mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 17:38:23 +01:00
Merge branch 'boundary' into 'dev'
New use of boundary conditions See merge request mluebke/diffusion!4
This commit is contained in:
commit
6f0fd990da
@ -3,46 +3,101 @@
|
||||
#include <Eigen/SparseLU>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
const int BTCSDiffusion::BC_NEUMANN = 0;
|
||||
const int BTCSDiffusion::BC_DIRICHLET = 1;
|
||||
const int BTCSDiffusion::BC_CONSTANT = 0;
|
||||
const int BTCSDiffusion::BC_CLOSED = 1;
|
||||
const int BTCSDiffusion::BC_FLUX = 2;
|
||||
|
||||
BTCSDiffusion::BTCSDiffusion(int x) : n_x(x) {
|
||||
this->grid_dim = 1;
|
||||
this->dx = 1. / (x - 1);
|
||||
BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
|
||||
assert(dim <= 3);
|
||||
|
||||
// per default use Neumann condition with gradient of 0 at the end of the grid
|
||||
this->bc.resize(2, std::tuple<bctype, double>(BTCSDiffusion::BC_NEUMANN, 0.));
|
||||
}
|
||||
BTCSDiffusion::BTCSDiffusion(int x, int y) : n_x(x), n_y(y) {
|
||||
|
||||
// this->grid_dim = 2;
|
||||
|
||||
// this->bc.reserve(x * 2 + y * 2);
|
||||
// // per default use Neumann condition with gradient of 0 at the end of the
|
||||
// grid std::fill(this->bc.begin(), this->bc.end(), -1);
|
||||
}
|
||||
BTCSDiffusion::BTCSDiffusion(int x, int y, int z) : n_x(x), n_y(y), n_z(z) {
|
||||
|
||||
// this->grid_dim = 3;
|
||||
// TODO: reserve memory for boundary conditions
|
||||
grid_cells.resize(dim, 1);
|
||||
domain_size.resize(dim, 1);
|
||||
deltas.resize(dim, 1);
|
||||
}
|
||||
|
||||
void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
|
||||
double bc_right,
|
||||
std::vector<int> BTCSDiffusion::getNumberOfGridCells() {
|
||||
return this->grid_cells;
|
||||
}
|
||||
std::vector<int> BTCSDiffusion::getSpatialDiscretization() {
|
||||
return this->domain_size;
|
||||
}
|
||||
void BTCSDiffusion::setNumberOfGridCells(std::vector<int> &n_grid) {
|
||||
grid_cells = n_grid;
|
||||
assert(grid_cells.size() == grid_dim);
|
||||
updateInternals();
|
||||
}
|
||||
void BTCSDiffusion::setSpatialDiscretization(std::vector<int> &s_grid) {
|
||||
domain_size = s_grid;
|
||||
assert(domain_size.size() == grid_dim);
|
||||
updateInternals();
|
||||
}
|
||||
|
||||
void BTCSDiffusion::updateInternals() {
|
||||
for (int i = 0; i < grid_dim; i++) {
|
||||
deltas[i] = (double)domain_size[i] / grid_cells[i];
|
||||
}
|
||||
|
||||
switch (grid_dim) {
|
||||
case 1:
|
||||
bc.resize(2, {BTCSDiffusion::BC_CLOSED, 0});
|
||||
break;
|
||||
case 2:
|
||||
bc.resize(2 * grid_cells[0] + 2 * grid_cells[1],
|
||||
{BTCSDiffusion::BC_CLOSED, 0});
|
||||
break;
|
||||
case 3:
|
||||
// TODO
|
||||
break;
|
||||
}
|
||||
}
|
||||
// BTCSDiffusion::BTCSDiffusion(int x) : n_x(x) {
|
||||
// this->grid_dim = 1;
|
||||
// this->dx = 1. / (x - 1);
|
||||
|
||||
// // per default use Neumann condition with gradient of 0 at the end of the
