mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 17:38:23 +01:00
Working out heter.diff scheme (not working yet)
This commit is contained in:
parent
0abd4e04ae
commit
e853a96839
@ -5,11 +5,12 @@
|
|||||||
#+OPTIONS: toc:nil
|
#+OPTIONS: toc:nil
|
||||||
|
|
||||||
|
|
||||||
* Diffusion in 1D
|
* Homogeneous diffusion in 1D
|
||||||
|
|
||||||
** Finite differences with nodes as cells' centres
|
** Finite differences with nodes as cells' centres
|
||||||
|
|
||||||
The 1D diffusion equation is:
|
The 1D diffusion equation for spatially constant diffusion
|
||||||
|
coefficients $\alpha$ is:
|
||||||
|
|
||||||
#+NAME: eqn:1
|
#+NAME: eqn:1
|
||||||
\begin{align}
|
\begin{align}
|
||||||
@ -304,3 +305,80 @@ form:
|
|||||||
|
|
||||||
|
|
||||||
#+LATEX: \clearpage
|
#+LATEX: \clearpage
|
||||||
|
|
||||||
|
* Heterogeneous diffusion
|
||||||
|
|
||||||
|
If the diffusion coefficient $\alpha$ is spatially variable, [[eqn:1]] can
|
||||||
|
be rewritten:
|
||||||
|
|
||||||
|
#+NAME: eqn:hetdiff
|
||||||
|
\begin{align}
|
||||||
|
\frac{\partial C }{\partial t} & = \frac{\partial}{\partial x} \left(\alpha(x) \frac{\partial C }{\partial x} \right)
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\noindent From the product rule for derivatives we obtain:
|
||||||
|
|
||||||
|
#+NAME: eqn:product
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial}{\partial x} \left(\alpha(x) \frac{\partial C }{\partial x}\right) = \frac{\partial \alpha}{\partial x} \cdot \frac{\partial C}{\partial x} + \alpha \frac{\partial^2 C }{\partial x^2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent Using a spatially centred second order finite difference
|
||||||
|
approximation at $x=x_i$ for both $\alpha$ and $C$, we have
|
||||||
|
#+NAME: eqn:hetdiff_fd
|
||||||
|
\begin{align}
|
||||||
|
\frac{\partial \alpha}{\partial x} \cdot \frac{\partial C}{\partial x} +
|
||||||
|
\alpha \frac{\partial^2 C }{\partial x^2} & \simeq \frac{\alpha_{i+1} - \alpha_{i-1}}{2\Delta x}\cdot\frac{C_{i+1} - C_{i-1}}{2\Delta x} + \alpha_i \frac{C_{i+1} - 2 C_{i} + C_{i-1}}{\Delta x^2} \\ \nonumber
|
||||||
|
& = \frac{1}{\Delta x^2} \frac{\alpha_{i+1} - \alpha_{i-1}}{4}(C_{i+1} - C_{i-1}) + \frac{\alpha_{i}}{\Delta x^2}(C_{i+1}-2C_i+C_{i-1})\\ \nonumber
|
||||||
|
& = \frac{1}{\Delta x^2} \left\{A C_{i+1} -2\alpha_i C_i + AC_{i-1})\right\}
|
||||||
|
\end{align}
|
||||||
|
\noindent having set
|
||||||
|
\[ A = \frac{\alpha_{i+1}-\alpha_{i-1}}{4} + \alpha_i \]
|
||||||
|
|
||||||
|
\noindent In 2D the ADI scheme [[eqn:genADI]] with heterogeneous diffusion
