mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
apply format changes (LLVM)
This commit is contained in:
parent
6e388f3d99
commit
7d05320f24
693
src/BTCSv2.cpp
693
src/BTCSv2.cpp
@ -1,464 +1,487 @@
|
||||
/**
|
||||
* @file BTCSv2.cpp
|
||||
* @brief Implementation of heterogenous BTCS (backward time-centered space) solution
|
||||
* of diffusion equation in 1D and 2D space. Internally the alternating-direction
|
||||
* implicit (ADI) method is used. Version 2, because Version 1 was an
|
||||
* implementation for the homogeneous BTCS solution.
|
||||
*
|
||||
* @brief Implementation of heterogenous BTCS (backward time-centered space)
|
||||
* solution of diffusion equation in 1D and 2D space. Internally the
|
||||
* alternating-direction implicit (ADI) method is used. Version 2, because
|
||||
* Version 1 was an implementation for the homogeneous BTCS solution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "FTCS.cpp"
|
||||
#include <tug/Boundary.hpp>
|
||||
#include <omp.h>
|
||||
#include <tug/Boundary.hpp>
|
||||
|
||||
#ifdef WRITE_THOMAS_CSV
|
||||
#include<fstream>
|
||||
#include<string>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#endif
|
||||
|
||||
#define NUM_THREADS_BTCS 10
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
|
||||
// calculates coefficient for left boundary in constant case
|
||||
static tuple<double, double> calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
static tuple<double, double>
|
||||
calcLeftBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
|
||||
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1))
|
||||
+ 2 * alpha(rowIndex,0));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
|
||||
centerCoeff =
|
||||
1 + sx * (calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1)) +
|
||||
2 * alpha(rowIndex, 0));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
|
||||
return {centerCoeff, rightCoeff};
|
||||
return {centerCoeff, rightCoeff};
|
||||
}
|
||||
|
||||
|
||||
// calculates coefficient for left boundary in closed case
|
||||
static tuple<double, double> calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
static tuple<double, double>
|
||||
calcLeftBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, double sx) {
|
||||
double centerCoeff;
|
||||
double rightCoeff;
|
||||
|
||||
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,0), alpha(rowIndex,1));
|
||||
centerCoeff =
|
||||
1 + sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
rightCoeff = -sx * calcAlphaIntercell(alpha(rowIndex, 0), alpha(rowIndex, 1));
|
||||
|
||||
return {centerCoeff, rightCoeff};
|
||||
return {centerCoeff, rightCoeff};
|
||||
}
|
||||
|
||||
|
||||
// calculates coefficient for right boundary in constant case
|
||||
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha, int rowIndex, int n, double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
static tuple<double, double> calcRightBoundaryCoeffConstant(MatrixXd &alpha,
|
||||
int rowIndex, int n,
|
||||
double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
|
||||
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
|
||||
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n))
|
||||
+ 2 * alpha(rowIndex,n));
|
||||
leftCoeff =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
centerCoeff =
|
||||
1 + sx * (calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n)) +
|
||||
2 * alpha(rowIndex, n));
|
||||
|
||||
return {leftCoeff, centerCoeff};
|
||||
return {leftCoeff, centerCoeff};
|
||||
}
|
||||
|
||||
|
||||
// calculates coefficient for right boundary in closed case
|
||||
static tuple<double, double> calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
static tuple<double, double>
|
||||
calcRightBoundaryCoeffClosed(MatrixXd &alpha, int rowIndex, int n, double sx) {
|
||||
double leftCoeff;
|
||||
double centerCoeff;
|
||||
|
||||
leftCoeff = -sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
|
||||
centerCoeff = 1 + sx * calcAlphaIntercell(alpha(rowIndex,n-1), alpha(rowIndex,n));
|
||||
leftCoeff =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
centerCoeff =
|
||||
1 + sx * calcAlphaIntercell(alpha(rowIndex, n - 1), alpha(rowIndex, n));
|
||||
|
||||
return {leftCoeff, centerCoeff};
|
||||
return {leftCoeff, centerCoeff};
|
||||
}
|
||||
|
||||
|
||||
// creates coefficient matrix for next time step from alphas in x-direction
|
||||
