mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-16 02:48:23 +01:00
added std::vector implementation
This commit is contained in:
parent
100386a814
commit
a6ccb07be0
@ -50,6 +50,109 @@ constexpr std::pair<T, T> calcBoundaryCoeffClosed(T alpha_center, T alpha_side,
|
||||
}
|
||||
|
||||
// creates coefficient matrix for next time step from alphas in x-direction
|
||||
template <class T>
|
||||
static std::vector<std::vector<T>>
|
||||
createCoeffMatrixVectorized(const RowMajMat<T> &alpha,
|
||||
const std::vector<BoundaryElement<T>> &bcLeft,
|
||||
const std::vector<BoundaryElement<T>> &bcRight,
|
||||
const std::vector<std::pair<bool, T>> &inner_bc, int numCols,
|
||||
int rowIndex, T sx) {
|
||||
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
std::vector<std::vector<T>> cm(numCols, std::vector<T>(numCols, 0));
|
||||
|
||||
|
||||
//Eigen::SparseMatrix<T> cm(numCols, numCols);
|
||||
//cm.reserve(Eigen::VectorXi::Constant(numCols, 3));
|
||||
|
||||
// left column
|
||||
if (inner_bc[0].first) {
|
||||
//cm.insert(0, 0) = 1;
|
||||
cm[0][0] = 1;
|
||||
} else {
|
||||
switch (bcLeft[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcBoundaryCoeffConstant(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
//cm.insert(0, 0) = centerCoeffTop;
|
||||
//cm.insert(0, 1) = rightCoeffTop;
|
||||
cm[0][0] = centerCoeffTop;
|
||||
cm[0][1] = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
auto [centerCoeffTop, rightCoeffTop] =
|
||||
calcBoundaryCoeffClosed(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
//cm.insert(0, 0) = centerCoeffTop;
|
||||
//cm.insert(0, 1) = rightCoeffTop;
|
||||
cm[0][0] = centerCoeffTop;
|
||||
cm[0][1] = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Left or Top!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// inner columns
|
||||
int n = numCols - 1;
|
||||
for (int i = 1; i < n; i++) {
|
||||
if (inner_bc[i].first) {
|
||||
//cm.insert(i, i) = 1;
|
||||
cm[i][i] = 1;
|
||||
continue;
|
||||
}
|
||||
//cm.insert(i, i - 1) =
|
||||
cm[i][i - 1] =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
|
||||
//cm.insert(i, i) =
|
||||
cm[i][i] =
|
||||
1 +
|
||||
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
|
||||
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
|
||||
//cm.insert(i, i + 1) =
|
||||
cm[i][i + 1] =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
|
||||
}
|
||||
|
||||
// right column
|
||||
if (inner_bc[n].first) {
|
||||
//cm.insert(n, n) = 1;
|
||||
cm[n][n] = 1;
|
||||
} else {
|
||||
switch (bcRight[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
auto [centerCoeffBottom, leftCoeffBottom] = calcBoundaryCoeffConstant(
|
||||
alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
//cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
//cm.insert(n, n) = centerCoeffBottom;
|
||||
cm[n][n - 1] = leftCoeffBottom;
|
||||
cm[n][n] = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
auto [centerCoeffBottom, leftCoeffBottom] = calcBoundaryCoeffClosed(
|
||||
alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
//cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
//cm.insert(n, n) = centerCoeffBottom;
|
||||
cm[n][n - 1] = leftCoeffBottom;