|
||||||
|
coefficients can thus be written:
|
||||||
|
|
||||||
|
#+NAME: eqn:genADI_het
|
||||||
|
\begin{equation}
|
||||||
|
\systeme{
|
||||||
|
\displaystyle \frac{C^{t+1/2}_{i,j}-C^{t }_{i,j}}{\Delta t/2} = \displaystyle \frac{\partial}{\partial x} \left( \alpha^x_{i,j} \frac{\partial C^{t+1/2}_{i,j}}{\partial x}\right) + \frac{\partial}{\partial y} \left( \alpha^y_{i,j} \frac{\partial C^{t }_{i,j}}{\partial y}\right),
|
||||||
|
\displaystyle \frac{C^{t+1 }_{i,j}-C^{t+1/2}_{i,j}}{\Delta t/2} = \displaystyle \frac{\partial}{\partial x} \left( \alpha^x_{i,j} \frac{\partial C^{t+1/2}_{i,j}}{\partial x}\right) + \frac{\partial}{\partial y} \left( \alpha^y_{i,j} \frac{\partial C^{t+1}_{i,j}}{\partial y}\right)
|
||||||
|
}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent We define for compactness $S_x=\frac{\Delta t}{2\Delta x^2}$
|
||||||
|
and $S_y=\frac{\Delta t}{2\Delta y^2}$ and
|
||||||
|
|
||||||
|
#+NAME: eqn:het_AB
|
||||||
|
\begin{equation}
|
||||||
|
\systeme{
|
||||||
|
\displaystyle A_{i,j} = \displaystyle \frac{\alpha^x_{i+1,j} -\alpha^x_{i-1,j }}{4} + \alpha^x_{i,j},
|
||||||
|
\displaystyle B_{i,j} = \displaystyle \frac{\alpha^y_{i, j+1}-\alpha^y_{i ,j-1}}{4} + \alpha^y_{i,j}
|
||||||
|
}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent Plugging eq. ([[eqn:hetdiff_fd]]) into the first of equations
|
||||||
|
([[eqn:genADI_het]]) - so called "sweep by x" - and putting all implicit
|
||||||
|
terms (at time level $t+1/2$) on the left hand side we obtain:
|
||||||
|
|
||||||
|
#+NAME: eqn:sweepX_het
|
||||||
|
\begin{equation}\displaystyle
|
||||||
|
\begin{split}
|
||||||
|
-S_x A_{i,j} C^{t+1/2}_{i+1,j} + (1 + 2S_x\alpha^x_{i,j})C^{t+1/2}_{i,j} - S_x A_{i,j}C^{t+1/2}_{i-1,j} = \\
|
||||||
|
S_y B_{i,j} C^{t }_{i,j+1} + (1 - 2S_y\alpha^y_{i,j})C^{t }_{i,j} + S_y B_{i,j}C^{t }_{i,j-1}
|
||||||
|
\end{split}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent In the same way for the second of eq. [[eqn:genADI_het]] we have:
|
||||||
|
|
||||||
|
#+NAME: eqn:sweepY_het
|
||||||
|
\begin{equation}\displaystyle
|
||||||
|
\begin{split}
|
||||||
|
-S_y B_{i,j} C^{t+1 }_{i,j+1} + (1 + 2S_y\alpha^y_{i,j})C^{t+1 }_{i,j} - S_y B_{i,j}C^{t+1 }_{i,j-1} = \\
|
||||||
|
S_x A_{i,j} C^{t+1/2}_{i+1,j} + (1 - 2S_x\alpha^x_{i,j})C^{t+1/2}_{i,j} + S_x A_{i,j}C^{t+1/2}_{i-1,j}
|
||||||
|
\end{split}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\noindent If the diffusion coefficients are constant,
|
||||||
|
$A_{i,j}=B_{i,j}=\alpha$ and the scheme reverts to the homogeneous
|
||||||
|
case.
