Rewrite simulate1D function

This commit is contained in:
Max Luebke 2022-02-28 20:23:50 +01:00
parent 6f9d344cee
commit 9a760bd9d9
2 changed files with 107 additions and 61 deletions

View File

@ -15,6 +15,8 @@
#include <iostream>
#define BTCS_MAX_DEP_PER_CELL 3
Diffusion::BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
assert(dim <= 3);
@ -144,81 +146,116 @@ void Diffusion::BTCSDiffusion::simulate_base(
// c = x_vector.segment(!left_is_constant, c.size());
}
inline void Diffusion::BTCSDiffusion::reserveMemory(int size,
int max_count_per_line) {
size += 2;
A_matrix.resize(size, size);
A_matrix.reserve(Eigen::VectorXi::Constant(size, max_count_per_line));
b_vector.resize(size);
x_vector.resize(size);
}
void Diffusion::BTCSDiffusion::simulate1D(
Eigen::Map<DVectorRowMajor> &c, Eigen::Map<const DVectorRowMajor> &alpha,
Eigen::Map<const BCVectorRowMajor> &bc) {
int size = this->grid_cells[0];
double dx = this->deltas[0];
double time_step = this->time_step;
reserveMemory(size, BTCS_MAX_DEP_PER_CELL);
fillMatrixFromRow(alpha.row(0), bc.row(0), size, dx, time_step);
fillVectorFromRowADI(c, alpha, bc, Eigen::VectorXd::Constant(size, 0), size,
dx, time_step);
std::cout << A_matrix << std::endl;
solveLES();
c = x_vector.segment(1, size);
}
void Diffusion::BTCSDiffusion::simulate2D(
Eigen::Map<DMatrixRowMajor> &c, Eigen::Map<const DMatrixRowMajor> &alpha,
Eigen::Map<const BCMatrixRowMajor> &bc) {
double local_dt = this->time_step / 2.;
DMatrixRowMajor tmp_vector;
// double local_dt = this->time_step / 2.;
// DMatrixRowMajor tmp_vector;
int n_cols = c.cols();
unsigned int size = (this->grid_cells[0] + 2) * (this->grid_cells[1]);
// int n_cols = c.cols();
// unsigned int size = (this->grid_cells[0] + 2) * (this->grid_cells[1]);
A_matrix.resize(size, size);
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
// A_matrix.resize(size, size);
// A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
b_vector.resize(size);
x_vector.resize(size);
// b_vector.resize(size);
// x_vector.resize(size);
for (int i = 0; i < c.rows(); i++) {
boundary_condition left = bc(i, 0);
bool left_constant = left.type == Diffusion::BC_CONSTANT;
boundary_condition right = bc(i, n_cols - 1);
bool right_constant = right.type == Diffusion::BC_CONSTANT;
// for (int i = 0; i < c.rows(); i++) {
// boundary_condition left = bc(i, 0);
// bool left_constant = left.type == Diffusion::BC_CONSTANT;
// boundary_condition right = bc(i, n_cols - 1);
// bool right_constant = right.type == Diffusion::BC_CONSTANT;
fillMatrixFromRow(alpha.row(i), n_cols, i, left_constant, right_constant,
deltas[0], this->time_step / 2, bc.row(i));
fillVectorFromRowADI(c, alpha.row(i), i, deltas[0], left, right, local_dt,
bc.row(i));
}
// fillMatrixFromRow(alpha.row(i), n_cols, i, left_constant, right_constant,
// deltas[0], this->time_step / 2, bc.row(i));
// fillVectorFromRowADI(c, alpha.row(i), i, deltas[0], left, right,
// local_dt,
// bc.row(i));
// }
solveLES();
// solveLES();
tmp_vector = x_vector;
tmp_vector.transposeInPlace();
tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
// tmp_vector = x_vector;
// tmp_vector.transposeInPlace();
// tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
Eigen::Map<Eigen::MatrixXd> tmp(tmp_vector.data(), c.rows(), c.cols() + 2);
// Eigen::Map<Eigen::MatrixXd> tmp(tmp_vector.data(), c.rows(), c.cols() + 2);
c = tmp_vector.block(0, 1, c.rows(), c.cols());
c.transposeInPlace();
// c = tmp_vector.block(0, 1, c.rows(), c.cols());
// c.transposeInPlace();
size = (this->grid_cells[0] * (this->grid_cells[1] + 2));
// size = (this->grid_cells[0] * (this->grid_cells[1] + 2));
A_matrix.resize(size, size);
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
// A_matrix.resize(size, size);
// A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
b_vector.resize(size);
x_vector.resize(size);
// b_vector.resize(size);
// x_vector.resize(size);
n_cols = c.cols();
// n_cols = c.cols();
for (int i = 0; i < c.rows(); i++) {
boundary_condition left = bc(0, i);
bool left_constant = left.type == Diffusion::BC_CONSTANT;
boundary_condition right = bc(n_cols - 1, i);
bool right_constant = right.type == Diffusion::BC_CONSTANT;
// for (int i = 0; i < c.rows(); i++) {
// boundary_condition left = bc(0, i);
// bool left_constant = left.type == Diffusion::BC_CONSTANT;
// boundary_condition right = bc(n_cols - 1, i);
// bool right_constant = right.type == Diffusion::BC_CONSTANT;
fillMatrixFromRow(alpha.col(i), n_cols, i, left_constant, right_constant,
deltas[1], this->time_step / 2, bc.col(i));
fillVectorFromRowADI(c, alpha.row(i), i, deltas[1], left, right, local_dt,
bc.col(i));
}
// fillMatrixFromRow(alpha.col(i), n_cols, i, left_constant, right_constant,
// deltas[1], this->time_step / 2, bc.col(i));
// fillVectorFromRowADI(c, alpha.row(i), i, deltas[1], left, right,
// local_dt,
// bc.col(i));
// }
solveLES();
// solveLES();
tmp_vector = x_vector;
tmp_vector.transposeInPlace();
tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
// tmp_vector = x_vector;
// tmp_vector.transposeInPlace();
// tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
c = tmp_vector.block(0, 1, c.rows(), c.cols());
// c = tmp_vector.block(0, 1, c.rows(), c.cols());
c.transposeInPlace();
// c.transposeInPlace();
}
inline void Diffusion::BTCSDiffusion::fillMatrixFromRow(
const DVectorRowMajor &alpha, const BCVectorRowMajor &bc, int size,
double dx, double time_step) {
const Eigen::VectorXd &alpha,
const Eigen::Vector<Diffusion::boundary_condition, Eigen::Dynamic> &bc,
int size, double dx, double time_step) {
Diffusion::boundary_condition left = bc[0];
Diffusion::boundary_condition right = bc[size - 1];
@ -254,8 +291,9 @@ inline void Diffusion::BTCSDiffusion::fillMatrixFromRow(
}
inline void Diffusion::BTCSDiffusion::fillVectorFromRowADI(
DVectorRowMajor &c, const Eigen::VectorXd alpha, const BCVectorRowMajor &bc,
DVectorRowMajor &t0_c, int size, double dx, double time_step) {
const DVectorRowMajor &c, const Eigen::VectorXd alpha,
const BCVectorRowMajor &bc, const DVectorRowMajor &t0_c, int size,
double dx, double time_step) {
Diffusion::boundary_condition left = bc[0];
Diffusion::boundary_condition right = bc[size - 1];
@ -309,8 +347,7 @@ void Diffusion::BTCSDiffusion::simulate(double *c, double *alpha,
Eigen::Map<const DVectorRowMajor> alpha_in(alpha, this->grid_cells[0]);
Eigen::Map<const BCVectorRowMajor> bc_in(bc, this->grid_cells[0]);
simulate1D(c_in, bc[0], bc[this->grid_cells[0] - 1], bc_in, alpha_in,
this->deltas[0], this->grid_cells[0]);
simulate1D(c_in, alpha_in, bc_in);
}
if (this->grid_dim == 2) {
Eigen::Map<DMatrixRowMajor> c_in(c, this->grid_cells[1],

