * bc.getBoundaryConditionValue(BC_SIDE_BOTTOM)(col)
|
||||
- (
|
||||
calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
|
||||
+ 2 * grid.getAlphaY()(row, col)
|
||||
)
|
||||
* grid.getConcentrations()(row, col)
|
||||
+ calcAlphaIntercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col))
|
||||
* grid.getConcentrations()(row-1,col);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
double calcVerticalChangeBottomBoundaryClosed() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
MatrixXd FTCS_1D(Grid grid, Boundary bc, double timestep) {
|
||||
int colMax = grid.getCol();
|
||||
double deltaCol = grid.getDeltaCol();
|
||||
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(1, colMax, 0);
|
||||
|
||||
// only one row in 1D case
|
||||
int row = 0;
|
||||
|
||||
// inner cells
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// left boundary
|
||||
int col = 0;
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
|
||||
// right boundary
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
return concentrations_t1;
|
||||
}
|
||||
|
||||
|
||||
MatrixXd FTCS_2D(Grid grid, Boundary bc, double timestep) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double deltaRow = grid.getDeltaRow();
|
||||
@ -20,32 +181,20 @@ MatrixXd FTCS_constant(Grid grid, Boundary bc, double timestep) {
|
||||
|
||||
// Matrix with concentrations at time t+1
|
||||
// TODO profiler / only use 2 matrices
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 1);
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
|
||||
// inner cells
|
||||
// (should have 7 calls to current concentration)
|
||||
// these do not depend on the boundary condition type
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
for (int col = 1; col < colMax-1; col++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col)))
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row-1,col)
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col)))
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1)
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
@ -53,184 +202,119 @@ MatrixXd FTCS_constant(Grid grid, Boundary bc, double timestep) {
|
||||
|
||||
// boundary conditions
|
||||
// left without corners / looping over rows
|
||||
// (should have 6 calls to current concentration)
|
||||
int col = 0;
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col+1)
|
||||
- (calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)) * grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_LEFT)(row))
|
||||
* (
|
||||
calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col)))
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row-1,col));
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// right without corners / looping over columns
|
||||
// (should have 6 calls to current concentration)
|
||||
col = colMax-1;
|
||||
for (int row = 1; row < rowMax-1; row++) {
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_RIGHT)(row)
|
||||
- (calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1))
|
||||
* (
|
||||
calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row+1,col)
|
||||
- (calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col)))
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row-1,col), grid.getAlphaY()(row,col))
|
||||
* grid.getConcentrations()(row-1,col));
|
||||
* (
|
||||
calcVerticalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
// top without corners / looping over cols
|
||||
// (should have 6 calls to current concentration)
|
||||
int row = 0;
|
||||
for (int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep/(grid.getDeltaRow()*grid.getDeltaRow()) * (calc_alpha_intercell(grid.getAlphaY()(1, col), grid.getAlphaY()(0, col)) * grid.getConcentrations()(1,col)
|
||||
- (calc_alpha_intercell(grid.getAlphaY()(1, col), grid.getAlphaY()(0, col)) + 2 * grid.getAlphaY()(0, col)) * grid.getConcentrations()(0, col)
|
||||
+ 2 * grid.getAlphaY()(0, col) * bc.getBoundaryConditionValue(BC_SIDE_TOP)(col))
|
||||
+ timestep/(grid.getDeltaCol()*grid.getDeltaCol()) * (calc_alpha_intercell(grid.getAlphaX()(0, col+1), grid.getAlphaX()(0, col)) * grid.getConcentrations()(0, col+1)