|
||||
cm[n][n] = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw_invalid_argument(
|
||||
"Undefined Boundary Condition Type somewhere on Right or Bottom!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//cm.makeCompressed(); // important for Eigen solver
|
||||
|
||||
return cm;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static Eigen::SparseMatrix<T>
|
||||
createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
@ -59,12 +162,18 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
int rowIndex, T sx) {
|
||||
|
||||
// square matrix of column^2 dimension for the coefficients
|
||||
//Eigen::VectorX<Eigen::VectorX<T>> cm(numCols);
|
||||
//for(int i = 0; i < numCols; i++) {
|
||||
// cm[i] = Eigen::VectorX<T>::Zero(numCols);
|
||||
//}
|
||||
|
||||
Eigen::SparseMatrix<T> cm(numCols, numCols);
|
||||
cm.reserve(Eigen::VectorXi::Constant(numCols, 3));
|
||||
|
||||
// left column
|
||||
if (inner_bc[0].first) {
|
||||
cm.insert(0, 0) = 1;
|
||||
//cm[0][0] = 1;
|
||||
} else {
|
||||
switch (bcLeft[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
@ -72,6 +181,8 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
calcBoundaryCoeffConstant(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
//cm[0][0] = centerCoeffTop;
|
||||
//cm[0][1] = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
@ -79,6 +190,8 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
calcBoundaryCoeffClosed(alpha(rowIndex, 0), alpha(rowIndex, 1), sx);
|
||||
cm.insert(0, 0) = centerCoeffTop;
|
||||
cm.insert(0, 1) = rightCoeffTop;
|
||||
//cm[0][0] = centerCoeffTop;
|
||||
//cm[0][1] = rightCoeffTop;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
@ -93,21 +206,26 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
for (int i = 1; i < n; i++) {
|
||||
if (inner_bc[i].first) {
|
||||
cm.insert(i, i) = 1;
|
||||
//cm[i][i] = 1;
|
||||
continue;
|
||||
}
|
||||
cm.insert(i, i - 1) =
|
||||
//cm[i][i - 1] =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i));
|
||||
cm.insert(i, i) =
|
||||
//cm[i][i] =
|
||||
1 +
|
||||
sx * (calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1)) +
|
||||
calcAlphaIntercell(alpha(rowIndex, i - 1), alpha(rowIndex, i)));
|
||||
cm.insert(i, i + 1) =
|
||||
//cm[i][i + 1] =
|
||||
-sx * calcAlphaIntercell(alpha(rowIndex, i), alpha(rowIndex, i + 1));
|
||||
}
|
||||
|
||||
// right column
|
||||
if (inner_bc[n].first) {
|
||||
cm.insert(n, n) = 1;
|
||||
//cm[n][n] = 1;
|
||||
} else {
|
||||
switch (bcRight[rowIndex].getType()) {
|
||||
case BC_TYPE_CONSTANT: {
|
||||
@ -115,6 +233,8 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
//cm[n][n - 1] = leftCoeffBottom;
|
||||
//cm[n][n] = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
case BC_TYPE_CLOSED: {
|
||||
@ -122,6 +242,8 @@ createCoeffMatrix(const RowMajMat<T> &alpha,
|
||||
alpha(rowIndex, n), alpha(rowIndex, n - 1), sx);
|
||||
cm.insert(n, n - 1) = leftCoeffBottom;
|
||||
cm.insert(n, n) = centerCoeffBottom;
|
||||
//cm[n][n - 1] = leftCoeffBottom;
|
||||
//cm[n][n] = centerCoeffBottom;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
@ -327,59 +449,44 @@ static Eigen::VectorX<T> ThomasAlgorithm(Eigen::SparseMatrix<T> &A,
