MDL fixing docs

This commit is contained in:
Marco De Lucia 2022-12-27 15:37:41 +01:00
parent 9815ebce9c
commit e4ec0a11da

View File

@ -418,8 +418,8 @@ approximation of $\frac{\partial}{\partial x} \left(\alpha(x)
\left\{
\begin{aligned}
\frac{C^{t+1/2}_{i,j}-C^{t }_{i,j}}{\Delta t/2} = & \frac{1}{\Delta x^2} \left[ \alpha_{i+1/2,j} C^{t+1/2}_{i+1,j} - (\alpha_{i+1/2,j}+\alpha_{i-1/2,j}) C^{t+1/2}_{i,j} + \alpha_{i-1/2,j} C^{t+1/2}_{i-1,j}\right] + \\
& \frac{1}{\Delta y^2} \left[ \alpha_{i,j+1/2}C^{t}_{i,j+1} - (\alpha_{i,j+1/2}+\alpha_{i,j-1/2}) C^t_{i} + \alpha_{i,j-1/2}C^{t}_{i,j-1}\right]\\
\frac{C^{t+1 }_{i,j}-C^{t+1/2}_{i,j}}{\Delta t/2} = & \frac{1}{\Delta y^2} \left[ \alpha_{i+1/2,j}C^{t+1/2}_{i+1,j} - (\alpha_{i+1/2,j}+\alpha_{i-1/2,j}) C_{i} + \alpha_{i-1/2,j}C^{t+1/2}_{i-1,j}\right] + \\
& \frac{1}{\Delta y^2} \left[ \alpha_{i,j+1/2}C^{t}_{i,j+1} - (\alpha_{i,j+1/2}+\alpha_{i,j-1/2}) C^t_{i,j} + \alpha_{i,j-1/2}C^{t}_{i,j-1}\right]\\
\frac{C^{t+1 }_{i,j}-C^{t+1/2}_{i,j}}{\Delta t/2} = & \frac{1}{\Delta y^2} \left[ \alpha_{i+1/2,j}C^{t+1/2}_{i+1,j} - (\alpha_{i+1/2,j}+\alpha_{i-1/2,j}) C^t_{i,j} + \alpha_{i-1/2,j}C^{t+1/2}_{i-1,j}\right] + \\
& \frac{1}{\Delta x^2} \left[ \alpha_{i,j+1/2}C^{t+1}_{i,j+1} - (\alpha_{i,j+1/2}+\alpha_{i,j-1/2}) C^{t+1}_{i,j} + \alpha_{i,j-1/2}C^{t+1}_{i,j-1}\right]
\end{aligned}
\right.