|
||||
// grid this->bc.resize(2, std::tuple<bctype,
|
||||
// double>(BTCSDiffusion::BC_CONSTANT, 0.));
|
||||
// }
|
||||
// BTCSDiffusion::BTCSDiffusion(int x, int y) : n_x(x), n_y(y) {
|
||||
|
||||
// // this->grid_dim = 2;
|
||||
|
||||
// // this->bc.reserve(x * 2 + y * 2);
|
||||
// // // per default use Neumann condition with gradient of 0 at the end of
|
||||
// the
|
||||
// // grid std::fill(this->bc.begin(), this->bc.end(), -1);
|
||||
// }
|
||||
// BTCSDiffusion::BTCSDiffusion(int x, int y, int z) : n_x(x), n_y(y), n_z(z) {
|
||||
|
||||
// // this->grid_dim = 3;
|
||||
// // TODO: reserve memory for boundary conditions
|
||||
// }
|
||||
|
||||
void BTCSDiffusion::simulate1D(std::vector<double> &c, boundary_condition left,
|
||||
boundary_condition right,
|
||||
const std::vector<double> &alpha, double dx,
|
||||
int size) {
|
||||
|
||||
bool left_is_constant = (left.type == BTCSDiffusion::BC_CONSTANT);
|
||||
bool right_is_constant = (right.type == BTCSDiffusion::BC_CONSTANT);
|
||||
int loop_end = size + !right_is_constant;
|
||||
|
||||
// we need 2 more grid cells for ghost cells
|
||||
size = size + 2;
|
||||
// size = size + 2;
|
||||
|
||||
int bc_offset = !left_is_constant + !right_is_constant;
|
||||
;
|
||||
|
||||
// set sizes of private and yet allocated vectors
|
||||
b_vector.resize(size);
|
||||
x_vector.resize(size);
|
||||
b_vector.resize(size + bc_offset);
|
||||
x_vector.resize(size + bc_offset);
|
||||
|
||||
/*
|
||||
* Begin to solve the equation system using LU solver of Eigen.
|
||||
@ -53,25 +108,33 @@ void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
|
||||
* TODO: remove output
|
||||
*/
|
||||
|
||||
A_matrix.resize(size, size);
|
||||
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
|
||||
A_matrix.resize(size + bc_offset, size + bc_offset);
|
||||
A_matrix.reserve(Eigen::VectorXi::Constant(size + bc_offset, 3));
|
||||
|
||||
A_matrix.insert(0, 0) = 1;
|
||||
A_matrix.insert(size - 1, size - 1) = 1;
|
||||
b_vector[0] =
|
||||
(left_is_constant ? left.value : getBCFromFlux(left, c[0], alpha[0]));
|
||||
|
||||
b_vector[0] = bc_left;
|
||||
b_vector[size - 1] = bc_right;
|
||||
A_matrix.insert((size + bc_offset) - 1, (size + bc_offset) - 1) = 1;
|
||||
b_vector[size + bc_offset - 1] =
|
||||
(right_is_constant ? right.value
|
||||
: getBCFromFlux(right, c[size - 1], alpha[size - 1]));
|
||||
|
||||
for (int i = 1; i < this->n_x + 1; i++) {
|
||||
double sx = (alpha[i - 1] * time_step) / (dx * dx);
|
||||
// A_matrix.insert(0, 0) = 1;
|
||||
// A_matrix.insert(size + 1, size + 1) = 1;
|
||||
|
||||
for (int i = 1; i < size - right_is_constant; i++) {
|
||||
double sx = (alpha[i + !(left_is_constant)] * time_step) / (dx * dx);
|
||||
|
||||
A_matrix.insert(i, i) = -1. - 2. * sx;
|
||||
A_matrix.insert(i, i - 1) = sx;
|
||||
A_matrix.insert(i, i + 1) = sx;
|
||||
|
||||
b_vector[i] = -c[i - 1];
|
||||