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha, vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight, int numCols, int rowIndex, double sx) {
|
||||
static SparseMatrix<double> createCoeffMatrix(MatrixXd &alpha,
|
||||
vector<BoundaryElement> &bcLeft,
|
||||
vector<BoundaryElement> &bcRight,
|
||||
int numCols, int rowIndex,
|
||||
double sx) {
|
||||
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
SparseMatrix<double> cm(numCols, numCols);
|
||||
cm.reserve(VectorXi::Constant(numCols, 3));
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
SparseMatrix<double> cm(numCols, numCols);
|
||||
cm.reserve(VectorXi::Constant(numCols, 3));
|
||||
|
||||
// left column
|
||||
BC_TYPE type = bcLeft[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
|
||||
cm.insert(0,0) = centerCoeffTop;
|
||||
cm.insert(0,1) = rightCoeffTop;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [centerCoeffTop, rightCoeffTop] = calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
|
||||
cm.insert(0,0) = centerCoeffTop;
|
||||
cm.insert(0,1) = rightCoeffTop;
|
||||
} else {
|
||||
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
// left column
|
||||
BC_TYPE type = bcLeft[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcLeftBoundaryCoeffConstant(alpha, rowIndex, sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcLeftBoundaryCoeffClosed(alpha, rowIndex, sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
|
||||
// inner columns
|
||||
int n = numCols-1;
|
||||
for (int i = 1; i < n; i++) {
|
||||
cm.insert(i,i-1) = -sx * calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i));
|
||||
cm.insert(i,i) = 1 + sx * (
|
||||
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1))
|
||||
+ calcAlphaIntercell(alpha(rowIndex,i-1), alpha(rowIndex,i))
|
||||
)
|
||||
;
|
||||
cm.insert(i,i+1) = -sx * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex,i+1));
|
||||
}
|
||||
// inner columns
|
||||
int n = numCols - 1;
|
||||
for (int i = 1; i < n; i++) {
|
||||
cm.insert(i, i - 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
|
||||
cm.insert(i, i) =
|
||||
1 +
|
||||
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
|
||||
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
|
||||
cm.insert(i, i + 1) =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
|
||||
}
|
||||
|
||||
// right column
|
||||
type = bcRight[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
|
||||
cm.insert(n,n-1) = leftCoeffBottom;
|
||||
cm.insert(n,n) = centerCoeffBottom;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] = calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
|
||||
cm.insert(n,n-1) = leftCoeffBottom;
|
||||
cm.insert(n,n) = centerCoeffBottom;
|
||||
} else {
|
||||
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
// right column
|
||||
type = bcRight[rowIndex].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] =
|
||||
calcRightBoundaryCoeffConstant(alpha, rowIndex, n, sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
auto [leftCoeffBottom, centerCoeffBottom] =
|
||||
calcRightBoundaryCoeffClosed(alpha, rowIndex, n, sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
|
||||
cm.makeCompressed(); // important for Eigen solver
|
||||
cm.makeCompressed(); // important for Eigen solver
|
||||
|
||||
return cm;
|
||||
return cm;
|
||||
}
|
||||
|
||||
|
||||
// calculates explicity concentration at top boundary in constant case
|
||||
static double calcExplicitConcentrationsTopBoundaryConstant(MatrixXd &concentrations,
|
||||
MatrixXd &alpha, vector<BoundaryElement> &bcTop, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
static double calcExplicitConcentrationsTopBoundaryConstant(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, vector<BoundaryElement> &bcTop,
|
||||
int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
|
||||
* concentrations(rowIndex,i)
|
||||
+ (
|
||||
1 - sy * (
|
||||
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
|
||||
+ 2 * alpha(rowIndex,i)
|
||||
)
|
||||
) * concentrations(rowIndex,i)
|
||||
+ sy * alpha(rowIndex,i) * bcTop[i].getValue();
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex, i) +
|
||||
(1 -
|
||||
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) +
|
||||
2 * alpha(rowIndex, i))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * alpha(rowIndex, i) * bcTop[i].getValue();
|
||||
|
||||
return c;
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
// calculates explicit concentration at top boundary in closed case
|
||||
