Merge branch 'mdl_test' into 'hannes-philipp'

Add docu and validation files

See merge request naaice/tug!7
This commit is contained in:
Marco De Lucia 2023-07-31 16:52:32 +02:00
commit f5a59def6d
10 changed files with 631 additions and 5 deletions

View File

@ -536,4 +536,3 @@ left derivative becomes zero and we are left with:
&\displaystyle =\frac{\alpha_{i-1/2}}{\Delta x^2} (C_{i-1} - C_i)
\end{aligned}
\end{equation}

114
doc/ValidationHetDiff.org Normal file
View File

@ -0,0 +1,114 @@
#+TITLE: 2D Validation Examples
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
#+DATE: 2023-07-31
#+STARTUP: inlineimages
#+LATEX_CLASS_OPTIONS: [a4paper,9pt]
#+LATEX_HEADER: \usepackage{fullpage}
#+LATEX_HEADER: \usepackage{amsmath, systeme}
#+LATEX_HEADER: \usepackage{graphicx}
#+LATEX_HEADER: \usepackage{}
#+OPTIONS: toc:nil
* Simple setup using deSolve/ReacTran
- Square of side 10
- Discretization: 11 \times 11 cells
- All boundaries closed
- Initial state: 0 everywhere, 1 in the center (6,6)
- Time step: 1 s, 10 iterations
The matrix of spatially variable diffusion coefficients \alpha is
constant in 4 quadrants:
\alpha_{x,y} =
| 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
The relevant part of the R script used to produce these results is
presented in listing 1; the whole script is at [[file:scripts/HetDiff.R]].
A visualization of the output of the reference simulation is given in
figure [[#fig:1][1]].
Note: all results from this script are stored in the =outc= matrix by
the =deSolve= function. I stored a different version into
[[file:../scripts/gold/HetDiff1.csv]]: this file contains 11 columns (one
for each time step including initial conditions) and 121 rows, one for
each domain element, with no headers.
#+caption: Result of ReacTran/deSolve solution of the above problem at 4
[[./images/deSolve_AlphaHet1.png]]
#+name: lst:1
#+begin_src R :language R :frame single :caption Listing 1, generate reference simulation using R packages deSolve/ReacTran :captionpos b :label lst:1
library(ReacTran)
library(deSolve)
## harmonic mean
harm <- function(x,y) {
if (length(x) != 1 || length(y) != 1)
stop("x & y have different lengths")
2/(1/x+1/y)
}
N <- 11 # number of grid cells
ini <- 1 # initial value at x=0
N2 <- ceiling(N/2)
L <- 10 # domain side
## Define diff.coeff per cell, in 4 quadrants
alphas <- matrix(0, N, N)
alphas[1:N2, 1:N2] <- 1
alphas[1:N2, seq(N2+1,N)] <- 0.1
alphas[seq(N2+1,N), 1:N2] <- 0.01
alphas[seq(N2+1,N), seq(N2+1,N)] <- 0.001
cmpharm <- function(x) {
y <- c(0, x, 0)
ret <- numeric(length(x)+1)
for (i in seq(2, length(y))) {
ret[i-1] <- harm(y[i], y[i-1])
}
ret
}
## Construction of the 2D grid
x.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
y.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
grid2D <- setup.grid.2D(x.grid, y.grid)
dx <- dy <- L/N
D.grid <- list()
## Diffusion coefs on x-interfaces
D.grid$x.int <- apply(alphas, 1, cmpharm)
## Diffusion coefs on y-interfaces
D.grid$y.int <- t(apply(alphas, 2, cmpharm))
# The model
Diff2Dc <- function(t, y, parms) {
CONC <- matrix(nrow = N, ncol = N, data = y)
dCONC <- tran.2D(CONC, dx = dx, dy = dy, D.grid = D.grid)$dC
return(list(dCONC))
}
## initial condition: 0 everywhere, except in central point
y <- matrix(nrow = N, ncol = N, data = 0)
y[N2, N2] <- ini # initial concentration in the central point...
## solve for 10 time units
times <- 0:10
outc <- ode.2D(y = y, func = Diff2Dc, t = times, parms = NULL,
dim = c(N, N), lrw = 1860000)
#+end_src

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@ -2,13 +2,14 @@ add_executable(first_example first_example.cpp)
add_executable(second_example second_example.cpp)
add_executable(boundary_example1D boundary_example1D.cpp)
add_executable(FTCS_2D_proto_example FTCS_2D_proto_example.cpp)
add_executable(FTCS_2D_proto_example_mdl FTCS_2D_proto_example_mdl.cpp)
add_executable(FTCS_1D_proto_example FTCS_1D_proto_example.cpp)
add_executable(reference-FTCS_2D_closed reference-FTCS_2D_closed.cpp)
target_link_libraries(first_example tug)
target_link_libraries(second_example tug)
target_link_libraries(boundary_example1D tug)
target_link_libraries(FTCS_2D_proto_example tug)
target_link_libraries(FTCS_2D_proto_example_mdl tug)
target_link_libraries(FTCS_1D_proto_example tug)
target_link_libraries(reference-FTCS_2D_closed tug)
# target_link_libraries(FTCS_2D_proto_example easy_profiler)
# target_link_libraries(FTCS_2D_proto_example easy_profiler)

View File

@ -0,0 +1,77 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
*
*/
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row/2-1;
Grid grid = Grid(row,col);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(n2,n2) = 1;
concentrations(n2,n2+1) = 1;
concentrations(n2+1,n2) = 1;
concentrations(n2+1,n2+1) = 1;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideClosed(BC_SIDE_LEFT); // side,values
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
// (optional) set the number of iterations
simulation.setIterations(5);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
return 0;
}

View File

@ -0,0 +1,77 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
*
*/
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row/2-1;
Grid grid = Grid(row,col);
// (optional) set the domain, e.g.:
// grid.setDomain(20, 20);
// (optional) set the concentrations, e.g.:
// MatrixXd concentrations = MatrixXd::Constant(20,20,1000); // #row,#col,value
MatrixXd concentrations = MatrixXd::Constant(row,col,0);
concentrations(n2,n2) = 1;
concentrations(n2,n2+1) = 1;
concentrations(n2+1,n2) = 1;
concentrations(n2+1,n2+1) = 1;
grid.setConcentrations(concentrations);
// (optional) set alphas of the grid, e.g.:
MatrixXd alphax = MatrixXd::Constant(row, col, 1E-4); // row,col,value
MatrixXd alphay = MatrixXd::Constant(row, col, 1E-6); // row,col,value
grid.setAlpha(alphax, alphay);
// ******************
// **** BOUNDARY ****
// ******************
// create a boundary with constant values
Boundary bc = Boundary(grid);
// (optional) set boundary condition values for one side, e.g.:
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0); // side,values
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0);
// ************************
// **** SIMULATION ENV ****
// ************************
// set up a simulation environment
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
// (optional) set the number of iterations
simulation.setIterations(5);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
// **** RUN SIMULATION ****
// run the simulation
simulation.run();
return 0;
}

View File

@ -458,7 +458,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.9.7"
},
"orig_nbformat": 4
},

View File

@ -1,4 +1,4 @@
## Time-stamp: "Last modified 2023-05-11 17:31:41 delucia"
## Time-stamp: "Last modified 2023-07-31 14:26:49 delucia"
## Brutal implementation of 2D ADI scheme
## Square NxN grid with dx=dy=1