|
||||||
|
|||||||
@ -1,3 +1,4 @@
|
|||||||
|
## Time-stamp: "Last modified 2022-12-20 21:17:32 delucia"
|
||||||
|
|
||||||
## Brutal implementation of 2D ADI scheme
|
## Brutal implementation of 2D ADI scheme
|
||||||
## Square NxN grid with dx=dy=1
|
## Square NxN grid with dx=dy=1
|
||||||
@ -23,12 +24,12 @@ ADI <- function(n, dt, iter, alpha) {
|
|||||||
tmpY[i,] <- SweepByRow(i, resY, dt=dt, alpha=alpha)
|
tmpY[i,] <- SweepByRow(i, resY, dt=dt, alpha=alpha)
|
||||||
|
|
||||||
res <- t(tmpY)
|
res <- t(tmpY)
|
||||||
out[[it]] <- res }
|
out[[it]] <- res
|
||||||
|
}
|
||||||
|
|
||||||
return(out)
|
return(out)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
## Workhorse function to fill A, B and solve for a given *row* of the
|
## Workhorse function to fill A, B and solve for a given *row* of the
|
||||||
## grid matrix
|
## grid matrix
|
||||||
SweepByRow <- function(i, field, dt, alpha) {
|
SweepByRow <- function(i, field, dt, alpha) {
|
||||||
@ -48,12 +49,12 @@ SweepByRow <- function(i, field, dt, alpha) {
|
|||||||
B <- numeric(ncol(field))
|
B <- numeric(ncol(field))
|
||||||
|
|
||||||
## We now distinguish the top and bottom rows
|
## We now distinguish the top and bottom rows
|
||||||
if (i == 1){
|
if (i == 1) {
|
||||||
## top boundary, "i-1" doesn't exist or is at a ghost
|
## top boundary, "i-1" doesn't exist or is at a ghost
|
||||||
## node/cell boundary (TODO)
|
## node/cell boundary (TODO)
|
||||||
for (ii in seq_along(B))
|
for (ii in seq_along(B))
|
||||||
B[ii] <- (-1 +2*Sy)*field[i,ii] - Sy*field[i+1,ii]
|
B[ii] <- (-1 +2*Sy)*field[i,ii] - Sy*field[i+1,ii]
|
||||||
} else if (i == nrow(field)){
|
} else if (i == nrow(field)) {
|
||||||
## bottom boundary, "i+1" doesn't exist or is at a ghost
|
## bottom boundary, "i+1" doesn't exist or is at a ghost
|
||||||
## node/cell boundary (TODO)
|
## node/cell boundary (TODO)
|
||||||
for (ii in seq_along(B))
|
for (ii in seq_along(B))
|
||||||
@ -122,3 +123,126 @@ plot(adi2[[length(adi2)]], ref2, log="xy", xlab="ADI", ylab="ode.2D (reference)"
|
|||||||
las=1, xlim=c(1E-15, 1), ylim=c(1E-15, 1))
|
las=1, xlim=c(1E-15, 1), ylim=c(1E-15, 1))
|
||||||
abline(0,1)
|
abline(0,1)
|
||||||
|
|
||||||
|
|
||||||
|
## Test heterogeneous scheme
|
||||||
|
ADIHet <- function(field, dt, iter, alpha) {
|
||||||
|
|
||||||
|
if (!all.equal(dim(field), dim(alpha)))
|
||||||
|
stop("field and alpha are not matrix")
|
||||||
|
|
||||||
|
## now both field and alpha must be nx*ny matrices
|
||||||
|
nx <- ncol(field)
|
||||||
|
ny <- nrow(field)
|
||||||
|
dx <- dy <- 1
|
||||||
|
|
||||||
|
## find out the center of the grid to apply conc=1
|
||||||
|
cenx <- ceiling(nx/2)
|
||||||
|
ceny <- ceiling(ny/2)
|
||||||
|
field[cenx, ceny] <- 1
|
||||||
|
|
||||||
|
Aij <- Bij <- alpha
|
||||||
|
|
||||||
|
for (i in seq(2,ncol(field)-1)) {
|
||||||
|
for (j in seq(2,nrow(field)-1)) {
|
||||||
|
Aij[i,j] <- (alpha[i+1,j]-alpha[i-1,j])/4 + alpha[i,j]
|
||||||
|
Bij[i,j] <- (alpha[i,j+1]-alpha[i,j-1])/4 + alpha[i,j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (any(Aij<0) || any(Bij<0))
|
||||||
|
stop("Aij or Bij are negative!")