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static Eigen::VectorX<T> ThomasAlgorithmOpt(Eigen::SparseMatrix<T> &A, Eigen::VectorX<T> &b) {
|
||||
Eigen::Index n = b.size();
|
||||
Eigen::VectorX<T> x_vec = b;
|
||||
|
||||
Eigen::VectorX<T> c_diag(n);
|
||||
Eigen::VectorX<T> b_diag(n);
|
||||
|
||||
b_diag[0] = A.coeff(0, 0);
|
||||
c_diag[0] = A.coeff(0, 1) / b_diag[0];
|
||||
x_vec[0] /= b_diag[0];
|
||||
|
||||
for (Eigen::Index i = 1; i < n; ++i) {
|
||||
T a = A.coeff(i, i - 1);
|
||||
b_diag[i] = A.coeff(i, i) - a * c_diag[i - 1];
|
||||
c_diag[i] = (i < n - 1) ? A.coeff(i, i + 1) / b_diag[i] : 0;
|
||||
x_vec[i] = (x_vec[i] - a * x_vec[i - 1]) / b_diag[i];
|
||||
}
|
||||
|
||||
for (Eigen::Index i = n - 2; i >= 0; --i) {
|
||||
x_vec[i] -= c_diag[i] * x_vec[i + 1];
|
||||
}
|
||||
|
||||
return x_vec;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static void ThomasAlgorithmInplace(Eigen::SparseMatrix<T> &A,
|
||||
static void ThomasAlgorithmInplace(std::vector<std::vector<T>> &A,
|
||||
Eigen::VectorX<T> &b, RowMajMat<T> *concentrations, int c) {
|
||||
Eigen::Index n = b.size();
|
||||
concentrations->row(c) = b;
|
||||
|
||||
n--;
|
||||
T A_00 = A.coeffRef(0, 0);
|
||||
T A_01 = A.coeffRef(0, 1);
|
||||
A.coeffRef(0, 1) /= A_00;
|
||||
//T A_00 = A.coeff(0, 0);
|
||||
T A_00 = A[0][0];
|
||||
//T A_01 = A.coeff(0, 1);
|
||||
T A_01 = A[0][1];
|
||||
//A.coeffRef(0, 1) /= A_00;
|
||||
A[0][1] /= A_00;
|
||||
(*concentrations)(c, 0) /= A_00;
|
||||
|
||||
for (Eigen::Index i = 1; i < n; ++i) {
|
||||
T A_ii = A.coeffRef(i, i);
|
||||
T A_im1_i = A.coeffRef(i, i - 1);
|
||||
T A_im1_ip1 = A.coeffRef(i - 1, i);
|
||||
//T A_ii = A.coeff(i, i);
|
||||
T A_ii = A[i][i];
|
||||
//T A_im1_i = A.coeff(i, i - 1);
|
||||
T A_im1_i = A[i][i - 1];
|
||||
//T A_im1_ip1 = A.coeff(i - 1, i);
|
||||
T A_im1_ip1 = A[i - 1][i];
|
||||
T denominator = A_ii - A_im1_i * A_im1_ip1;
|
||||
A.coeffRef(i, i + 1) /= denominator;
|
||||
//A.coeffRef(i, i + 1) /= denominator;
|
||||
A[i][i + 1] /= denominator;
|
||||
(*concentrations)(c, i) = ((*concentrations)(c, i) - A_im1_i * (*concentrations)(c, i - 1)) / denominator;
|
||||
}
|
||||
|
||||
T A_nn = A.coeffRef(n, n);
|
||||
T A_nm1_n = A.coeffRef(n, n - 1);
|
||||
T A_nm1_nm2 = A.coeffRef(n - 1, n - 2);
|
||||
//T A_nn = A.coeff(n, n);
|
||||
//T A_nm1_n = A.coeff(n, n - 1);
|
||||
//T A_nm1_nm2 = A.coeff(n - 1, n - 2);
|
||||
T A_nn = A[n][n];
|
||||
T A_nm1_n = A[n][n - 1];
|
||||
T A_nm1_nm2 = A[n - 1][n - 2];
|
||||
(*concentrations)(c, n) = ((*concentrations)(c, n) - A_nm1_n * (*concentrations)(c, n - 1)) / (A_nn - A_nm1_n * A_nm1_nm2);
|
||||
|
||||
for (Eigen::Index i = n; i-- > 0;) {
|
||||
(*concentrations)(c, i) -= A.coeffRef(i, i + 1) * (*concentrations)(c, i + 1);
|
||||
//(*concentrations)(c, i) -= A.coeff(i, i + 1) * (*concentrations)(c, i + 1);
|
||||
(*concentrations)(c, i) -= A[i][i + 1] * (*concentrations)(c, i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -443,6 +550,7 @@ static void BTCS_2D(Grid<T> &grid, Boundary<T> &bc, T timestep,
|
||||
RowMajMat<T> concentrations_t1(rowMax, colMax);
|
||||
|
||||
Eigen::SparseMatrix<T> A;