237
scripts/HetDiff.R Normal file
View File

@ -0,0 +1,237 @@
## Time-stamp: "Last modified 2023-07-31 16:28:48 delucia"
library(ReacTran)
library(deSolve)
options(width=114)
## harmonic mean
harm <- function(x,y) {
if (length(x) != 1 || length(y) != 1)
stop("x & y have different lengths")
2/(1/x+1/y)
}
## harm(0, 1) ## 0
## harm(1, 2) ## 0
############# Providing coeffs on the interfaces
N <- 11 # number of grid cells
ini <- 1 # initial value at x=0
N2 <- ceiling(N/2)
L <- 10 # domain side
## Define diff.coeff per cell, in 4 quadrants
alphas <- matrix(0, N, N)
alphas[1:N2, 1:N2] <- 1
alphas[1:N2, seq(N2+1,N)] <- 0.1
alphas[seq(N2+1,N), 1:N2] <- 0.01
alphas[seq(N2+1,N), seq(N2+1,N)] <- 0.001
image(log10(alphas), col=heat.colors(4))
r180 <- function(x) {
xx <- rev(x)
dim(xx) <- dim(x)
xx
}
mirror <- function (x) {
xx <- as.data.frame(x)
xx <- rev(xx)
xx <- as.matrix(xx)
xx
}
array_to_LaTeX <- function(arr) {
rows <- apply(arr, MARGIN=1, paste, collapse = " & ")
matrix_string <- paste(rows, collapse = " \\\\ ")
return(paste("\\begin{bmatrix}", matrix_string, "\\end{bmatrix}"))
}
cat(array_to_LaTeX(mirror(r180(alphas))))
r180(alphas)
filled.contour(log10(alphas), col=terrain.colors(4), nlevels=4)
cmpharm <- function(x) {
y <- c(0, x, 0)
ret <- numeric(length(x)+1)
for (i in seq(2, length(y))) {
ret[i-1] <- harm(y[i], y[i-1])
}
ret
}
## Construction of the 2D grid
x.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
y.grid <- setup.grid.1D(x.up = 0, L = L, N = N)
grid2D <- setup.grid.2D(x.grid, y.grid)
D.grid <- list()
# Diffusion on x-interfaces
D.grid$x.int <- apply(alphas, 1, cmpharm)
# Diffusion on y-interfaces
## matrix(nrow = N, ncol = N+1, data = rep(c(rep(1E-1, 50),5.E-1,rep(1., 50)), 100) )
D.grid$y.int <- t(apply(alphas, 2, cmpharm))
dx <- L/N
dy <- L/N
# The model equations
Diff2Dc <- function(t, y, parms) {
CONC <- matrix(nrow = N, ncol = N, data = y)
dCONC <- tran.2D(CONC, dx = dx, dy = dy, D.grid = D.grid)$dC
return(list(dCONC))
}
## initial condition: 0 everywhere, except in central point
y <- matrix(nrow = N, ncol = N, data = 0)
y[N2, N2] <- ini # initial concentration in the central point...
## solve for 10 time units
times <- 0:10
outc <- ode.2D(y = y, func = Diff2Dc, t = times, parms = NULL,
dim = c(N, N), lrw = 1860000)
outtimes <- c(0, 4, 7, 10)
## NB: assuming current working dir is "tug"
cairo_pdf("doc/images/deSolve_AlphaHet1.pdf", family="serif", width=12, height=12)
image(outc, ask = FALSE, mfrow = c(2, 2), main = paste("time", outtimes),
legend = TRUE, add.contour = FALSE, subset = time %in% outtimes,
xlab="",ylab="", axes=FALSE, asp=1)
dev.off()
## outc is a matrix with 11 rows and 122 columns (first column is
## simulation time);
str(outc)
## extract only the results and transpose the matrix for storage
ret <- data.matrix(t(outc[ , -1]))
rownames(ret) <- NULL
## NB: assuming current working dir is "tug"
data.table::fwrite(ret, file="scripts/gold/HetDiff1.csv", col.names=FALSE)
#################### 2D visualization
## Version of Rmufits::PlotCartCellData with the ability to fix the
## "breaks" for color coding of 2D simulations
Plot2DCellData <- function(data, grid, nx, ny, contour = TRUE,
nlevels = 12, breaks, palette = "heat.colors",
rev.palette = TRUE, scale = TRUE, plot.axes=TRUE, ...) {
if (!missing(grid)) {
xc <- unique(sort(grid$cell$XCOORD))
yc <- unique(sort(grid$cell$YCOORD))
nx <- length(xc)
ny <- length(yc)
if (!length(data) == nx * ny)
stop("Wrong nx, ny or grid")
} else {
xc <- seq(1, nx)
yc <- seq(1, ny)
}
z <- matrix(round(data, 6), ncol = nx, nrow = ny, byrow = TRUE)
pp <- t(z[rev(seq(1, nrow(z))), ])
if (missing(breaks)) {
breaks <- pretty(data, n = nlevels)
}
breakslen <- length(breaks)
colors <- do.call(palette, list(n = breakslen - 1))
if (rev.palette)
colors <- rev(colors)
if (scale) {
par(mfrow = c(1, 2))
nf <- layout(matrix(c(1, 2), 1, 2, byrow = TRUE), widths = c(4,
1))
}
par(las = 1, mar = c(5, 5, 3, 1))
image(xc, yc, pp, xlab = "X [m]", ylab = "Y[m]", las = 1, asp = 1,
breaks = breaks, col = colors, axes = FALSE, ann=plot.axes,
...)
if (plot.axes) {
axis(1)
axis(2)
}
if (contour)
contour(unique(sort(xc)), unique(sort(yc)), pp, breaks = breaks,
add = TRUE)
if (scale) {
par(las = 1, mar = c(5, 1, 5, 5))
PlotImageScale(data, breaks = breaks, add.axis = FALSE,
axis.pos = 4, col = colors)
axis(4, at = breaks)
}
invisible(pp)
}
PlotImageScale <- function(z, zlim, col = grDevices::heat.colors(12), breaks,
axis.pos = 1, add.axis = TRUE, ...) {
if (!missing(breaks)) {
if (length(breaks) != (length(col) + 1)) {
stop("must have one more break than colour")
}
}
if (missing(breaks) & !missing(zlim)) {
breaks <- seq(zlim[1], zlim[2], length.out = (length(col) + 1))
}
if (missing(breaks) & missing(zlim)) {
zlim <- range(z, na.rm = TRUE)
zlim[2] <- zlim[2] + c(zlim[2] - zlim[1]) * (0.001)
zlim[1] <- zlim[1] - c(zlim[2] - zlim[1]) * (0.001)
breaks <- seq(zlim[1], zlim[2], length.out = (length(col) + 1))
}
poly <- vector(mode = "list", length(col))
for (i in seq(poly)) {
poly[[i]] <- c(breaks[i], breaks[i + 1], breaks[i + 1],
breaks[i])
}
if (axis.pos %in% c(1, 3)) {
ylim <- c(0, 1)
xlim <- range(breaks)
}
if (axis.pos %in% c(2, 4)) {
ylim <- range(breaks)
xlim <- c(0, 1)
}
plot(1, 1, t = "n", ylim = ylim, xlim = xlim, axes = FALSE,
xlab = "", ylab = "", xaxs = "i", yaxs = "i", ...)
for (i in seq(poly)) {
if (axis.pos %in% c(1, 3)) {
polygon(poly[[i]], c(0, 0, 1, 1), col = col[i], border = NA)
}
if (axis.pos %in% c(2, 4)) {
polygon(c(0, 0, 1, 1), poly[[i]], col = col[i], border = NA)
}
}
box()
if (add.axis) {
axis(axis.pos)
}
}
cairo_pdf("AlphaHet1.pdf", family="serif", width=8)
par(mar = c(1,1,1,1))
Plot2DCellData(log10(mirror(alphas)), nx=N, ny=N, nlevels=5, palette = terrain.colors, contour=FALSE, plot.axes=FALSE,
scale = F,
main=expression(log[10](alpha)))
text(3,8,"1")
text(8,8,"0.1")
text(3,3,"0.01")
text(8,3,"0.001")
# title("Diff. Coefficients (log10)")
dev.off()