b_vector[i] = -c[i + !(left_is_constant)];
|
||||
}
|
||||
|
||||
std::cout << b_vector << "\n" << A_matrix << std::endl;
|
||||
|
||||
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
|
||||
solver;
|
||||
solver.analyzePattern(A_matrix);
|
||||
@ -85,7 +148,7 @@ void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
|
||||
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
|
||||
|
||||
for (int i = 0; i < c.size(); i++) {
|
||||
c[i] = x_vector[i + 1];
|
||||
c[i] = x_vector[i + !left_is_constant];
|
||||
}
|
||||
}
|
||||
|
||||
@ -96,24 +159,25 @@ void BTCSDiffusion::setTimestep(double time_step) {
|
||||
void BTCSDiffusion::simulate(std::vector<double> &c,
|
||||
const std::vector<double> &alpha) {
|
||||
if (this->grid_dim == 1) {
|
||||
double bc_left = getBCFromTuple(0, c[0], alpha[0]);
|
||||
double bc_right =
|
||||
getBCFromTuple(1, c[c.size() - 1], alpha[alpha.size() - 1]);
|
||||
// double bc_left = getBCFromTuple(0, c[0], alpha[0]);
|
||||
// double bc_right =
|
||||
// getBCFromTuple(1, c[c.size() - 1], alpha[alpha.size() - 1]);
|
||||
|
||||
simulate1D(c, bc_left, bc_right, alpha, this->dx, this->n_x);
|
||||
simulate1D(c, bc[0], bc[1], alpha, this->deltas[0], this->grid_cells[0]);
|
||||
}
|
||||
}
|
||||
|
||||
double BTCSDiffusion::getBCFromTuple(int index, double neighbor_c,
|
||||
double neighbor_alpha) {
|
||||
double val = -1;
|
||||
int type = std::get<0>(bc[index]);
|
||||
inline double BTCSDiffusion::getBCFromFlux(boundary_condition bc,
|
||||
double neighbor_c,
|
||||
double neighbor_alpha) {
|
||||
|
||||
if (type == BTCSDiffusion::BC_NEUMANN) {
|
||||
val = neighbor_c + (this->time_step / (dx * dx)) * neighbor_alpha *
|
||||
std::get<1>(bc[index]);
|
||||
} else if (type == BTCSDiffusion::BC_DIRICHLET) {
|
||||
val = std::get<1>(bc[index]);
|
||||
double val;
|
||||
|
||||
if (bc.type == BTCSDiffusion::BC_CLOSED) {
|
||||
val = neighbor_c;
|
||||
} else if (bc.type == BTCSDiffusion::BC_FLUX) {
|
||||
// TODO
|
||||
// val = bc[index].value;
|
||||
} else {
|
||||
// TODO: implement error handling here. Type was set to wrong value.
|
||||
}
|
||||
@ -122,6 +186,10 @@ double BTCSDiffusion::getBCFromTuple(int index, double neighbor_c,
|
||||
}
|
||||
|
||||
void BTCSDiffusion::setBoundaryCondition(int index, double val, bctype type) {
|
||||
std::get<0>(bc[index]) = type;
|
||||
std::get<1>(bc[index]) = val;
|
||||
|
||||
bc[index].type = type;
|
||||
bc[index].value = val;
|
||||
|
||||
// std::get<0>(bc[index]) = type;
|
||||
// std::get<1>(bc[index]) = val;
|
||||
}
|
||||
|
||||
@ -5,28 +5,11 @@
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
/*!
|
||||
* Datatype to fill the sparse matrix which is used to solve the equation
|
||||
* system.
|
||||
*/
|
||||
typedef Eigen::Triplet<double> T;
|
||||
|
||||
/*!
|
||||
* Defines both types of boundary condition as a datatype.
|
||||
*/
|
||||
typedef int bctype;
|
||||
|
||||
/*!