|
||||
- (calc_alpha_intercell(grid.getAlphaX()(0, col+1), grid.getAlphaX()(0, col)) + calc_alpha_intercell(grid.getAlphaX()(0, col-1), grid.getAlphaX()(0, col))) * grid.getConcentrations()(0, col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(0, col-1), grid.getAlphaX()(0, col)) * grid.getConcentrations()(0, col-1));
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeTopBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// bottom without corners / looping over cols
|
||||
// (should have 6 calls to current concentration)
|
||||
row = rowMax-1;
|
||||
for(int col=1; col<colMax-1;col++){
|
||||
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
|
||||
+ timestep/(grid.getDeltaRow()*grid.getDeltaRow()) * (2 * grid.getAlphaY()(row, col) * bc.getBoundaryConditionValue(BC_SIDE_BOTTOM)(col)
|
||||
- (calc_alpha_intercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col)) + 2 * grid.getAlphaY()(row, col)) * grid.getConcentrations()(row, col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row, col), grid.getAlphaY()(row-1, col)) * grid.getConcentrations()(row-1,col))
|
||||
+ timestep/(grid.getDeltaCol()*grid.getDeltaCol()) * (calc_alpha_intercell(grid.getAlphaX()(row, col+1), grid.getAlphaX()(row, col)) * grid.getConcentrations()(row, col+1)
|
||||
- (calc_alpha_intercell(grid.getAlphaX()(row, col+1), grid.getAlphaX()(row, col)) + calc_alpha_intercell(grid.getAlphaX()(row, col-1), grid.getAlphaX()(row, col))) * grid.getConcentrations()(row, col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row, col-1), grid.getAlphaX()(row, col)) * grid.getConcentrations()(row, col-1));
|
||||
+ timestep / (deltaRow*deltaRow)
|
||||
* (
|
||||
calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep / (deltaCol*deltaCol)
|
||||
* (
|
||||
calcHorizontalChange(grid, row, col)
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
// corner top left
|
||||
// (should have 5 calls to current concentration)
|
||||
row = 0;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col)) * grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_LEFT)(row)
|
||||
calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col)) * grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ 2 * grid.getAlphaY()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaY()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_TOP)(col)
|
||||
calcVerticalChangeTopBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner top right
|
||||
// (should have 5 calls to current concentration)
|
||||
row = 0;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_RIGHT)(row)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1)
|
||||
calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col)) * grid.getConcentrations()(row+1,col)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row+1,col), grid.getAlphaY()(row,col))
|
||||
+ 2 * grid.getAlphaY()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaY()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_TOP)(col)
|
||||
calcVerticalChangeTopBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner bottom left
|
||||
// (should have 5 calls to current concentration)
|
||||
row = rowMax-1;
|
||||
col = 0;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col)) * grid.getConcentrations()(row,col+1)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col+1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ 2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_LEFT)(row)
|
||||
calcHorizontalChangeLeftBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
2 * grid.getAlphaY()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_BOTTOM)(col)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row,col), grid.getAlphaY()(row-1,col))
|
||||
+ 2 * grid.getAlphaY()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row,col), grid.getAlphaY()(row-1,col))
|
||||
* grid.getConcentrations()(row-1,col)
|
||||
calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
// corner bottom right
|
||||
// (should have 5 calls to current concentration)
|
||||