121
scripts/gold/HetDiff1.csv Normal file
View File

@ -0,0 +1,121 @@
0,1.15723009391899e-05,0.000573422585977779,0.00271483227696389,0.00592017488450261,0.00919024372055321,0.0119992110381186,0.01421611640169,0.0158871549414673,0.0171115136326332,0.0179901833258047
0,4.32496365970161e-05,0.00110003761455522,0.0038588402926536,0.00723956931728921,0.0103665385368182,0.0129275133140941,0.0149018727052112,0.0163722917415511,0.0174425542133075,0.0182067473313329
0,0.000156410551955808,0.0022501860978233,0.00596846775043427,0.00951979828485079,0.0123439077799255,0.0144650737976258,0.0160242190667615,0.0171550743320483,0.0179654704632021,0.0185369538227271
0,0.000449900131743341,0.00397802650798475,0.0085351147388942,0.0120552559726064,0.0144482796517419,0.0160547847343675,0.0171511707942764,0.0179099936829702,0.0184375120234885,0.0188001645647094
0,0.00096247784605253,0.00575161551352107,0.0106416083625011,0.0139078265679269,0.0158706072121663,0.0170493964826529,0.0177834857154376,0.0182584391833927,0.018573228563985,0.0187811039627322
0,0.00139148060908994,0.00653728609085073,0.0112226963812925,0.0141895931925161,0.0159026822227563,0.0168925530607027,0.0174883152516615,0.017865325174865,0.0181135647391488,0.0182789062492789
0,7.88755181655377e-05,0.000890855516524495,0.0025489601065516,0.00451888907818989,0.00640234215109739,0.00803400181298965,0.00938380805959316,0.0104782803692741,0.0113602330285538,0.0120715601783272
0,1.96835046894113e-06,5.20032828635902e-05,0.000248131836356188,0.000630746867714403,0.00117274437938983,0.00182064447664627,0.00252211668991391,0.00323643607872941,0.00393564702867779,0.00460249317726503
0,4.05263620284678e-08,2.41553600349545e-06,1.87665958722685e-05,6.74081501157623e-05,0.000163264089823103,0.000313023273063137,0.000515631508985307,0.000764816320228696,0.00105167332970099,0.00136658044925295
0,7.12888460576857e-10,9.36408593803959e-08,1.16671799220012e-06,5.86484773654181e-06,1.84017858631692e-05,4.34716444970184e-05,8.51739231661631e-05,0.000146375097555955,0.000228524220562364,0.000331765311847696
0,1.11266213313442e-11,3.21569209939452e-09,6.45997582539074e-08,4.58674913815976e-07,1.88637915450085e-06,5.56437226690733e-06,1.31531030829188e-05,2.6577288329037e-05,4.78110315422556e-05,7.86848274922097e-05
0,4.35985871981009e-05,0.0011173013784839,0.00393465640259938,0.00738648425859891,0.0105643563174128,0.0131485926879987,0.0151246465122267,0.016583690239707,0.0176362908990393,0.0183809352240671
0,0.000162940275870536,0.00214415472789055,0.0055971341202626,0.00904266600518215,0.0119317484324307,0.01418453738493,0.0158744170951516,0.0171103507405317,0.0179967639568099,0.0186199630282087
0,0.000589272728343116,0.00438867743664915,0.00866893626959719,0.0119151946783314,0.0142428604635392,0.0159134847420158,0.0171142649822806,0.0179721981758363,0.0185775454158148,0.0189955063245207
0,0.00169526769334991,0.00776694628989879,0.0124247154337811,0.0151382671118746,0.0167367107498905,0.0177366662921586,0.0183940071716407,0.0188368236363926,0.0191342578330509,0.0193277227804878
0,0.00362839452566188,0.0112526737744286,0.0155521246084951,0.0175590393037948,0.0184985843185778,0.0189571544442947,0.0191923705608016,0.0193168273546316,0.0193791769704849,0.0194019806796609
0,0.00525177970919126,0.0128429513741672,0.0165189505188843,0.0180778870279157,0.0187197075826292,0.018968965691842,0.0190518322037241,0.0190652772723224,0.0190482483782045,0.019016041284815
0,0.000385153961868949,0.00229577940499986,0.00480460165448024,0.00711204718132809,0.0089909576548431,0.0104472162269959,0.0115548772926463,0.0123946614477843,0.0130350658282232,0.013528343285464
0,1.16858258297074e-05,0.000164584714174317,0.000570116218846185,0.00119271144355875,0.00194723110061389,0.00275621955267251,0.00356441433332025,0.00433765719695555,0.00505760032168857,0.00571654514201105
0,2.81208380577636e-07,8.97423573740115e-06,5.03422264992399e-05,0.000147427646174569,0.000310274427544454,0.000536832367026033,0.000817602280027168,0.00113989443932459,0.00149069663261676,0.00185828031564749
0,5.63399964199174e-09,3.96964588417007e-07,3.55564115271452e-06,1.44716592579598e-05,3.91537025779409e-05,8.28348829677685e-05,0.000148977185800308,0.000239043494747069,0.00035275053097983,0.000488513445484224
0,9.84398346768558e-11,1.5293568296117e-08,2.20334810416761e-07,1.26108145384204e-06,4.44865566281344e-06,1.16871019830672e-05,2.52195633384727e-05,4.73253788486059e-05,8.00591501276681e-05,0.000125072519296284
0,0.00015939225040812,0.00233357034425003,0.00625562530069953,0.0100135877171516,0.0129676882444301,0.0151374162693059,0.0166874294020243,0.0177764984876221,0.0185308441084237,0.0190433426894296
0,0.000595680647430986,0.0044801608514742,0.00890743169921897,0.0122772025886856,0.0146734676860174,0.0163633416618241,0.0175504470842378,0.0183769265178609,0.018943746718196,0.019322547574371
0,0.00215448195385171,0.0091767592756406,0.0138199838635887,0.0162232592499362,0.0175799863177681,0.0184333811027871,0.0190005234819769,0.0193808295698239,0.0196287328140203,0.01977995018463
0,0.00619992143295609,0.0162622253524985,0.0198667054266907,0.0207089785376823,0.0207820327860086,0.0206824193920932,0.0205605370395911,0.0204471756023412,0.0203412141522796,0.0202389042951594
0,0.0132779136133337,0.0236231555894036,0.0250044710521133,0.0242144479160946,0.0231938485225262,0.0223380815152074,0.0216793603038312,0.0211797341820616,0.020794392809717,0.0204895366674834
0,0.0192489696423083,0.0271184370488408,0.026840217635384,0.0252838506050641,0.023849962885927,0.0227245048675836,0.0218698389880889,0.0212219274277141,0.0207240679736698,0.020334308600127
0,0.00188379770767293,0.00657190925731914,0.0104892667525962,0.0130700680836906,0.0146349533533907,0.015535980568487,0.0160269602381333,0.0162728756742906,0.0163767130755721,0.016400710298742
0,7.01829175866307e-05,0.000581093706531354,0.00153370940121776,0.00269094081762158,0.00386803514667116,0.00496316154582596,0.00593261862345271,0.00676642929553236,0.0074719703393928,0.00806413175855109
0,1.97847089603411e-06,3.69925955384929e-05,0.000157406497985584,0.000384860592255597,0.000709846476804252,0.0011079382186538,0.00155170108970297,0.00201681216519113,0.00248426641823041,0.00294058581228933
0,4.51078087575571e-08,1.85104501980116e-06,1.25057013282593e-05,4.22892094350572e-05,9.98395815944757e-05,0.000189787308802236,0.000312690644970973,0.000466034643916367,0.000645463690913993,0.000845828528229199
0,8.80252798763183e-10,7.92215439962928e-08,8.56765592551646e-07,4.05803525996784e-06,1.2449180396882e-05,2.9295973763362e-05,5.7746988001425e-05,0.0001003733295813,0.000158928915289496,0.00023429575744269
0,0.000466368704740309,0.00424791180746615,0.00926944539909274,0.0131713216643424,0.0157625616947689,0.0174133722552654,0.0184577152890545,0.0191156877417616,0.0195250042740468,0.0197700479556243
0,0.00174300015594418,0.00815930380362134,0.0132116161354557,0.016172754442502,0.0178696343095053,0.0188636958720877,0.0194550603754561,0.0198042367684176,0.0200009359043926,0.0200979478510297
0,0.00630533087106852,0.0167264504542955,0.0205352907522532,0.021433296617797,0.0214908287288404,0.021342901494693,0.0211590163834043,0.0209808421912509,0.020813382900871,0.0206559438303523
0,0.0181516683021334,0.0296877506877057,0.0296188711707772,0.0274991387847508,0.0255697170579367,0.0241218925670229,0.0230708035427124,0.0223012794968431,0.0217225548818433,0.0212745536462067
0,0.0389067518217964,0.0432743493327086,0.037525495598965,0.0324527348417642,0.0288543692365208,0.0263663031569143,0.0246230583185604,0.0233728213888174,0.0224524193870472,0.0217568092848378
0,0.0565396239160925,0.0500897261990562,0.0408387347867424,0.0344846493850116,0.0302543240032215,0.0273643802632421,0.0253287379325492,0.0238539136707014,0.0227584403765214,0.02192583980509
0,0.00794755170946868,0.0172628249510397,0.0219912124473273,0.0237906919799591,0.0240591222673087,0.0235982544067714,0.0228369786001951,0.021996032718532,0.0211823304839058,0.0204423856134907
0,0.000373684524467729,0.00190283496658901,0.00395283626547245,0.00595433814031928,0.00766198835968331,0.0090150942497423,0.0100370905098692,0.0107818312810106,0.0113083452714233,0.0116697843722264