static double calcExplicitConcentrationsTopBoundaryClosed(MatrixXd &concentrations,
|
||||
MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
static double calcExplicitConcentrationsTopBoundaryClosed(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
|
||||
* concentrations(rowIndex,i)
|
||||
+ (
|
||||
1 - sy * (
|
||||
calcAlphaIntercell(alpha(rowIndex,i), alpha(rowIndex+1,i))
|
||||
)
|
||||
) * concentrations(rowIndex,i);
|
||||
c = sy * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex, i) +
|
||||
(1 -
|
||||
sy * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex + 1, i)))) *
|
||||
concentrations(rowIndex, i);
|
||||
|
||||
return c;
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
// calculates explicit concentration at bottom boundary in constant case
|
||||
static double calcExplicitConcentrationsBottomBoundaryConstant(MatrixXd &concentrations,
|
||||
MatrixXd &alpha, vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
static double calcExplicitConcentrationsBottomBoundaryConstant(
|
||||
MatrixXd &concentrations, MatrixXd &alpha,
|
||||
vector<BoundaryElement> &bcBottom, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = sy * alpha(rowIndex,i) * bcBottom[i].getValue()
|
||||
+ (
|
||||
1 - sy * (
|
||||
2 * alpha(rowIndex,i)
|
||||
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
|
||||
)
|
||||
) * concentrations(rowIndex,i)
|
||||
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
|
||||
* concentrations(rowIndex-1,i);
|
||||
c = sy * alpha(rowIndex, i) * bcBottom[i].getValue() +
|
||||
(1 -
|
||||
sy * (2 * alpha(rowIndex, i) +
|
||||
calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
|
||||
return c;
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
// calculates explicit concentration at bottom boundary in closed case
|
||||
static double calcExplicitConcentrationsBottomBoundaryClosed(MatrixXd &concentrations,
|
||||
MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
static double calcExplicitConcentrationsBottomBoundaryClosed(
|
||||
MatrixXd &concentrations, MatrixXd &alpha, int rowIndex, int i, double sy) {
|
||||
double c;
|
||||
|
||||
c = (
|
||||
1 - sy * (
|
||||
+ calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
|
||||
)
|
||||
) * concentrations(rowIndex,i)
|
||||
+ sy * calcAlphaIntercell(alpha(rowIndex-1,i), alpha(rowIndex,i))
|
||||
* concentrations(rowIndex-1,i);
|
||||
c = (1 -
|
||||
sy * (+calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy * calcAlphaIntercell(alpha(rowIndex - 1, i), alpha(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
|
||||
return c;
|
||||
return c;
|
||||
}
|
||||
|
||||
// creates a solution vector for next time step from the current state of
|
||||
// concentrations
|
||||
static VectorXd createSolutionVector(
|
||||
MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
|
||||
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
|
||||
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
|
||||
int length, int rowIndex, double sx, double sy) {
|
||||
|
||||
// creates a solution vector for next time step from the current state of concentrations
|
||||
static VectorXd createSolutionVector(MatrixXd &concentrations, MatrixXd &alphaX, MatrixXd &alphaY,
|
||||
vector<BoundaryElement> &bcLeft, vector<BoundaryElement> &bcRight,
|
||||
vector<BoundaryElement> &bcTop, vector<BoundaryElement> &bcBottom,
|
||||
int length, int rowIndex, double sx, double sy) {
|
||||
VectorXd sv(length);
|
||||
int numRows = concentrations.rows();
|
||||
BC_TYPE type;
|
||||
|
||||
VectorXd sv(length);
|
||||
int numRows = concentrations.rows();
|
||||
BC_TYPE type;
|
||||
|
||||
// inner rows
|
||||
if (rowIndex > 0 && rowIndex < numRows-1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
sv(i) = sy * calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
|
||||
* concentrations(rowIndex+1,i)
|
||||
+ (
|
||||
1 - sy * (
|
||||
calcAlphaIntercell(alphaY(rowIndex,i), alphaY(rowIndex+1,i))
|
||||
+ calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
|
||||
)
|
||||
) * concentrations(rowIndex,i)
|
||||
+ sy * calcAlphaIntercell(alphaY(rowIndex-1,i), alphaY(rowIndex,i))
|
||||
* concentrations(rowIndex-1,i)
|
||||
;
|
||||
}
|
||||
// inner rows
|
||||
if (rowIndex > 0 && rowIndex < numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
sv(i) =
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex, i), alphaY(rowIndex + 1, i)) *
|
||||
concentrations(rowIndex + 1, i) +
|
||||