|
||||
* A boundary condition consists of two features. A type and the according
|
||||
* value. Here we can differentiate between:
|
||||
*
|
||||
* - Neumann boundary conditon: type BC_NEUMANN with the value defining the
|
||||
* gradient
|
||||
* - Dirichlet boundary condition: type BC_DIRICHLET with the actual value of
|
||||
* the boundary condition
|
||||
*/
|
||||
typedef std::vector<std::tuple<bctype, double>> boundary_condition;
|
||||
|
||||
/*!
|
||||
* Class implementing a solution for a 1/2/3D diffusion equation using backward
|
||||
* euler.
|
||||
@ -35,37 +18,79 @@ class BTCSDiffusion {
|
||||
|
||||
public:
|
||||
/*!
|
||||
* Defines a Neumann boundary condition.
|
||||
* Defines a constant/Dirichlet boundary condition.
|
||||
*/
|
||||
static const int BC_NEUMANN;
|
||||
static const int BC_CONSTANT;
|
||||
|
||||
/*!
|
||||
* Defines a Dirichlet boundary condition.
|
||||
* Defines a closed/Neumann boundary condition.
|
||||
*/
|
||||
static const int BC_DIRICHLET;
|
||||
static const int BC_CLOSED;
|
||||
|
||||
/*!
|
||||
* Defines a flux/Cauchy boundary condition.
|
||||
*/
|
||||
static const int BC_FLUX;
|
||||
|
||||
/*!
|
||||
* A boundary condition consists of two features. A type and the according
|
||||
* value. Here we can differentiate between:
|
||||
*
|
||||
* - Neumann boundary conditon: type BC_NEUMANN with the value defining the
|
||||
* gradient
|
||||
* - Dirichlet boundary condition: type BC_DIRICHLET with the actual value of
|
||||
* the boundary condition
|
||||
*/
|
||||
typedef struct boundary_condition {
|
||||
bctype type;
|
||||
double value;
|
||||
} boundary_condition;
|
||||
|
||||
/*!
|
||||
* A boundary condition consists of two features. A type and the according
|
||||
* value. Here we can differentiate between:
|
||||
*
|
||||
* - Neumann boundary conditon: type BC_NEUMANN with the value defining the
|
||||
* gradient
|
||||
* - Dirichlet boundary condition: type BC_DIRICHLET with the actual value of
|
||||
* the boundary condition
|
||||
*/
|
||||
// typedef std::vector<std::tuple<bctype, double>> boundary_condition;
|
||||
|
||||
/*!
|
||||
* Datatype to fill the sparse matrix which is used to solve the equation
|
||||
* system.
|
||||
*/
|
||||
typedef Eigen::Triplet<double> T;
|
||||
|
||||
/*!
|
||||
* Create 1D-diffusion module.
|
||||
*
|
||||
* @param x Count of cells in x direction.
|
||||
*/
|
||||
explicit BTCSDiffusion(int x);
|
||||
BTCSDiffusion(unsigned int dim);
|
||||
|
||||
/*!
|
||||
* Currently not implemented: Create 2D-diffusion module.
|
||||
*
|
||||
* @param x Count of cells in x direction.
|
||||
* @param y Count of cells in y direction.
|
||||
*/
|
||||
explicit BTCSDiffusion(int x, int y);
|
||||
std::vector<int> getNumberOfGridCells();
|
||||
std::vector<int> getSpatialDiscretization();
|
||||
void setNumberOfGridCells(std::vector<int> &n_grid);
|
||||
void setSpatialDiscretization(std::vector<int> &s_grid);
|
||||
|
||||
/*!
|
||||
* Currently not implemented: Create 3D-diffusion module.
|
||||
*
|
||||
* @param x Count of cells in x direction.
|
||||
* @param y Count of cells in y direction.
|
||||
* @param z Count of cells in z direction.
|
||||
*/
|
||||
explicit BTCSDiffusion(int x, int y, int z);
|
||||
// /*!
|
||||
// * Currently not implemented: Create 2D-diffusion module.
|
||||
// *
|
||||
// * @param x Count of cells in x direction.
|
||||
// * @param y Count of cells in y direction.