0,1.24794246503553e-05,0.000141270114233274,0.000466648605475989,0.000969170133300241,0.00158727378005724,0.00225743530947124,0.00292973311195242,0.00357075743939607,0.00416127927601125,0.00469265749237697
0,3.25056776407433e-07,7.95461921640221e-06,4.12089493515841e-05,0.000117250753288648,0.00024402042254145,0.000420314286347587,0.000638908995931823,0.000889809192557268,0.00116261453581859,0.00144792147140295
0,7.0854379238238e-09,3.75524392933622e-07,3.08321489667331e-06,1.21925554449326e-05,3.27749649029249e-05,6.95563221553643e-05,0.000126018794389096,0.000204052811537285,0.000304018569398211,0.000425019521621274
0,0.00102836224521133,0.0064274670666241,0.0121491816508084,0.015968397765568,0.0181492003638804,0.019314880428558,0.0199102032969297,0.0201928751968812,0.0203044557297043,0.020320071184116
0,0.00384385388740204,0.0123515070854559,0.0173313777131353,0.0196324133235912,0.0206081184457373,0.0209612687545928,0.0210258040457677,0.0209599611581841,0.0208374482363417,0.0206927731773186
0,0.0139084634226096,0.0253420008838306,0.0269858208570455,0.0260863431776468,0.0248662406090429,0.023805495300228,0.0229587141516884,0.0222941985053244,0.0217679373130175,0.021344966099159
0,0.0400577489259572,0.0450598366852064,0.0390556903095381,0.0336304680408348,0.0297597604093353,0.0270807237205804,0.0252035706273644,0.0238573134643687,0.0228662562144913,0.0221177566182138
0,0.0859596622787531,0.0659645822190159,0.0498440895724295,0.0400638374763904,0.0339433683852068,0.0299353070092985,0.0272039578032914,0.0252772077773997,0.0238777953326208,0.0228341669415018
0,0.125398084679699,0.0772427043755313,0.0551767906604444,0.0434193651923798,0.0363278914606691,0.0317025734216055,0.0285266548704347,0.0262622056865752,0.0246012510386757,0.0233529211513904
0,0.0279719026476077,0.0399912836159061,0.041824217737992,0.0399960375533372,0.0370306079722165,0.0339334669014817,0.0310904350363235,0.0286238301128732,0.0265419722346029,0.0248094228214593
0,0.0016878543861307,0.00546802879678612,0.00908467643641864,0.0118685267101036,0.0137867836918316,0.014992473171871,0.0156668769769553,0.0159679687584234,0.0160191464240754,0.0159109388085067
0,6.66210210366172e-05,0.000466311941721689,0.0012074539008488,0.00214399617569523,0.00313678410870533,0.0040909928004654,0.0049535861902635,0.00570178710489221,0.00633199242057907,0.00685150908457396
0,1.96581789972705e-06,2.90655193631781e-05,0.000116181708737399,0.000279461298722284,0.000515297156287373,0.00080891264649635,0.00114182790936584,0.00149639884138984,0.0018579271762422,0.00221530254986257
0,4.73511582533572e-08,1.48929389156945e-06,9.32003158799015e-06,3.08850626482769e-05,7.30754947692817e-05,0.000140629698309681,0.000235669226477032,0.00035796975388455,0.000505546298234415,0.000675276938000184
0,0.0015836697501133,0.00789553113761796,0.0138353209275783,0.0174900423844659,0.0193829171959464,0.0202511267409907,0.0205839676229735,0.0206522039767607,0.0205960670144616,0.0204840229205406
0,0.00592024795026366,0.015178056357401,0.0197491887189647,0.0215219374447417,0.0220321907378727,0.0220033162511111,0.0217646356223314,0.0214641136669779,0.0211632832330552,0.0208849932589192
0,0.0214261698026196,0.0311627748380295,0.030789710824671,0.0286485315817415,0.0266434190236869,0.0250513323715184,0.023828703885917,0.0228921858496036,0.0221672538845208,0.0215984913078681
0,0.0617381544584604,0.0554953966664163,0.0446769294750762,0.0370604778930011,0.0320153173963507,0.0286236282907804,0.0262786287048439,0.0246098514264461,0.0233900725628177,0.0224762767353041
0,0.132662095447386,0.0815715457115294,0.0573620962224714,0.0444656436513204,0.0367970084501995,0.0318900160341415,0.0285856373696197,0.0262711290074283,0.0245996244789251,0.0233597987792184
1,0.194600594053136,0.0967188378926377,0.0645033312825157,0.0489815255136541,0.0400071807557426,0.0342746856436233,0.0303863403322649,0.0276362424095596,0.0256323186910777,0.0241347191227446
0,0.072774737081717,0.0731608818750184,0.0649513569830106,0.0562393519385766,0.048657668424965,0.0424321620057059,0.0374285709142598,0.0334382577022264,0.0302593069735787,0.0277213581035032
0,0.00546229967617301,0.0117769944796152,0.0160960402630076,0.0186595966553889,0.0199729770538671,0.020458608892436,0.0204223397121343,0.0200740130964532,0.0195534451842866,0.0189514347157146
0,0.000246612705267533,0.00110781620007196,0.00231152127659001,0.00359442519681962,0.00480227348450595,0.00586145140404475,0.00674755083035105,0.00746338966694999,0.00802538295172145,0.00845539933096027
0,8.01024172201437e-06,7.40436516662321e-05,0.000234915899100426,0.000490064251651924,0.000819680663206465,0.00119845837778001,0.00160264998868245,0.00201295787243647,0.00241514785548912,0.00279964947569617
0,2.07955309779492e-07,4.0104486961948e-06,1.96923787162901e-05,5.61707039451707e-05,0.00011992118154755,0.000214121267381263,0.000338952769617425,0.000492335832038914,0.000670725912883758,0.000869802668989746
0,9.15481631874651e-06,0.000117693874573294,0.000377019455101549,0.000741577814721888,0.00115788487944848,0.00159137882061179,0.00202342112731787,0.00244488663055897,0.00285171452271575,0.00324239719313011
0,4.46105775530757e-05,0.000303984477552903,0.000717806961735601,0.00118873254936734,0.00166857393355206,0.00213667568842936,0.00258503807646796,0.00301133151201256,0.00341571030049681,0.00379926644315538
0,0.000217726325331875,0.000873770408536327,0.00159096186837063,0.00224649712918517,0.00282908355295164,0.00334893383349626,0.00381769528011674,0.00424489367607894,0.00463786438443504,0.00500213301923337
0,0.000918933831995098,0.00232435924877404,0.00343741337091249,0.00429315823548186,0.00497145196445075,0.00552787579177755,0.00599805857236328,0.00640506369246164,0.00676421367084299,0.00708600072229698
0,0.00331122058413453,0.00568447123669356,0.00712540944284069,0.00809397304876091,0.00879084024979697,0.0093162979589995,0.00972657995173228,0.0100559006360597,0.010326180081839,0.0105521545670149
0,0.0100043670600405,0.0127097661456827,0.0139937515689219,0.0147091809677894,0.0151257626062355,0.0153636070507909,0.0154869837094123,0.0155343002312855,0.0155299222027964,0.0154901124905561
0,0.000136637116798085,0.000338905367123057,0.000531352383440882,0.000703792701127588,0.000856724436487964,0.000992875271716,0.00111515974854185,0.00122613935565325,0.00132792886232481,0.00142222359205319
0,5.41197942669333e-06,2.66179151421015e-05,6.06837139232639e-05,0.00010289135389313,0.00014958545120669,0.00019826296968678,0.000247306756529671,0.000295722537183644,0.000342937360699378,0.000388655525576309
0,1.72186371215188e-07,1.70696816511905e-06,5.79640506738781e-06,1.29195485396102e-05,2.30515604056451e-05,3.58992272238309e-05,5.10570165270148e-05,6.80982556623907e-05,8.66227559703461e-05,0.000106279145950884
0,4.32364439009495e-09,8.64589599304522e-08,4.3955011662034e-07,1.29702112369114e-06,2.8633412989769e-06,5.28573284839916e-06,8.65071350621842e-06,1.29921291564899e-05,1.83031949023414e-05,2.45484723579094e-05
0,9.12457420765116e-11,3.74315585927427e-09,2.9038454685416e-08,1.15682654773554e-07,3.22205377431422e-07,7.18623792678699e-07,1.37865133447057e-06,2.37328126021504e-06,3.76631554161963e-06,5.61170605601181e-06
0,2.08011169409904e-08,6.36518490608328e-07,3.48383663648875e-06,1.01031069547314e-05,2.13412103139757e-05,3.74893709216357e-05,5.85171433417359e-05,8.42328798186352e-05,0.000114372709309901,0.000148647128283624
0,1.23164013985779e-07,2.01619957543725e-06,8.06746622712326e-06,1.9408951787608e-05,3.62807655737012e-05,5.85218420212134e-05,8.58109894680849e-05,0.000117776723517294,0.000154044674846032,0.00019425785338382
0,7.38055239000408e-07,7.13661815273176e-06,2.1957201331878e-05,4.48051934222451e-05,7.46425998373469e-05,0.000110486321507166,0.000151514246571192,0.000197051618892773,0.000246540311467432,0.00029951243350813
0,3.94931915614762e-06,2.37664477362685e-05,5.85078377488893e-05,0.000104356634872865,0.000158457684921854,0.000218839976363591,0.000284118381194624,0.000353286447661602,0.00042558888273829,0.000500441217237315
0,1.87536920881212e-05,7.42297836614388e-05,0.000150953066786234,0.000240330072584709,0.000337698410142427,0.000440229993907094,0.00054607757879758,0.000653971107402446,0.000763006862111349,0.000872522857886958
0,7.67060564087528e-05,0.000211583511011325,0.000364290214247424,0.000523711941940329,0.000684842914248833,0.000844968149576811,0.00100249413331233,0.00115645811127351,0.00130628569191617,0.00145165008061455