(1 - sy * (calcAlphaIntercell(alphaY(rowIndex, i),
|
||||
alphaY(rowIndex + 1, i)) +
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i),
|
||||
alphaY(rowIndex, i)))) *
|
||||
concentrations(rowIndex, i) +
|
||||
sy *
|
||||
calcAlphaIntercell(alphaY(rowIndex - 1, i), alphaY(rowIndex, i)) *
|
||||
concentrations(rowIndex - 1, i);
|
||||
}
|
||||
}
|
||||
|
||||
// first row
|
||||
else if (rowIndex == 0) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcTop[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(concentrations, alphaY, bcTop, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
// first row
|
||||
else if (rowIndex == 0) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcTop[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryConstant(
|
||||
concentrations, alphaY, bcTop, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsTopBoundaryClosed(
|
||||
concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// last row
|
||||
else if (rowIndex == numRows-1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcBottom[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(concentrations, alphaY, bcBottom, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument("Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
// last row
|
||||
else if (rowIndex == numRows - 1) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
type = bcBottom[i].getType();
|
||||
if (type == BC_TYPE_CONSTANT) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryConstant(
|
||||
concentrations, alphaY, bcBottom, rowIndex, i, sy);
|
||||
} else if (type == BC_TYPE_CLOSED) {
|
||||
sv(i) = calcExplicitConcentrationsBottomBoundaryClosed(
|
||||
concentrations, alphaY, rowIndex, i, sy);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// first column -> additional fixed concentration change from perpendicular dimension in constant bc case
|
||||
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(0) += 2 * sx * alphaX(rowIndex,0) * bcLeft[rowIndex].getValue();
|
||||
}
|
||||
// first column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcLeft[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(0) += 2 * sx * alphaX(rowIndex, 0) * bcLeft[rowIndex].getValue();
|
||||
}
|
||||
|
||||
// last column -> additional fixed concentration change from perpendicular dimension in constant bc case
|
||||
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(length-1) += 2 * sx * alphaX(rowIndex,length-1) * bcRight[rowIndex].getValue();
|
||||
}
|
||||
// last column -> additional fixed concentration change from perpendicular
|
||||
// dimension in constant bc case
|
||||
if (bcRight[rowIndex].getType() == BC_TYPE_CONSTANT) {
|
||||
sv(length - 1) +=
|
||||
2 * sx * alphaX(rowIndex, length - 1) * bcRight[rowIndex].getValue();
|
||||
}
|
||||
|
||||
return sv;
|
||||
return sv;
|
||||
}
|
||||
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// use of EigenLU solver
|
||||
static VectorXd EigenLUAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
solver.analyzePattern(A);
|
||||
solver.factorize(A);
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
solver.analyzePattern(A);
|
||||
solver.factorize(A);
|
||||
|
||||
return solver.solve(b);
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// solver for linear equation system; A corresponds to coefficient matrix,
|
||||
// b to the solution vector
|
||||
// implementation of Thomas Algorithm
|
||||
static VectorXd ThomasAlgorithm(SparseMatrix<double> &A, VectorXd &b) {
|
||||
uint32_t n = b.size();
|
||||
uint32_t n = b.size();
|
||||
|
||||
Eigen::VectorXd a_diag(n);
|
||||
Eigen::VectorXd b_diag(n);
|
||||
Eigen::VectorXd c_diag(n);
|
||||
Eigen::VectorXd x_vec = b;
|
||||
Eigen::VectorXd a_diag(n);
|
||||
Eigen::VectorXd b_diag(n);
|
||||
Eigen::VectorXd c_diag(n);
|
||||
Eigen::VectorXd x_vec = b;
|
||||
|
||||
// Fill diagonals vectors
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
c_diag[0] = A.coeff(0, 1);
|
||||
// Fill diagonals vectors
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
c_diag[0] = A.coeff(0, 1);
|
||||
|
||||
for (int i = 1; i < n - 1; i++) {
|
||||
a_diag[i] = A.coeff(i, i - 1);
|
||||
b_diag[i] = A.coeff(i, i);
|
||||
c_diag[i] = A.coeff(i, i + 1);
|
||||
}
|
||||
a_diag[n - 1] = A.coeff(n - 1, n - 2);
|
||||
b_diag[n - 1] = A.coeff(n - 1, n - 1);
|
||||
for (int i = 1; i < n - 1; i++) {
|
||||
a_diag[i] = A.coeff(i, i - 1);
|
||||
b_diag[i] = A.coeff(i, i);
|
||||
c_diag[i] = A.coeff(i, i + 1);
|
||||
}
|
