use private datatypes to adress solver matrix

This commit is contained in:
Max Luebke 2021-12-06 20:03:40 +01:00
parent c3e886bb07
commit 8d27274101
3 changed files with 121 additions and 56 deletions

View File

@ -6,12 +6,6 @@
#include <Eigen/src/Core/Matrix.h>
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/src/OrderingMethods/Ordering.h>
#include <Eigen/src/SparseCholesky/SimplicialCholesky.h>
#include <Eigen/src/SparseCore/SparseMap.h>
#include <Eigen/src/SparseCore/SparseMatrix.h>
#include <Eigen/src/SparseCore/SparseMatrixBase.h>
#include <Eigen/src/SparseLU/SparseLU.h>
#include <Eigen/src/SparseQR/SparseQR.h>
#include <algorithm>
#include <iomanip>
@ -25,15 +19,15 @@ BTCSDiffusion::BTCSDiffusion(int x) : dim_x(x) {
this->grid_dim = 1;
// per default use Neumann condition with gradient of 0 at the end of the grid
this->bc.resize(2, std::tuple<int, double>(0,0.));
this->bc.resize(2, std::tuple<int, double>(0, 0.));
}
BTCSDiffusion::BTCSDiffusion(int x, int y) : dim_x(x), dim_y(y) {
// this->grid_dim = 2;
// this->bc.reserve(x * 2 + y * 2);
// // per default use Neumann condition with gradient of 0 at the end of the grid
// std::fill(this->bc.begin(), this->bc.end(), -1);
// // per default use Neumann condition with gradient of 0 at the end of the
// grid std::fill(this->bc.begin(), this->bc.end(), -1);
}
BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
: dim_x(x), dim_y(y), dim_z(z) {
@ -42,16 +36,20 @@ BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
// TODO: reserve memory for boundary conditions
}
void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
double timestep) {
void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
double bc_right, std::vector<double> &alpha) {
// calculate dx
double dx = 1. / (this->dim_x - 1);
// calculate size needed for A matrix and b,x vectors
int size = this->dim_x + 2;
Eigen::VectorXd b = Eigen::VectorXd::Constant(size, 0);
Eigen::VectorXd x_out(size);
// set sizes of private and yet allocated vectors
b_vector.resize(size);
x_vector.resize(size);
// Eigen::VectorXd b = Eigen::VectorXd::Constant(size, 0);
// Eigen::VectorXd x_out(size);
/*
* Initalization of matrix A
@ -59,42 +57,42 @@ void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
* https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
*/
std::vector<T> tripletList;
tripletList.reserve(c.size() * 3 + bc.size());
// std::vector<T> tripletList;
// tripletList.reserve(c.size() * 3 + bc.size());
int A_line = 0;
// int A_line = 0;
// For all concentrations create one row in matrix A
for (int i = 1; i < this->dim_x + 1; i++) {
double sx = (alpha[i - 1] * timestep) / (dx * dx);
// // For all concentrations create one row in matrix A
// for (int i = 1; i < this->dim_x + 1; i++) {
// double sx = (alpha[i - 1] * timestep) / (dx * dx);
tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
// tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
tripletList.push_back(T(A_line, i - 1, sx));
tripletList.push_back(T(A_line, i + 1, sx));
// tripletList.push_back(T(A_line, i - 1, sx));
// tripletList.push_back(T(A_line, i + 1, sx));
b[A_line] = -c[i - 1];
A_line++;
}
// b[A_line] = -c[i - 1];
// A_line++;
// }
// append left and right boundary conditions/ghost zones
tripletList.push_back(T(A_line, 0, 1));
// // append left and right boundary conditions/ghost zones
// tripletList.push_back(T(A_line, 0, 1));
// if value is -1 apply Neumann condition with given gradient
// TODO: set specific gradient
if (bc[0] == -1)
b[A_line] = c[0];
// else apply given Dirichlet condition
else
b[A_line] = this->bc[0];
// // if value is -1 apply Neumann condition with given gradient
// // TODO: set specific gradient
// if (bc[0] == -1)
// b[A_line] = c[0];
// // else apply given Dirichlet condition
// else
// b[A_line] = this->bc[0];
A_line++;
tripletList.push_back(T(A_line, size - 1, 1));
// b[A_line] = bc[1];
if (bc[1] == -1)
b[A_line] = c[c.size() - 1];
else
b[A_line] = this->bc[1];
// A_line++;
// tripletList.push_back(T(A_line, size - 1, 1));
// // b[A_line] = bc[1];
// if (bc[1] == -1)
// b[A_line] = c[c.size() - 1];
// else
// b[A_line] = this->bc[1];
/*
* Begin to solve the equation system
@ -103,22 +101,71 @@ void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
* TODO: remove output
*/
Eigen::SparseMatrix<double> A(size, size);
A.setFromTriplets(tripletList.begin(), tripletList.end());
A_matrix.resize(size, size);
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
A_matrix.insert(0, 0) = bc_left;
A_matrix.insert(size - 1, size - 1) = bc_right;
for (int i = 1; i < this->dim_x + 1; i++) {
double sx = (alpha[i - 1] * time_step) / (dx * dx);
A_matrix.insert(i, i) = -1. - 2. * sx;
A_matrix.insert(i, i - 1) = sx;
A_matrix.insert(i, i + 1) = sx;
b_vector[i] = -c[i - 1];
// tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
// tripletList.push_back(T(A_line, i - 1, sx));
// tripletList.push_back(T(A_line, i + 1, sx));
// b[A_line] = -c[i - 1];
// A_line++;
}
// Eigen::SparseMatrix<double> A(size, size);
// A.setFromTriplets(tripletList.begin(), tripletList.end());
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
solver;
solver.analyzePattern(A);
solver.analyzePattern(A_matrix);
solver.factorize(A);
solver.factorize(A_matrix);
std::cout << solver.lastErrorMessage() << std::endl;
x_out = solver.solve(b);
x_vector = solver.solve(b_vector);
std::cout << std::setprecision(10) << x_out << std::endl << std::endl;
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
for (int i = 0; i < c.size(); i++) {
c[i] = x_out[i + 1];
c[i] = x_vector[i + 1];
}
}
void BTCSDiffusion::setTimestep(double time_step) {
this->time_step = time_step;
}
void BTCSDiffusion::simulate(std::vector<double> &c,
std::vector<double> &alpha) {
if (this->grid_dim == 1) {
double bc_left = getBCFromTuple(0);
double bc_right = getBCFromTuple(1);
simulate1D(c, bc_left, bc_right, alpha);
}
}
double BTCSDiffusion::getBCFromTuple(int index) {
double val = std::get<1>(bc[index]);
return val;
}
void BTCSDiffusion::setBoundaryCondition(int index, double val, int type) {
std::get<0>(bc[index]) = val;
std::get<1>(bc[index]) = type;
}