0,1.29198147797745e-07,7.26337646539414e-07,1.8789774469963e-06,3.58894576036159e-06,5.83743184885366e-06,8.59992729697426e-06,1.1850973027563e-05,1.55658536023551e-05,1.97211620171109e-05,2.42949568717564e-05
0,1.89355863862761e-09,2.0149347443802e-08,7.32356468455249e-08,1.74272463156743e-07,3.31196104192811e-07,5.481872642976e-07,8.2692218882057e-07,1.16749109225162e-06,1.56902754100022e-06,2.03013177037545e-06
0,4.63537374431423e-11,9.81049734780514e-10,5.2662674195959e-09,1.63744082880102e-08,3.80213424268806e-08,7.37013316252193e-08,1.26462911129735e-07,1.98832947513683e-07,2.92825213625396e-07,4.09988785684554e-07
0,9.52762309519183e-13,4.03064693534399e-11,3.21954008431541e-10,1.31921085909251e-09,3.77652149951806e-09,8.65283546407388e-09,1.70473483728495e-08,3.01291907541136e-08,4.90801983841489e-08,7.50526597099419e-08
0,1.69833113269482e-14,1.45989004470562e-12,1.76611013922202e-11,9.70786436099117e-11,3.4867494868619e-10,9.60502789076322e-10,2.20870660779088e-09,4.45777595611339e-09,8.15402734448277e-09,1.38148719622932e-08
0,3.8915196963406e-11,2.71147134577767e-09,2.44901018232562e-08,1.01911652264688e-07,2.85170970090303e-07,6.29937137214719e-07,1.19197488155735e-06,2.02429502148315e-06,3.17588061786517e-06,4.69121110232959e-06
0,2.69185075542407e-10,1.00640042548647e-08,6.5998653123948e-08,2.25483644613014e-07,5.52286794898488e-07,1.10885707763952e-06,1.95314930874714e-06,3.13753072469243e-06,4.70863852449393e-06,6.70761014036735e-06
0,1.89155326006871e-09,4.15998208034506e-08,2.08604035348676e-07,6.01200476492204e-07,1.30548633543253e-06,2.39315754080736e-06,3.9233691392589e-06,5.9449170992954e-06,8.49806448732054e-06,1.16159780561656e-05
0,1.20839005460873e-08,1.63063271190061e-07,6.45781047622635e-07,1.61034741128995e-06,3.16276730648069e-06,5.37778778885908e-06,8.30838167561027e-06,1.19919722977472e-05,1.64544997795969e-05,2.17132051523398e-05
0,6.98490407129936e-08,6.0448889346693e-07,1.94055108474347e-06,4.2597649069398e-06,7.66233240335793e-06,1.22016422946016e-05,1.79016972891742e-05,2.476703497099e-05,3.27887852389906e-05,4.19486886713683e-05
0,3.50437914406735e-07,2.02949943667367e-06,5.38075813382185e-06,1.04873870799375e-05,1.73426483579829e-05,2.58972599259919e-05,3.60796128969124e-05,4.78063686693464e-05,6.09885319751288e-05,7.55352438512354e-05
0,2.52830836713648e-10,3.03681967057117e-09,1.23485455469166e-08,3.26088143094103e-08,6.82703234078585e-08,1.23666594902017e-07,2.02940810635938e-07,3.10010651321603e-07,4.48552679684649e-07,6.21997431145188e-07
0,5.62803310698392e-13,1.27640446069762e-11,7.32343235940447e-11,2.42833323537223e-10,6.0008786533641e-10,1.23564347077632e-09,2.24827721329559e-09,3.74216806129839e-09,5.82509155188699e-09,8.60722506603327e-09
0,1.01387223716053e-14,4.50063177569099e-13,3.76367908055613e-12,1.6114550692278e-11,4.81228068266938e-11,1.1484654272007e-10,2.3535141406549e-10,4.32106599374873e-10,7.30344360289206e-10,1.15746018360108e-09
0,1.76594647095188e-16,1.5591711552107e-14,1.93446159551681e-13,1.08935554130944e-12,4.00524857658289e-12,1.12878863819327e-11,2.65435340079881e-11,5.47630083633411e-11,1.02366893517743e-10,1.77190911910303e-10
0,2.72938929463367e-18,4.86658533444932e-16,9.10403238648642e-15,6.85236595138709e-14,3.15126909211129e-13,1.06497145870696e-12,2.91648358432319e-12,6.85836462119616e-12,1.4373187057492e-11,2.75299294530364e-11
0,6.21517803140922e-14,9.59223157644613e-12,1.40071205391153e-10,8.23460517316941e-10,3.01588393968386e-09,8.29925719783238e-09,1.88974373890384e-08,3.76435597362723e-08,6.79236252804073e-08,1.13611867015149e-07
0,4.89626154105836e-13,4.05815676062707e-11,4.27904064325323e-10,2.04932427478431e-09,6.51652855169281e-09,1.61738279532313e-08,3.40432642093828e-08,6.37469204528233e-08,1.09424110270049e-07,1.75651555512571e-07
0,3.92394931909311e-12,1.90205223022698e-10,1.52475376523412e-09,6.12909774497683e-09,1.7202341627476e-08,3.88279099539024e-08,7.57896022082591e-08,1.33417356513312e-07,2.17461256827561e-07,3.33987690067168e-07
0,2.8933367514824e-11,8.49634390328452e-10,5.32093344063423e-09,1.83496200775791e-08,4.62765938242325e-08,9.63901823877104e-08,1.76587279811171e-07,2.95134919493546e-07,4.60499444520641e-07,6.81219273509691e-07
0,1.95394555097804e-10,3.60599662518081e-09,1.80378231091857e-08,5.41614780599373e-08,1.24057163023099e-07,2.4042528230335e-07,4.1611636054975e-07,6.638317374418e-07,9.95928543382885e-07,1.42428849426674e-06
0,1.14722473747572e-09,1.37465796551839e-08,5.57323434828026e-08,1.46670400626854e-07,3.05907787720263e-07,5.51856057412464e-07,9.01663873101398e-07,1.37107045554111e-06,1.97435903337969e-06,2.72436530869665e-06
0,6.01331068747146e-13,1.48666863208301e-11,9.22909151658988e-11,3.28914376451997e-10,8.6846657139908e-10,1.90065440926915e-09,3.65824807559149e-09,6.41362850871594e-09,1.04751195906183e-08,1.61832994397799e-08
0,2.47209629421286e-16,1.20861421473939e-14,1.10842575020953e-13,5.18453630267307e-13,1.68538118789818e-12,4.36405036350932e-12,9.67329876973588e-12,1.91546745620659e-11,3.48213414272979e-11,5.92006053141907e-11
0,1.89201707214526e-18,1.74461832628427e-16,2.25617452264583e-15,1.32210769025309e-14,5.05114773691188e-14,1.47735746305447e-13,3.60121598845708e-13,7.69378961925591e-13,1.48783448922978e-12,2.66185680931199e-12
0,2.82938853517197e-20,5.166160471115e-18,9.88324205334377e-17,7.5994903425817e-16,3.56758223375618e-15,1.23000563514818e-14,3.43481298564478e-14,8.23311838199757e-14,1.75814766445246e-13,3.43039404178284e-13
0,3.8648935971775e-22,1.41879457944149e-19,4.08084894427787e-18,4.18430606959238e-17,2.4523734952935e-16,1.01226704556591e-15,3.28784556445063e-15,8.97275887121034e-15,2.14634799098414e-14,4.63096283150802e-14
0,8.69726640954885e-17,2.92087981800005e-14,6.81319014247032e-13,5.60977017733479e-12,2.67241290013728e-11,9.12044259353017e-11,2.49116450278525e-10,5.80809267726238e-10,1.20365994453422e-09,2.27799582449115e-09
0,7.66381761027786e-16,1.38259280480535e-13,2.31866103567873e-12,1.54608384966719e-11,6.35500210965569e-11,1.94448402919345e-10,4.88264062451473e-10,1.06479889696641e-09,2.08990883233503e-09,3.78080528306937e-09
0,6.87383174408679e-15,7.21096117919272e-13,9.14517774138443e-12,5.09570157318565e-11,1.84185808276166e-10,5.10862690038548e-10,1.1861963221612e-09,2.42559699182021e-09,4.50988933263573e-09,7.78908854017501e-09
0,5.72300830893883e-14,3.59756333500574e-12,3.53239285399593e-11,1.6766501693894e-10,5.4153652527201e-10,1.38002614943133e-09,2.99692285950551e-09,5.80167590670959e-09,1.03017611203301e-08,1.71032265873292e-08
0,4.4015162593732e-13,1.71041885299831e-11,1.32555658504776e-10,5.42962213883109e-10,1.58183574169237e-09,3.73024467366084e-09,7.61934524058875e-09,1.40282403312057e-08,2.38787854849993e-08,3.82284985005463e-08
0,2.94015789946406e-12,7.24491356536544e-11,4.48309024211327e-10,1.59267035200818e-09,4.19217068372523e-09,9.14631653977701e-09,1.75503380261564e-08,3.06757992440402e-08,4.99505561914961e-08,7.69389888117878e-08
0,1.25520662515885e-15,6.34202350482921e-14,5.98701785935928e-13,2.87279812512801e-12,9.55263541481702e-12,2.52380922965864e-11,5.69558750757137e-11,1.14607040894637e-10,2.11363987866348e-10,3.6401786096932e-10
0,2.69293069884163e-19,2.76242819230984e-17,3.94910273521441e-16,2.5438021672209e-15,1.0629681164291e-14,3.38496697614216e-14,8.94675031954185e-14,2.06465258826618e-13,4.29763614969243e-13,8.24924625699432e-13
0,3.40393634256781e-22,6.53632617070714e-20,1.31310268914671e-18,1.05893998255463e-17,5.20829887103865e-17,1.87956724398352e-16,5.48951609054929e-16,1.3751099157628e-15,3.06669713938502e-15,6.2447989892164e-15
0,4.00278935798164e-24,1.50166583042231e-21,4.40866620105182e-20,4.60970828253607e-19,2.75310436445269e-18,1.15735040672427e-17,3.82669184362989e-17,1.06268988633135e-16,2.58592708871164e-16,5.67426085674954e-16
0,4.89860423986417e-26,3.68055944030794e-23,1.6212071379999e-21,2.25639400694407e-20,1.6800782168471e-19,8.44489572108405e-19,3.24448865148392e-18,1.02486142861079e-17,2.79143092738667e-17,6.76923776023426e-17
1 0 1.15723009391899e-05 0.000573422585977779 0.00271483227696389 0.00592017488450261 0.00919024372055321 0.0119992110381186 0.01421611640169 0.0158871549414673 0.0171115136326332 0.0179901833258047