View File

@ -12,6 +12,8 @@
#include <type_traits>
#include <vector>
#define BTCS_MAX_DEP_PER_CELL 3
namespace Diffusion {
/*!
* Class implementing a solution for a 1/2/3D diffusion equation using backward
@ -113,23 +115,30 @@ private:
Eigen::RowMajor>
BCVectorRowMajor;
void simulate_base(DVectorRowMajor &c,
Eigen::Map<const BCVectorRowMajor> &bc,
void simulate_base(DVectorRowMajor &c, Eigen::Map<const BCVectorRowMajor> &bc,
Eigen::Map<const DVectorRowMajor> &alpha, double dx,
double time_step, int size, DVectorRowMajor &t0_c);
void simulate1D(Eigen::Map<DVectorRowMajor> &c,
Eigen::Map<const DVectorRowMajor> &alpha,
Eigen::Map<const BCVectorRowMajor> &bc);
void simulate2D(Eigen::Map<DMatrixRowMajor> &c,
Eigen::Map<const DMatrixRowMajor> &alpha,
Eigen::Map<const BCMatrixRowMajor> &bc);
inline void fillMatrixFromRow(const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc, int size, double dx,
double time_step);
inline void fillVectorFromRowADI(DVectorRowMajor &c,
inline void fillMatrixFromRow(
const Eigen::VectorXd &alpha,
const Eigen::Vector<Diffusion::boundary_condition, Eigen::Dynamic> &bc,
int size, double dx, double time_step);
inline void fillVectorFromRowADI(const DVectorRowMajor &c,
const Eigen::VectorXd alpha,
const BCVectorRowMajor &bc,
DVectorRowMajor &t0_c, int size, double dx,
double time_step);
const DVectorRowMajor &t0_c, int size,
double dx, double time_step);
void simulate3D(std::vector<double> &c);
inline void reserveMemory(int size, int max_count_per_line);
inline double getBCFromFlux(Diffusion::boundary_condition bc,
double nearest_value, double neighbor_alpha);
void solveLES();