row = rowMax-1;
|
||||
col = colMax-1;
|
||||
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
|
||||
+ timestep/(deltaCol*deltaCol)
|
||||
* (
|
||||
2 * grid.getAlphaX()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_RIGHT)(row)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
+ 2 * grid.getAlphaX()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaX()(row,col-1), grid.getAlphaX()(row,col))
|
||||
* grid.getConcentrations()(row,col-1)
|
||||
calcHorizontalChangeRightBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
+ timestep/(deltaRow*deltaRow)
|
||||
* (
|
||||
2 * grid.getAlphaY()(row,col) * bc.getBoundaryConditionValue(BC_SIDE_BOTTOM)(col)
|
||||
- (
|
||||
calc_alpha_intercell(grid.getAlphaY()(row,col), grid.getAlphaY()(row-1,col))
|
||||
+ 2 * grid.getAlphaY()(row,col)
|
||||
)
|
||||
* grid.getConcentrations()(row,col)
|
||||
+ calc_alpha_intercell(grid.getAlphaY()(row,col), grid.getAlphaY()(row-1,col))
|
||||
* grid.getConcentrations()(row-1,col)
|
||||
calcVerticalChangeBottomBoundaryConstant(grid, bc, row, col)
|
||||
)
|
||||
;
|
||||
|
||||
@ -238,19 +322,31 @@ MatrixXd FTCS_constant(Grid grid, Boundary bc, double timestep) {
|
||||
return concentrations_t1;
|
||||
}
|
||||
|
||||
// TODO
|
||||
MatrixXd FTCS_closed(Grid grid, Boundary bc, double timestep) {
|
||||
return MatrixXd();
|
||||
}
|
||||
|
||||
MatrixXd FTCS(Grid grid, Boundary bc, double timestep) {
|
||||
switch (bc.getBoundaryConditionType()) {
|
||||
case BC_TYPE_CONSTANT:
|
||||
return FTCS_constant(grid, bc, timestep);
|
||||
case BC_TYPE_CLOSED:
|
||||
return FTCS_closed(grid, bc, timestep);
|
||||
default:
|
||||
// TODO handle
|
||||
return MatrixXd();
|
||||
// inner cells
|
||||
// TODO only the boundary cells are different in constant and closed case
|
||||
|
||||
// if 1D:
|
||||
// do inner cells
|
||||
// do left boundary according to bc type
|
||||
// do right boundary according to bc type
|
||||
// if 2D:
|
||||
// do inner cells
|
||||
// do left boundaries according to bc type
|
||||
// do right boundaries according to bc type
|
||||
// ...
|
||||
|
||||
if (grid.getDim() == 1) {
|
||||
return FTCS_1D(grid, bc, timestep);
|
||||
} else {
|
||||
return FTCS_2D(grid, bc, timestep);
|
||||
}
|
||||
|
||||
// checking the boundary condition type first does not work
|
||||
// if the boundary condition types change dynamically for a grid
|
||||
// meaning:
|
||||
// - boundary condition type needs to be checked for every single boundary cell
|
||||
// -> this check is last in order
|
||||
// -
|
||||
}
|
||||
|
||||
@ -84,7 +84,11 @@ void Simulation::run() {
|
||||
}
|
||||
printConcentrationsConsole();
|
||||
if (csv_output >= CSV_OUTPUT_ON) {
|
||||
printConcentrationsCSV("test", true);
|
||||
bool append = false;
|
||||
if (csv_output == CSV_OUTPUT_VERBOSE) {
|
||||
append = true;
|
||||
}
|
||||
printConcentrationsCSV("test", append);
|
||||
}
|
||||
} else if (approach == BTCS_APPROACH) {
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
|
||||
@ -1,17 +1,20 @@
|
||||
include(FetchContent)
|
||||
find_library(DOCTEST_LIB doctest)
|
||||
|
||||
FetchContent_Declare(
|
||||
if(NOT DOCTEST_LIB)
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
DocTest
|
||||
GIT_REPOSITORY https://github.com/doctest/doctest.git
|
||||
GIT_TAG v2.4.9
|
||||
)
|
||||
GIT_TAG v2.4.9)
|
||||
|
||||
FetchContent_MakeAvailable(DocTest)
|
||||
FetchContent_MakeAvailable(DocTest)
|
||||
endif()
|
||||
|
||||
add_executable(testTug setup.cpp testBoundaryCondition.cpp testDiffusion.cpp)
|
||||
target_link_libraries(testTug doctest tug)
|
||||
|
||||
add_custom_target(check
|
||||
COMMAND $<TARGET_FILE:testTug>
|
||||
DEPENDS testTug
|
||||
)
|
||||
add_custom_target(
|
||||
check
|
||||
COMMAND $<TARGET_FILE:testTug>
|
||||
DEPENDS testTug)
|
||||
|
||||
4
utils/ci.Dockerfile
Normal file
4
utils/ci.Dockerfile
Normal file
@ -0,0 +1,4 @@
|
||||
FROM alpine
|
||||
MAINTAINER Max Luebke <mluebke@uni-potsdam.de>
|
||||
|
||||
RUN apk add --no-cache build-base openmp cmake git eigen-dev
|
||||
Loading…
x
Reference in New Issue
Block a user