2 0 4.32496365970161e-05 0.00110003761455522 0.0038588402926536 0.00723956931728921 0.0103665385368182 0.0129275133140941 0.0149018727052112 0.0163722917415511 0.0174425542133075 0.0182067473313329
3 0 0.000156410551955808 0.0022501860978233 0.00596846775043427 0.00951979828485079 0.0123439077799255 0.0144650737976258 0.0160242190667615 0.0171550743320483 0.0179654704632021 0.0185369538227271
4 0 0.000449900131743341 0.00397802650798475 0.0085351147388942 0.0120552559726064 0.0144482796517419 0.0160547847343675 0.0171511707942764 0.0179099936829702 0.0184375120234885 0.0188001645647094
5 0 0.00096247784605253 0.00575161551352107 0.0106416083625011 0.0139078265679269 0.0158706072121663 0.0170493964826529 0.0177834857154376 0.0182584391833927 0.018573228563985 0.0187811039627322
6 0 0.00139148060908994 0.00653728609085073 0.0112226963812925 0.0141895931925161 0.0159026822227563 0.0168925530607027 0.0174883152516615 0.017865325174865 0.0181135647391488 0.0182789062492789
7 0 7.88755181655377e-05 0.000890855516524495 0.0025489601065516 0.00451888907818989 0.00640234215109739 0.00803400181298965 0.00938380805959316 0.0104782803692741 0.0113602330285538 0.0120715601783272
8 0 1.96835046894113e-06 5.20032828635902e-05 0.000248131836356188 0.000630746867714403 0.00117274437938983 0.00182064447664627 0.00252211668991391 0.00323643607872941 0.00393564702867779 0.00460249317726503
9 0 4.05263620284678e-08 2.41553600349545e-06 1.87665958722685e-05 6.74081501157623e-05 0.000163264089823103 0.000313023273063137 0.000515631508985307 0.000764816320228696 0.00105167332970099 0.00136658044925295
10 0 7.12888460576857e-10 9.36408593803959e-08 1.16671799220012e-06 5.86484773654181e-06 1.84017858631692e-05 4.34716444970184e-05 8.51739231661631e-05 0.000146375097555955 0.000228524220562364 0.000331765311847696
11 0 1.11266213313442e-11 3.21569209939452e-09 6.45997582539074e-08 4.58674913815976e-07 1.88637915450085e-06 5.56437226690733e-06 1.31531030829188e-05 2.6577288329037e-05 4.78110315422556e-05 7.86848274922097e-05
12 0 4.35985871981009e-05 0.0011173013784839 0.00393465640259938 0.00738648425859891 0.0105643563174128 0.0131485926879987 0.0151246465122267 0.016583690239707 0.0176362908990393 0.0183809352240671
13 0 0.000162940275870536 0.00214415472789055 0.0055971341202626 0.00904266600518215 0.0119317484324307 0.01418453738493 0.0158744170951516 0.0171103507405317 0.0179967639568099 0.0186199630282087
14 0 0.000589272728343116 0.00438867743664915 0.00866893626959719 0.0119151946783314 0.0142428604635392 0.0159134847420158 0.0171142649822806 0.0179721981758363 0.0185775454158148 0.0189955063245207
15 0 0.00169526769334991 0.00776694628989879 0.0124247154337811 0.0151382671118746 0.0167367107498905 0.0177366662921586 0.0183940071716407 0.0188368236363926 0.0191342578330509 0.0193277227804878
16 0 0.00362839452566188 0.0112526737744286 0.0155521246084951 0.0175590393037948 0.0184985843185778 0.0189571544442947 0.0191923705608016 0.0193168273546316 0.0193791769704849 0.0194019806796609
17 0 0.00525177970919126 0.0128429513741672 0.0165189505188843 0.0180778870279157 0.0187197075826292 0.018968965691842 0.0190518322037241 0.0190652772723224 0.0190482483782045 0.019016041284815
18 0 0.000385153961868949 0.00229577940499986 0.00480460165448024 0.00711204718132809 0.0089909576548431 0.0104472162269959 0.0115548772926463 0.0123946614477843 0.0130350658282232 0.013528343285464
19 0 1.16858258297074e-05 0.000164584714174317 0.000570116218846185 0.00119271144355875 0.00194723110061389 0.00275621955267251 0.00356441433332025 0.00433765719695555 0.00505760032168857 0.00571654514201105
20 0 2.81208380577636e-07 8.97423573740115e-06 5.03422264992399e-05 0.000147427646174569 0.000310274427544454 0.000536832367026033 0.000817602280027168 0.00113989443932459 0.00149069663261676 0.00185828031564749
21 0 5.63399964199174e-09 3.96964588417007e-07 3.55564115271452e-06 1.44716592579598e-05 3.91537025779409e-05 8.28348829677685e-05 0.000148977185800308 0.000239043494747069 0.00035275053097983 0.000488513445484224
22 0 9.84398346768558e-11 1.5293568296117e-08 2.20334810416761e-07 1.26108145384204e-06 4.44865566281344e-06 1.16871019830672e-05 2.52195633384727e-05 4.73253788486059e-05 8.00591501276681e-05 0.000125072519296284
23 0 0.00015939225040812 0.00233357034425003 0.00625562530069953 0.0100135877171516 0.0129676882444301 0.0151374162693059 0.0166874294020243 0.0177764984876221 0.0185308441084237 0.0190433426894296
24 0 0.000595680647430986 0.0044801608514742 0.00890743169921897 0.0122772025886856 0.0146734676860174 0.0163633416618241 0.0175504470842378 0.0183769265178609 0.018943746718196 0.019322547574371
25 0 0.00215448195385171 0.0091767592756406 0.0138199838635887 0.0162232592499362 0.0175799863177681 0.0184333811027871 0.0190005234819769 0.0193808295698239 0.0196287328140203 0.01977995018463
26 0 0.00619992143295609 0.0162622253524985 0.0198667054266907 0.0207089785376823 0.0207820327860086 0.0206824193920932 0.0205605370395911 0.0204471756023412 0.0203412141522796 0.0202389042951594
27 0 0.0132779136133337 0.0236231555894036 0.0250044710521133 0.0242144479160946 0.0231938485225262 0.0223380815152074 0.0216793603038312 0.0211797341820616 0.020794392809717 0.0204895366674834
28 0 0.0192489696423083 0.0271184370488408 0.026840217635384 0.0252838506050641 0.023849962885927 0.0227245048675836 0.0218698389880889 0.0212219274277141 0.0207240679736698 0.020334308600127
29 0 0.00188379770767293 0.00657190925731914 0.0104892667525962 0.0130700680836906 0.0146349533533907 0.015535980568487 0.0160269602381333 0.0162728756742906 0.0163767130755721 0.016400710298742
30 0 7.01829175866307e-05 0.000581093706531354 0.00153370940121776 0.00269094081762158 0.00386803514667116 0.00496316154582596 0.00593261862345271 0.00676642929553236 0.0074719703393928 0.00806413175855109
31 0 1.97847089603411e-06 3.69925955384929e-05 0.000157406497985584 0.000384860592255597 0.000709846476804252 0.0011079382186538 0.00155170108970297 0.00201681216519113 0.00248426641823041 0.00294058581228933
32 0 4.51078087575571e-08 1.85104501980116e-06 1.25057013282593e-05 4.22892094350572e-05 9.98395815944757e-05 0.000189787308802236 0.000312690644970973 0.000466034643916367 0.000645463690913993 0.000845828528229199
33 0 8.80252798763183e-10 7.92215439962928e-08 8.56765592551646e-07 4.05803525996784e-06 1.2449180396882e-05 2.9295973763362e-05 5.7746988001425e-05 0.0001003733295813 0.000158928915289496 0.00023429575744269
34 0 0.000466368704740309 0.00424791180746615 0.00926944539909274 0.0131713216643424 0.0157625616947689 0.0174133722552654 0.0184577152890545 0.0191156877417616 0.0195250042740468 0.0197700479556243
35 0 0.00174300015594418 0.00815930380362134 0.0132116161354557 0.016172754442502 0.0178696343095053 0.0188636958720877 0.0194550603754561 0.0198042367684176 0.0200009359043926 0.0200979478510297
36 0 0.00630533087106852 0.0167264504542955 0.0205352907522532 0.021433296617797 0.0214908287288404 0.021342901494693 0.0211590163834043 0.0209808421912509 0.020813382900871 0.0206559438303523
37 0 0.0181516683021334 0.0296877506877057 0.0296188711707772 0.0274991387847508 0.0255697170579367 0.0241218925670229 0.0230708035427124 0.0223012794968431 0.0217225548818433 0.0212745536462067
38 0 0.0389067518217964 0.0432743493327086 0.037525495598965 0.0324527348417642 0.0288543692365208 0.0263663031569143 0.0246230583185604 0.0233728213888174 0.0224524193870472 0.0217568092848378
39 0 0.0565396239160925 0.0500897261990562 0.0408387347867424 0.0344846493850116 0.0302543240032215 0.0273643802632421 0.0253287379325492 0.0238539136707014 0.0227584403765214 0.02192583980509
40 0 0.00794755170946868 0.0172628249510397 0.0219912124473273 0.0237906919799591 0.0240591222673087 0.0235982544067714 0.0228369786001951 0.021996032718532 0.0211823304839058 0.0204423856134907
41 0 0.000373684524467729 0.00190283496658901 0.00395283626547245 0.00595433814031928 0.00766198835968331 0.0090150942497423 0.0100370905098692 0.0107818312810106 0.0113083452714233 0.0116697843722264
42 0 1.24794246503553e-05 0.000141270114233274 0.000466648605475989 0.000969170133300241 0.00158727378005724 0.00225743530947124 0.00292973311195242 0.00357075743939607 0.00416127927601125 0.00469265749237697