|
||||
//Eigen::VectorX<Eigen::VectorX<T>> A;
|
||||
Eigen::VectorX<T> b;
|
||||
|
||||
RowMajMat<T> alphaX = grid.getAlphaX();
|
||||
@ -455,7 +563,7 @@ static void BTCS_2D(Grid<T> &grid, Boundary<T> &bc, T timestep,
|
||||
|
||||
RowMajMat<T> &concentrations = grid.getConcentrations();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b)
|
||||
//#pragma omp parallel for num_threads(numThreads) private(A, b)
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
auto inner_bc = bc.getInnerBoundaryRow(i);
|
||||
|
||||
@ -470,7 +578,7 @@ static void BTCS_2D(Grid<T> &grid, Boundary<T> &bc, T timestep,
|
||||
alphaX.transposeInPlace();
|
||||
alphaY.transposeInPlace();
|
||||
|
||||
#pragma omp parallel for num_threads(numThreads) private(A, b)
|
||||
//#pragma omp parallel for num_threads(numThreads) private(A, b)
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
auto inner_bc = bc.getInnerBoundaryCol(i);
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
@ -491,7 +599,8 @@ static void BTCS_2DInplace(Grid<T> &grid, Boundary<T> &bc, T timestep, int numTh
|
||||
|
||||
RowMajMat<T> concentrations_t1(rowMax, colMax);
|
||||
|
||||
Eigen::SparseMatrix<T> A;
|
||||
//Eigen::VectorX<Eigen::VectorX<T>> A;
|
||||
std::vector<std::vector<T>> A;
|
||||
Eigen::VectorX<T> b;
|
||||
|
||||
RowMajMat<T> alphaX = grid.getAlphaX();
|
||||
@ -506,7 +615,7 @@ static void BTCS_2DInplace(Grid<T> &grid, Boundary<T> &bc, T timestep, int numTh
|
||||
|
||||
for (int i = 0; i < rowMax; i++) {
|
||||
auto inner_bc = bc.getInnerBoundaryRow(i);
|
||||
A = createCoeffMatrix(alphaX, bcLeft, bcRight, inner_bc, colMax, i, sx);
|
||||
A = createCoeffMatrixVectorized(alphaX, bcLeft, bcRight, inner_bc, colMax, i, sx);
|
||||
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight,
|
||||
bcTop, bcBottom, inner_bc, colMax, i, sx, sy);
|
||||
|
||||
@ -522,7 +631,7 @@ static void BTCS_2DInplace(Grid<T> &grid, Boundary<T> &bc, T timestep, int numTh
|
||||
for (int i = 0; i < colMax; i++) {
|
||||
auto inner_bc = bc.getInnerBoundaryCol(i);
|
||||
// swap alphas, boundary conditions and sx/sy for column-wise calculation
|
||||
A = createCoeffMatrix(alphaY, bcTop, bcBottom, inner_bc, rowMax, i, sy);
|
||||
A = createCoeffMatrixVectorized(alphaY, bcTop, bcBottom, inner_bc, rowMax, i, sy);
|
||||
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom,
|
||||
bcLeft, bcRight, inner_bc, rowMax, i, sy, sx);
|
||||
ThomasAlgorithmInplace(A, b, &concentrations, i);
|
||||
@ -557,7 +666,7 @@ void BTCS_Thomas(Grid<T> &grid, Boundary<T> &bc, T timestep, int numThreads) {
|
||||
if (grid.getDim() == 1) {
|
||||
BTCS_1D(grid, bc, timestep, ThomasAlgorithm);
|
||||
} else if (grid.getDim() == 2) {
|
||||
//BTCS_2D(grid, bc, timestep, ThomasAlgorithmOpt, 1);
|
||||
//BTCS_2D(grid, bc, timestep, ThomasAlgorithm, 1);
|
||||
BTCS_2DInplace(grid, bc, timestep, 1);
|
||||
} else {
|
||||
throw_invalid_argument(
|
||||
@ -566,5 +675,4 @@ void BTCS_Thomas(Grid<T> &grid, Boundary<T> &bc, T timestep, int numThreads) {
|
||||
}
|
||||
} // namespace tug
|
||||
|
||||
#endif // BTCS_H_make
|
||||
|
||||
#endif // BTCS_H_
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user