|
||||||
|
|
||||||
|
## prepare containers for computations and outputs
|
||||||
|
tmpX <- tmpY <- res <- field
|
||||||
|
out <- vector(mode="list", length=iter)
|
||||||
|
|
||||||
|
for (it in seq(1, iter)) {
|
||||||
|
for (i in seq(1, ny))
|
||||||
|
tmpX[i,] <- SweepByRowHet(i, res, dt=dt, alpha=alpha, Aij, Bij)
|
||||||
|
|
||||||
|
resY <- t(tmpX)
|
||||||
|
for (i in seq(1, nx))
|
||||||
|
tmpY[i,] <- SweepByRowHet(i, resY, dt=dt, alpha=alpha, Bij, Aij)
|
||||||
|
|
||||||
|
res <- t(tmpY)
|
||||||
|
out[[it]] <- res
|
||||||
|
}
|
||||||
|
|
||||||
|
return(out)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
## Workhorse function to fill A, B and solve for a given *row* of the
|
||||||
|
## grid matrix
|
||||||
|
SweepByRowHet <- function(i, field, dt, alpha, Aij, Bij) {
|
||||||
|
dx <- 1 ## fixed in our test
|
||||||
|
Sx <- Sy <- dt/2/dx/dx
|
||||||
|
|
||||||
|
## diagonal of A at once
|
||||||
|
A <- matrix(0, nrow(field), ncol(field))
|
||||||
|
diag(A) <- 1+2*Sx*diag(alpha)
|
||||||
|
|
||||||
|
## adjacent diagonals "Sx"
|
||||||
|
for (ii in seq(1, nrow(field)-1)) {
|
||||||
|
A[ii+1, ii] <- -Sx*Aij[ii+1,ii]
|
||||||
|
A[ii, ii+1] <- -Sx*Aij[ii,ii+1]
|
||||||
|
}
|
||||||
|
|
||||||
|
B <- numeric(ncol(field))
|
||||||
|
|
||||||
|
## We now distinguish the top and bottom rows
|
||||||
|
if (i == 1) {
|
||||||
|
## top boundary, "i-1" doesn't exist or is at a ghost
|
||||||
|
## node/cell boundary (TODO)
|
||||||
|
for (ii in seq_along(B))
|
||||||
|
B[ii] <- Sy*Bij[i+1,ii]*field[i+1,ii] + (1-2*Sy*Bij[i,ii])*field[i, ii]
|
||||||
|
} else if (i == nrow(field)) {
|
||||||
|
## bottom boundary, "i+1" doesn't exist or is at a ghost
|
||||||
|
## node/cell boundary (TODO)
|
||||||
|
for (ii in seq_along(B))
|
||||||
|
B[ii] <- (1-2*Sy*Bij[i,ii])*field[i, ii] + Sy*Bij[i-1,ii]*field[i-1,ii]
|
||||||
|
|
||||||
|
} else {
|
||||||
|
## inner grid row, full expression
|
||||||
|
for (ii in seq_along(B))
|
||||||
|
B[ii] <- Sy*Bij[i+1,ii]*field[i+1,ii] + (1-2*Sy*Bij[i,ii])*field[i, ii] + Sy*Bij[i-1,ii]*field[i-1,ii]
|
||||||
|
}
|
||||||
|
|
||||||
|
x <- solve(A, B)
|
||||||
|
x
|
||||||
|
}
|
||||||
|
|
||||||
|
## adi2 <- ADI(n=51, dt=10, iter=200, alpha=1E-3)
|
||||||
|
## ref2 <- DoRef(n=51, alpha=1E-3, dt=10, iter=200)
|
||||||
|
|
||||||
|
n <- 51
|
||||||
|
field <- matrix(0, n, n)
|
||||||
|
alphas <- matrix(1E-3*runif(n*n, 1,1.2), n, n)
|
||||||
|
|
||||||
|
## for (i in seq(1,nrow(alphas)))
|
||||||
|
## alphas[i,] <- seq(1E-7,1E-3, length=n)
|
||||||
|
|
||||||
|
#diag(alphas) <- rep(1E-2, n)
|
||||||
|
|
||||||
|
adih1 <- ADIHet(field=field, dt=10, iter=100, alpha=alphas)
|
||||||
|
adi2 <- ADI(n=n, dt=10, iter=100, alpha=1E-3)
|
||||||
|
|
||||||
|
|
||||||
|
par(mfrow=c(1,3))
|
||||||
|
image(adi2[[length(adi2)]])
|
||||||
|
image(adih1[[length(adih1)]])
|
||||||
|
points(0.5,0.5, col="red",pch=4)
|
||||||
|
plot(adih1[[length(adih1)]], adi2[[length(adi2)]], pch=4, log="xy")
|
||||||
|
abline(0,1)
|
||||||
|
|
||||||
|
|
||||||
|
sapply(adih1, sum)
|
||||||
|
sapply(adi2, sum)
|
||||||
|
|
||||||
|
adi2
|
||||||
|
|
||||||
|
|
||||||
|
par(mfrow=c(1,2))
|
||||||
|
image(alphas)
|
||||||
|
image(adih1[[length(adih1)]])
|
||||||
|
points(0.5,0.5, col="red",pch=4)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user