43 0 3.25056776407433e-07 7.95461921640221e-06 4.12089493515841e-05 0.000117250753288648 0.00024402042254145 0.000420314286347587 0.000638908995931823 0.000889809192557268 0.00116261453581859 0.00144792147140295
44 0 7.0854379238238e-09 3.75524392933622e-07 3.08321489667331e-06 1.21925554449326e-05 3.27749649029249e-05 6.95563221553643e-05 0.000126018794389096 0.000204052811537285 0.000304018569398211 0.000425019521621274
45 0 0.00102836224521133 0.0064274670666241 0.0121491816508084 0.015968397765568 0.0181492003638804 0.019314880428558 0.0199102032969297 0.0201928751968812 0.0203044557297043 0.020320071184116
46 0 0.00384385388740204 0.0123515070854559 0.0173313777131353 0.0196324133235912 0.0206081184457373 0.0209612687545928 0.0210258040457677 0.0209599611581841 0.0208374482363417 0.0206927731773186
47 0 0.0139084634226096 0.0253420008838306 0.0269858208570455 0.0260863431776468 0.0248662406090429 0.023805495300228 0.0229587141516884 0.0222941985053244 0.0217679373130175 0.021344966099159
48 0 0.0400577489259572 0.0450598366852064 0.0390556903095381 0.0336304680408348 0.0297597604093353 0.0270807237205804 0.0252035706273644 0.0238573134643687 0.0228662562144913 0.0221177566182138
49 0 0.0859596622787531 0.0659645822190159 0.0498440895724295 0.0400638374763904 0.0339433683852068 0.0299353070092985 0.0272039578032914 0.0252772077773997 0.0238777953326208 0.0228341669415018
50 0 0.125398084679699 0.0772427043755313 0.0551767906604444 0.0434193651923798 0.0363278914606691 0.0317025734216055 0.0285266548704347 0.0262622056865752 0.0246012510386757 0.0233529211513904
51 0 0.0279719026476077 0.0399912836159061 0.041824217737992 0.0399960375533372 0.0370306079722165 0.0339334669014817 0.0310904350363235 0.0286238301128732 0.0265419722346029 0.0248094228214593
52 0 0.0016878543861307 0.00546802879678612 0.00908467643641864 0.0118685267101036 0.0137867836918316 0.014992473171871 0.0156668769769553 0.0159679687584234 0.0160191464240754 0.0159109388085067
53 0 6.66210210366172e-05 0.000466311941721689 0.0012074539008488 0.00214399617569523 0.00313678410870533 0.0040909928004654 0.0049535861902635 0.00570178710489221 0.00633199242057907 0.00685150908457396
54 0 1.96581789972705e-06 2.90655193631781e-05 0.000116181708737399 0.000279461298722284 0.000515297156287373 0.00080891264649635 0.00114182790936584 0.00149639884138984 0.0018579271762422 0.00221530254986257
55 0 4.73511582533572e-08 1.48929389156945e-06 9.32003158799015e-06 3.08850626482769e-05 7.30754947692817e-05 0.000140629698309681 0.000235669226477032 0.00035796975388455 0.000505546298234415 0.000675276938000184
56 0 0.0015836697501133 0.00789553113761796 0.0138353209275783 0.0174900423844659 0.0193829171959464 0.0202511267409907 0.0205839676229735 0.0206522039767607 0.0205960670144616 0.0204840229205406
57 0 0.00592024795026366 0.015178056357401 0.0197491887189647 0.0215219374447417 0.0220321907378727 0.0220033162511111 0.0217646356223314 0.0214641136669779 0.0211632832330552 0.0208849932589192
58 0 0.0214261698026196 0.0311627748380295 0.030789710824671 0.0286485315817415 0.0266434190236869 0.0250513323715184 0.023828703885917 0.0228921858496036 0.0221672538845208 0.0215984913078681
59 0 0.0617381544584604 0.0554953966664163 0.0446769294750762 0.0370604778930011 0.0320153173963507 0.0286236282907804 0.0262786287048439 0.0246098514264461 0.0233900725628177 0.0224762767353041
60 0 0.132662095447386 0.0815715457115294 0.0573620962224714 0.0444656436513204 0.0367970084501995 0.0318900160341415 0.0285856373696197 0.0262711290074283 0.0245996244789251 0.0233597987792184
61 1 0.194600594053136 0.0967188378926377 0.0645033312825157 0.0489815255136541 0.0400071807557426 0.0342746856436233 0.0303863403322649 0.0276362424095596 0.0256323186910777 0.0241347191227446
62 0 0.072774737081717 0.0731608818750184 0.0649513569830106 0.0562393519385766 0.048657668424965 0.0424321620057059 0.0374285709142598 0.0334382577022264 0.0302593069735787 0.0277213581035032
63 0 0.00546229967617301 0.0117769944796152 0.0160960402630076 0.0186595966553889 0.0199729770538671 0.020458608892436 0.0204223397121343 0.0200740130964532 0.0195534451842866 0.0189514347157146
64 0 0.000246612705267533 0.00110781620007196 0.00231152127659001 0.00359442519681962 0.00480227348450595 0.00586145140404475 0.00674755083035105 0.00746338966694999 0.00802538295172145 0.00845539933096027
65 0 8.01024172201437e-06 7.40436516662321e-05 0.000234915899100426 0.000490064251651924 0.000819680663206465 0.00119845837778001 0.00160264998868245 0.00201295787243647 0.00241514785548912 0.00279964947569617
66 0 2.07955309779492e-07 4.0104486961948e-06 1.96923787162901e-05 5.61707039451707e-05 0.00011992118154755 0.000214121267381263 0.000338952769617425 0.000492335832038914 0.000670725912883758 0.000869802668989746
67 0 9.15481631874651e-06 0.000117693874573294 0.000377019455101549 0.000741577814721888 0.00115788487944848 0.00159137882061179 0.00202342112731787 0.00244488663055897 0.00285171452271575 0.00324239719313011
68 0 4.46105775530757e-05 0.000303984477552903 0.000717806961735601 0.00118873254936734 0.00166857393355206 0.00213667568842936 0.00258503807646796 0.00301133151201256 0.00341571030049681 0.00379926644315538
69 0 0.000217726325331875 0.000873770408536327 0.00159096186837063 0.00224649712918517 0.00282908355295164 0.00334893383349626 0.00381769528011674 0.00424489367607894 0.00463786438443504 0.00500213301923337
70 0 0.000918933831995098 0.00232435924877404 0.00343741337091249 0.00429315823548186 0.00497145196445075 0.00552787579177755 0.00599805857236328 0.00640506369246164 0.00676421367084299 0.00708600072229698
71 0 0.00331122058413453 0.00568447123669356 0.00712540944284069 0.00809397304876091 0.00879084024979697 0.0093162979589995 0.00972657995173228 0.0100559006360597 0.010326180081839 0.0105521545670149
72 0 0.0100043670600405 0.0127097661456827 0.0139937515689219 0.0147091809677894 0.0151257626062355 0.0153636070507909 0.0154869837094123 0.0155343002312855 0.0155299222027964 0.0154901124905561
73 0 0.000136637116798085 0.000338905367123057 0.000531352383440882 0.000703792701127588 0.000856724436487964 0.000992875271716 0.00111515974854185 0.00122613935565325 0.00132792886232481 0.00142222359205319
74 0 5.41197942669333e-06 2.66179151421015e-05 6.06837139232639e-05 0.00010289135389313 0.00014958545120669 0.00019826296968678 0.000247306756529671 0.000295722537183644 0.000342937360699378 0.000388655525576309
75 0 1.72186371215188e-07 1.70696816511905e-06 5.79640506738781e-06 1.29195485396102e-05 2.30515604056451e-05 3.58992272238309e-05 5.10570165270148e-05 6.80982556623907e-05 8.66227559703461e-05 0.000106279145950884
76 0 4.32364439009495e-09 8.64589599304522e-08 4.3955011662034e-07 1.29702112369114e-06 2.8633412989769e-06 5.28573284839916e-06 8.65071350621842e-06 1.29921291564899e-05 1.83031949023414e-05 2.45484723579094e-05
77 0 9.12457420765116e-11 3.74315585927427e-09 2.9038454685416e-08 1.15682654773554e-07 3.22205377431422e-07 7.18623792678699e-07 1.37865133447057e-06 2.37328126021504e-06 3.76631554161963e-06 5.61170605601181e-06
78 0 2.08011169409904e-08 6.36518490608328e-07 3.48383663648875e-06 1.01031069547314e-05 2.13412103139757e-05 3.74893709216357e-05 5.85171433417359e-05 8.42328798186352e-05 0.000114372709309901 0.000148647128283624
79 0 1.23164013985779e-07 2.01619957543725e-06 8.06746622712326e-06 1.9408951787608e-05 3.62807655737012e-05 5.85218420212134e-05 8.58109894680849e-05 0.000117776723517294 0.000154044674846032 0.00019425785338382
80 0 7.38055239000408e-07 7.13661815273176e-06 2.1957201331878e-05 4.48051934222451e-05 7.46425998373469e-05 0.000110486321507166 0.000151514246571192 0.000197051618892773 0.000246540311467432 0.00029951243350813
81 0 3.94931915614762e-06 2.37664477362685e-05 5.85078377488893e-05 0.000104356634872865 0.000158457684921854 0.000218839976363591 0.000284118381194624 0.000353286447661602 0.00042558888273829 0.000500441217237315
82 0 1.87536920881212e-05 7.42297836614388e-05 0.000150953066786234 0.000240330072584709 0.000337698410142427 0.000440229993907094 0.00054607757879758 0.000653971107402446 0.000763006862111349 0.000872522857886958