|
||||
// */
|
||||
// explicit BTCSDiffusion(int x, int y);
|
||||
|
||||
// /*!
|
||||
// * Currently not implemented: Create 3D-diffusion module.
|
||||
// *
|
||||
// * @param x Count of cells in x direction.
|
||||
// * @param y Count of cells in y direction.
|
||||
// * @param z Count of cells in z direction.
|
||||
// */
|
||||
// explicit BTCSDiffusion(int x, int y, int z);
|
||||
|
||||
/*!
|
||||
* With given ghost zones simulate diffusion. Only 1D allowed at this moment.
|
||||
@ -96,14 +121,17 @@ public:
|
||||
void setBoundaryCondition(int index, double val, bctype type);
|
||||
|
||||
private:
|
||||
void simulate1D(std::vector<double> &c, double bc_left, double bc_right,
|
||||
const std::vector<double> &alpha, double dx, int size);
|
||||
void simulate1D(std::vector<double> &c, boundary_condition left,
|
||||
boundary_condition right, const std::vector<double> &alpha,
|
||||
double dx, int size);
|
||||
void simulate2D(std::vector<double> &c);
|
||||
void simulate3D(std::vector<double> &c);
|
||||
|
||||
double getBCFromTuple(int index, double nearest_value, double neighbor_alpha);
|
||||
inline double getBCFromFlux(boundary_condition bc, double nearest_value, double neighbor_alpha);
|
||||
|
||||
boundary_condition bc;
|
||||
void updateInternals();
|
||||
|
||||
std::vector<boundary_condition> bc;
|
||||
|
||||
Eigen::SparseMatrix<double> A_matrix;
|
||||
Eigen::VectorXd b_vector;
|
||||
@ -112,12 +140,9 @@ private:
|
||||
double time_step;
|
||||
|
||||
int grid_dim;
|
||||
int n_x;
|
||||
double dx;
|
||||
int n_y;
|
||||
double dy;
|
||||
int n_z;
|
||||
double dz;
|
||||
std::vector<int> grid_cells;
|
||||
std::vector<int> domain_size;
|
||||
std::vector<double> deltas;
|
||||
};
|
||||
|
||||
#endif // BTCSDIFFUSION_H_
|
||||
|
||||
22
src/main.cpp
22
src/main.cpp
@ -6,19 +6,27 @@ using namespace std;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
// count of grid cells
|
||||
int x = 20;
|
||||
// dimension of grid
|
||||
int dim = 1;
|
||||
|
||||
int n = 20;
|
||||
|
||||
// create input + diffusion coefficients for each grid cell
|
||||
std::vector<double> alpha(x, 1 * pow(10, -1));
|
||||
std::vector<double> input(x, 1 * std::pow(10, -6));
|
||||
std::vector<double> alpha(n, 1 * pow(10, -1));
|
||||
std::vector<double> field(n, 1 * std::pow(10, -6));
|
||||
|
||||
// create instance of diffusion module
|
||||
BTCSDiffusion diffu(x);
|
||||
BTCSDiffusion diffu(dim);
|
||||
|
||||
std::vector<int> vec_n = diffu.getNumberOfGridCells();
|
||||
|
||||
vec_n[0] = n;
|
||||
|
||||
diffu.setNumberOfGridCells(vec_n);
|
||||
|
||||
// set the boundary condition for the left ghost cell to dirichlet
|
||||
diffu.setBoundaryCondition(0, 5. * std::pow(10, -6),
|
||||
BTCSDiffusion::BC_DIRICHLET);
|
||||
BTCSDiffusion::BC_CONSTANT);
|
||||
|
||||
// set timestep for simulation to 1 second
|
||||
diffu.setTimestep(1.);
|
||||
@ -26,7 +34,7 @@ int main(int argc, char *argv[]) {
|
||||
// loop 100 times
|
||||
// output is currently generated by the method itself
|
||||
for (int i = 0; i < 100; i++) {
|
||||
diffu.simulate(input, alpha);
|
||||
diffu.simulate(field, alpha);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user