View File

@ -2,6 +2,7 @@
#define BTCSDIFFUSION_H_
#include <Eigen/Sparse>
#include <Eigen/src/SparseCore/SparseMatrixBase.h>
#include <tuple>
#include <vector>
@ -11,7 +12,7 @@
*/
typedef Eigen::Triplet<double> T;
typedef std::vector<std::tuple<int,double>> boundary_condition;
typedef std::vector<std::tuple<int, double>> boundary_condition;
/*!
* Class implementing a solution for a 1/2/3D diffusion equation using backward
@ -20,9 +21,8 @@ typedef std::vector<std::tuple<int,double>> boundary_condition;
class BTCSDiffusion {
public:
static const int BC_NEUMANN;
static const int BC_DIRICHLET;
static const int BC_NEUMANN;
static const int BC_DIRICHLET;
/*!
* Create 1D-diffusion module.
@ -56,13 +56,28 @@ public:
* @param alpha Vector of diffusioncoefficients for each grid element.
* @param timestep Time (in seconds ?) to simulate.
*/
void simulate(std::vector<double> &c, std::vector<double> &alpha,
double timestep);
void simulate(std::vector<double> &c, std::vector<double> &alpha);
void setTimestep(double time_step);
void setBoundaryCondition(int index, double val, int type);
private:
void simulate1D(std::vector<double> &c, double bc_left, double bc_right,
std::vector<double> &alpha);
void simulate2D(std::vector<double> &c);
void simulate3D(std::vector<double> &c);
double getBCFromTuple(int index);
boundary_condition bc;
Eigen::SparseMatrix<double> A_matrix;
Eigen::VectorXd b_vector;
Eigen::VectorXd x_vector;
double time_step;
int grid_dim;
int dim_x;
int dim_y;

View File

@ -18,13 +18,16 @@ int main(int argc, char *argv[]) {
BTCSDiffusion diffu(x);
diffu.setBoundaryCondition(bc_left, BTCSDiffusion::LEFT);
diffu.setBoundaryCondition(0, 5. * std::pow(10, -6), BTCSDiffusion::BC_DIRICHLET);
diffu.setTimestep(1.);
// diffu.setBoundaryCondition(bc_left, BTCSDiffusion::LEFT);
// we don't need this since Neumann condition with gradient of 0 is set per
// default
// diffu.setBoundaryCondition(bc_right, BTCSDiffusion::RIGHT);
for (int i = 0; i < 100; i++) {
diffu.simulate(input, alpha, 1.);
diffu.simulate(input, alpha);
}
return 0;