||||
a_diag[n - 1] = A.coeff(n - 1, n - 2);
|
||||
b_diag[n - 1] = A.coeff(n - 1, n - 1);
|
||||
|
||||
// HACK: write CSV to file
|
||||
// HACK: write CSV to file
|
||||
#ifdef WRITE_THOMAS_CSV
|
||||
#include<fstream>
|
||||
#include<string>
|
||||
static std::uint32_t file_index = 0;
|
||||
std::string file_name = "Thomas_" + std::to_string(file_index++) + ".csv";
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
static std::uint32_t file_index = 0;
|
||||
std::string file_name = "Thomas_" + std::to_string(file_index++) + ".csv";
|
||||
|
||||
std::ofstream out_file;
|
||||
std::ofstream out_file;
|
||||
|
||||
out_file.open(file_name, std::ofstream::trunc | std::ofstream::out);
|
||||
out_file.open(file_name, std::ofstream::trunc | std::ofstream::out);
|
||||
|
||||
// print header
|
||||
out_file << "Aa, Ab, Ac, b\n";
|
||||
// print header
|
||||
out_file << "Aa, Ab, Ac, b\n";
|
||||
|
||||
// iterate through all elements
|
||||
for (std::size_t i = 0; i < n; i++) {
|
||||
out_file << a_diag[i] << ", " << b_diag[i] << ", " << c_diag[i] << ", " << b[i] << "\n";
|
||||
}
|
||||
// iterate through all elements
|
||||
for (std::size_t i = 0; i < n; i++) {
|
||||
out_file << a_diag[i] << ", " << b_diag[i] << ", " << c_diag[i] << ", "
|
||||
<< b[i] << "\n";
|
||||
}
|
||||
|
||||
out_file.close();
|
||||
out_file.close();
|
||||
#endif
|
||||
|
||||
// start solving - c_diag and x_vec are overwritten
|
||||
n--;
|
||||
c_diag[0] /= b_diag[0];
|
||||
x_vec[0] /= b_diag[0];
|
||||
// start solving - c_diag and x_vec are overwritten
|
||||
n--;
|
||||
c_diag[0] /= b_diag[0];
|
||||
x_vec[0] /= b_diag[0];
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
|
||||
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
|
||||
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
|
||||
}
|
||||
for (int i = 1; i < n; i++) {
|
||||
c_diag[i] /= b_diag[i] - a_diag[i] * c_diag[i - 1];
|
||||
x_vec[i] = (x_vec[i] - a_diag[i] * x_vec[i - 1]) /
|
||||
(b_diag[i] - a_diag[i] * c_diag[i - 1]);
|
||||
}
|
||||
|
||||
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
|
||||
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
|
||||
x_vec[n] = (x_vec[n] - a_diag[n] * x_vec[n - 1]) /
|
||||
(b_diag[n] - a_diag[n] * c_diag[n - 1]);
|
||||
|
||||
for (int i = n; i-- > 0;) {
|
||||
x_vec[i] -= c_diag[i] * x_vec[i + 1];
|
||||
}
|
||||
for (int i = n; i-- > 0;) {
|
||||
x_vec[i] -= c_diag[i] * x_vec[i + 1];
|
||||
}
|
||||
|
||||
return x_vec;
|
||||
return x_vec;
|
||||
}
|
||||
|
||||
// BTCS solution for 1D grid
|
||||
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep,
|
||||
VectorXd (*solverFunc)(SparseMatrix<double> &A,
|
||||
VectorXd &b)) {
|
||||
int length = grid.getLength();
|
||||
double sx = timestep / (grid.getDelta() * grid.getDelta());
|
||||
|
||||
// BTCS solution for 1D grid
|
||||
static void BTCS_1D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b)) {
|
||||
int length = grid.getLength();
|
||||
double sx = timestep / (grid.getDelta() * grid.getDelta());
|
||||
VectorXd concentrations_t1(length);
|
||||
|
||||
VectorXd concentrations_t1(length);
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b(length);
|
||||
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b(length);
|
||||
MatrixXd alpha = grid.getAlpha();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
|
||||
MatrixXd alpha = grid.getAlpha();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
int rowIndex = 0;
|
||||
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex,
|
||||
sx); // this is exactly same as in 2D
|
||||
for (int i = 0; i < length; i++) {
|
||||
b(i) = concentrations(0, i);
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(0) += 2 * sx * alpha(0, 0) * bcLeft[0].getValue();
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(length - 1) += 2 * sx * alpha(0, length - 1) * bcRight[0].getValue();
|
||||
}
|
||||
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
int rowIndex = 0;
|
||||
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex, sx); // this is exactly same as in 2D
|
||||
for (int i = 0; i < length; i++) {
|
||||
b(i) = concentrations(0,i);
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_LEFT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(0) += 2 * sx * alpha(0,0) * bcLeft[0].getValue();
|
||||
}
|
||||
if (bc.getBoundaryElementType(BC_SIDE_RIGHT, 0) == BC_TYPE_CONSTANT) {
|
||||
b(length-1) += 2 * sx * alpha(0,length-1) * bcRight[0].getValue();