83 0 7.67060564087528e-05 0.000211583511011325 0.000364290214247424 0.000523711941940329 0.000684842914248833 0.000844968149576811 0.00100249413331233 0.00115645811127351 0.00130628569191617 0.00145165008061455
84 0 1.29198147797745e-07 7.26337646539414e-07 1.8789774469963e-06 3.58894576036159e-06 5.83743184885366e-06 8.59992729697426e-06 1.1850973027563e-05 1.55658536023551e-05 1.97211620171109e-05 2.42949568717564e-05
85 0 1.89355863862761e-09 2.0149347443802e-08 7.32356468455249e-08 1.74272463156743e-07 3.31196104192811e-07 5.481872642976e-07 8.2692218882057e-07 1.16749109225162e-06 1.56902754100022e-06 2.03013177037545e-06
86 0 4.63537374431423e-11 9.81049734780514e-10 5.2662674195959e-09 1.63744082880102e-08 3.80213424268806e-08 7.37013316252193e-08 1.26462911129735e-07 1.98832947513683e-07 2.92825213625396e-07 4.09988785684554e-07
87 0 9.52762309519183e-13 4.03064693534399e-11 3.21954008431541e-10 1.31921085909251e-09 3.77652149951806e-09 8.65283546407388e-09 1.70473483728495e-08 3.01291907541136e-08 4.90801983841489e-08 7.50526597099419e-08
88 0 1.69833113269482e-14 1.45989004470562e-12 1.76611013922202e-11 9.70786436099117e-11 3.4867494868619e-10 9.60502789076322e-10 2.20870660779088e-09 4.45777595611339e-09 8.15402734448277e-09 1.38148719622932e-08
89 0 3.8915196963406e-11 2.71147134577767e-09 2.44901018232562e-08 1.01911652264688e-07 2.85170970090303e-07 6.29937137214719e-07 1.19197488155735e-06 2.02429502148315e-06 3.17588061786517e-06 4.69121110232959e-06
90 0 2.69185075542407e-10 1.00640042548647e-08 6.5998653123948e-08 2.25483644613014e-07 5.52286794898488e-07 1.10885707763952e-06 1.95314930874714e-06 3.13753072469243e-06 4.70863852449393e-06 6.70761014036735e-06
91 0 1.89155326006871e-09 4.15998208034506e-08 2.08604035348676e-07 6.01200476492204e-07 1.30548633543253e-06 2.39315754080736e-06 3.9233691392589e-06 5.9449170992954e-06 8.49806448732054e-06 1.16159780561656e-05
92 0 1.20839005460873e-08 1.63063271190061e-07 6.45781047622635e-07 1.61034741128995e-06 3.16276730648069e-06 5.37778778885908e-06 8.30838167561027e-06 1.19919722977472e-05 1.64544997795969e-05 2.17132051523398e-05
93 0 6.98490407129936e-08 6.0448889346693e-07 1.94055108474347e-06 4.2597649069398e-06 7.66233240335793e-06 1.22016422946016e-05 1.79016972891742e-05 2.476703497099e-05 3.27887852389906e-05 4.19486886713683e-05
94 0 3.50437914406735e-07 2.02949943667367e-06 5.38075813382185e-06 1.04873870799375e-05 1.73426483579829e-05 2.58972599259919e-05 3.60796128969124e-05 4.78063686693464e-05 6.09885319751288e-05 7.55352438512354e-05
95 0 2.52830836713648e-10 3.03681967057117e-09 1.23485455469166e-08 3.26088143094103e-08 6.82703234078585e-08 1.23666594902017e-07 2.02940810635938e-07 3.10010651321603e-07 4.48552679684649e-07 6.21997431145188e-07
96 0 5.62803310698392e-13 1.27640446069762e-11 7.32343235940447e-11 2.42833323537223e-10 6.0008786533641e-10 1.23564347077632e-09 2.24827721329559e-09 3.74216806129839e-09 5.82509155188699e-09 8.60722506603327e-09
97 0 1.01387223716053e-14 4.50063177569099e-13 3.76367908055613e-12 1.6114550692278e-11 4.81228068266938e-11 1.1484654272007e-10 2.3535141406549e-10 4.32106599374873e-10 7.30344360289206e-10 1.15746018360108e-09
98 0 1.76594647095188e-16 1.5591711552107e-14 1.93446159551681e-13 1.08935554130944e-12 4.00524857658289e-12 1.12878863819327e-11 2.65435340079881e-11 5.47630083633411e-11 1.02366893517743e-10 1.77190911910303e-10
99 0 2.72938929463367e-18 4.86658533444932e-16 9.10403238648642e-15 6.85236595138709e-14 3.15126909211129e-13 1.06497145870696e-12 2.91648358432319e-12 6.85836462119616e-12 1.4373187057492e-11 2.75299294530364e-11
100 0 6.21517803140922e-14 9.59223157644613e-12 1.40071205391153e-10 8.23460517316941e-10 3.01588393968386e-09 8.29925719783238e-09 1.88974373890384e-08 3.76435597362723e-08 6.79236252804073e-08 1.13611867015149e-07
101 0 4.89626154105836e-13 4.05815676062707e-11 4.27904064325323e-10 2.04932427478431e-09 6.51652855169281e-09 1.61738279532313e-08 3.40432642093828e-08 6.37469204528233e-08 1.09424110270049e-07 1.75651555512571e-07
102 0 3.92394931909311e-12 1.90205223022698e-10 1.52475376523412e-09 6.12909774497683e-09 1.7202341627476e-08 3.88279099539024e-08 7.57896022082591e-08 1.33417356513312e-07 2.17461256827561e-07 3.33987690067168e-07
103 0 2.8933367514824e-11 8.49634390328452e-10 5.32093344063423e-09 1.83496200775791e-08 4.62765938242325e-08 9.63901823877104e-08 1.76587279811171e-07 2.95134919493546e-07 4.60499444520641e-07 6.81219273509691e-07
104 0 1.95394555097804e-10 3.60599662518081e-09 1.80378231091857e-08 5.41614780599373e-08 1.24057163023099e-07 2.4042528230335e-07 4.1611636054975e-07 6.638317374418e-07 9.95928543382885e-07 1.42428849426674e-06
105 0 1.14722473747572e-09 1.37465796551839e-08 5.57323434828026e-08 1.46670400626854e-07 3.05907787720263e-07 5.51856057412464e-07 9.01663873101398e-07 1.37107045554111e-06 1.97435903337969e-06 2.72436530869665e-06
106 0 6.01331068747146e-13 1.48666863208301e-11 9.22909151658988e-11 3.28914376451997e-10 8.6846657139908e-10 1.90065440926915e-09 3.65824807559149e-09 6.41362850871594e-09 1.04751195906183e-08 1.61832994397799e-08
107 0 2.47209629421286e-16 1.20861421473939e-14 1.10842575020953e-13 5.18453630267307e-13 1.68538118789818e-12 4.36405036350932e-12 9.67329876973588e-12 1.91546745620659e-11 3.48213414272979e-11 5.92006053141907e-11
108 0 1.89201707214526e-18 1.74461832628427e-16 2.25617452264583e-15 1.32210769025309e-14 5.05114773691188e-14 1.47735746305447e-13 3.60121598845708e-13 7.69378961925591e-13 1.48783448922978e-12 2.66185680931199e-12
109 0 2.82938853517197e-20 5.166160471115e-18 9.88324205334377e-17 7.5994903425817e-16 3.56758223375618e-15 1.23000563514818e-14 3.43481298564478e-14 8.23311838199757e-14 1.75814766445246e-13 3.43039404178284e-13
110 0 3.8648935971775e-22 1.41879457944149e-19 4.08084894427787e-18 4.18430606959238e-17 2.4523734952935e-16 1.01226704556591e-15 3.28784556445063e-15 8.97275887121034e-15 2.14634799098414e-14 4.63096283150802e-14
111 0 8.69726640954885e-17 2.92087981800005e-14 6.81319014247032e-13 5.60977017733479e-12 2.67241290013728e-11 9.12044259353017e-11 2.49116450278525e-10 5.80809267726238e-10 1.20365994453422e-09 2.27799582449115e-09
112 0 7.66381761027786e-16 1.38259280480535e-13 2.31866103567873e-12 1.54608384966719e-11 6.35500210965569e-11 1.94448402919345e-10 4.88264062451473e-10 1.06479889696641e-09 2.08990883233503e-09 3.78080528306937e-09
113 0 6.87383174408679e-15 7.21096117919272e-13 9.14517774138443e-12 5.09570157318565e-11 1.84185808276166e-10 5.10862690038548e-10 1.1861963221612e-09 2.42559699182021e-09 4.50988933263573e-09 7.78908854017501e-09
114 0 5.72300830893883e-14 3.59756333500574e-12 3.53239285399593e-11 1.6766501693894e-10 5.4153652527201e-10 1.38002614943133e-09 2.99692285950551e-09 5.80167590670959e-09 1.03017611203301e-08 1.71032265873292e-08
115 0 4.4015162593732e-13 1.71041885299831e-11 1.32555658504776e-10 5.42962213883109e-10 1.58183574169237e-09 3.73024467366084e-09 7.61934524058875e-09 1.40282403312057e-08 2.38787854849993e-08 3.82284985005463e-08
116 0 2.94015789946406e-12 7.24491356536544e-11 4.48309024211327e-10 1.59267035200818e-09 4.19217068372523e-09 9.14631653977701e-09 1.75503380261564e-08 3.06757992440402e-08 4.99505561914961e-08 7.69389888117878e-08
117 0 1.25520662515885e-15 6.34202350482921e-14 5.98701785935928e-13 2.87279812512801e-12 9.55263541481702e-12 2.52380922965864e-11 5.69558750757137e-11 1.14607040894637e-10 2.11363987866348e-10 3.6401786096932e-10
118 0 2.69293069884163e-19 2.76242819230984e-17 3.94910273521441e-16 2.5438021672209e-15 1.0629681164291e-14 3.38496697614216e-14 8.94675031954185e-14 2.06465258826618e-13 4.29763614969243e-13 8.24924625699432e-13
119 0 3.40393634256781e-22 6.53632617070714e-20 1.31310268914671e-18 1.05893998255463e-17 5.20829887103865e-17 1.87956724398352e-16 5.48951609054929e-16 1.3751099157628e-15 3.06669713938502e-15 6.2447989892164e-15
120 0 4.00278935798164e-24 1.50166583042231e-21 4.40866620105182e-20 4.60970828253607e-19 2.75310436445269e-18 1.15735040672427e-17 3.82669184362989e-17 1.06268988633135e-16 2.58592708871164e-16 5.67426085674954e-16
121 0 4.89860423986417e-26 3.68055944030794e-23 1.6212071379999e-21 2.25639400694407e-20 1.6800782168471e-19 8.44489572108405e-19 3.24448865148392e-18 1.02486142861079e-17 2.79143092738667e-17 6.76923776023426e-17