|
||||
}
|
||||
concentrations_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations_t1 = solverFunc(A, b);
|
||||
for (int j = 0; j < length; j++) {
|
||||
concentrations(0, j) = concentrations_t1(j);
|
||||
}
|
||||
|
||||
for (int j = 0; j < length; j++) {
|
||||
concentrations(0,j) = concentrations_t1(j);
|
||||
}
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
|
||||
// BTCS solution for 2D grid
|
||||
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep, VectorXd (*solverFunc) (SparseMatrix<double> &A, VectorXd &b), int numThreads) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
|
||||
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
|
||||
static void BTCS_2D(Grid &grid, Boundary &bc, double timestep,
|
||||
VectorXd (*solverFunc)(SparseMatrix<double> &A,
|
||||
VectorXd &b),
|
||||
int numThreads) {
|
||||
int rowMax = grid.getRow();
|
||||
int colMax = grid.getCol();
|
||||
double sx = timestep / (2 * grid.getDeltaCol() * grid.getDeltaCol());
|
||||
double sy = timestep / (2 * grid.getDeltaRow() * grid.getDeltaRow());
|
||||
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
VectorXd row_t1(colMax);
|
||||
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
|
||||
VectorXd row_t1(colMax);
|
||||
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b;
|
||||
SparseMatrix<double> A;
|
||||
VectorXd b;
|
||||
|
||||
MatrixXd alphaX = grid.getAlphaX();
|
||||
MatrixXd alphaY = grid.getAlphaY();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
|
||||
vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
|
||||
MatrixXd alphaX = grid.getAlphaX();
|
||||
MatrixXd alphaY = grid.getAlphaY();
|
||||
vector<BoundaryElement> bcLeft = bc.getBoundarySide(BC_SIDE_LEFT);
|
||||
vector<BoundaryElement> bcRight = bc.getBoundarySide(BC_SIDE_RIGHT);
|
||||
vector<BoundaryElement> bcTop = bc.getBoundarySide(BC_SIDE_TOP);
|
||||
vector<BoundaryElement> bcBottom = bc.getBoundarySide(BC_SIDE_BOTTOM);
|
||||
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
MatrixXd concentrations = grid.getConcentrations();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
|
||||
|
||||
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, colMax, i, sx, sy);
|
||||
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations_t1.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations_t1.transposeInPlace();
|
||||
concentrations.transposeInPlace();
|
||||
alphaX.transposeInPlace();
|
||||
alphaY.transposeInPlace();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
|
||||
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
|
||||
bcLeft, bcRight, rowMax, i, sy, sx);
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx);
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, colMax, i, sx, sy);
|
||||
|
||||
concentrations.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations.transposeInPlace();
|
||||
SparseLU<SparseMatrix<double>> solver;
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations_t1.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations_t1.transposeInPlace();
|
||||
concentrations.transposeInPlace();
|
||||
alphaX.transposeInPlace();
|
||||
alphaY.transposeInPlace();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b, row_t1)
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy);
|
||||
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
|
||||
bcLeft, bcRight, rowMax, i, sy, sx);
|
||||
|
||||
row_t1 = solverFunc(A, b);
|
||||
|
||||
concentrations.row(i) = row_t1;
|
||||
}
|
||||
|
||||
concentrations.transposeInPlace();
|
||||
|
||||
grid.setConcentrations(concentrations);
|
||||
}
|
||||
|
||||
|
||||
// entry point for EigenLU solver; differentiate between 1D and 2D grid
|
||||
static void BTCS_LU(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, EigenLUAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, EigenLUAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
|
||||
// entry point for Thomas algorithm solver; differentiate 1D and 2D grid
|
||||
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument("Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
static void BTCS_Thomas(Grid &grid, Boundary &bc, double timestep,
|
||||
int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
BTCS_2D(grid, bc, timestep, ThomasAlgorithm, numThreads);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
"Error: Only 1- and 2-dimensional grids are defined!");
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user