Merge branch '11-comment-and-error-handling' into 'hannes-philipp'

Resolve "comment and error handling"

See merge request naaice/tug!10
This commit is contained in:
Hannes Martin Signer 2023-08-07 10:21:08 +02:00
commit ff611d7a97
6 changed files with 410 additions and 109 deletions

View File

@ -1,3 +1,9 @@
/**
* @file Boundary.hpp
* @brief
*
*
*/
#ifndef BOUNDARY_H_
#define BOUNDARY_H_
@ -20,71 +26,168 @@ enum BC_SIDE {
BC_SIDE_BOTTOM
};
/**
* This class defines the boundary conditions of individual boundary elements.
* These can be flexibly used and combined later in other classes.
* The class serves as an auxiliary class for structuring the Boundary class.
*/
class BoundaryElement {
public:
// bc type closed
BoundaryElement();
/**
* @brief Construct a new Boundary Element object for the closed case.
* The boundary type is here automatically set to the type
* BC_TYPE_CLOSED, where the value takes NaN.
*/
BoundaryElement();
// bc type constant
BoundaryElement(double value);
/**
* @brief Construct a new Boundary Element object for the constant case.
* The boundary type is automatically set to the type
* BC_TYPE_CONSTANT.
*
* @param value Value of the constant concentration to be assumed at the
* corresponding boundary element.
*/
BoundaryElement(double value);
void setType(BC_TYPE type);
/**
* @brief Allows changing the boundary type of a corresponding
* BoundaryElement object.
*
* @param type Type of boundary condition. Either BC_TYPE_CONSTANT or
BC_TYPE_CLOSED.
*/
void setType(BC_TYPE type);
/**
* @brief Sets the value of a boundary condition for the constant case.
*
* @param value Concentration to be considered constant for the
* corresponding boundary element.
*/
void setValue(double value);
void setValue(double value);
/**
* @brief Return the type of the boundary condition, i.e. whether the
* boundary is considered closed or constant.
*
* @return BC_TYPE Type of boundary condition, either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*/
BC_TYPE getType();
BC_TYPE getType();
double getValue();
/**
* @brief Return the concentration value for the constant boundary condition.
*
* @return double Value of the concentration.
*/
double getValue();
private:
BC_TYPE type;
double value;
};
class BoundaryWall {
public:
BoundaryWall(int length);
void setWall(BC_TYPE type, double value = NAN);
vector<BoundaryElement> getWall();
void setBoundaryElement(int index, BC_TYPE type, double value = NAN);
BoundaryElement getBoundaryElement();
private:
BC_SIDE side;
int length;
vector<BoundaryElement> wall;
};
/**
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
* This class implements the functionality and management of the boundary
* conditions in the grid to be simulated.
*/
class Boundary {
public:
/**
* @brief Creates a boundary object based on the passed grid object and
* initializes the boundaries as closed.
*
* @param grid Grid object on the basis of which the simulation is to take place.
*/
Boundary(Grid grid);
/**
* @brief Construct a new Boundary object
*
* @param grid
*/
Boundary(Grid grid);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition closed.
*
* @param side Side to be set to closed, e.g. BC_SIDE_LEFT.
*/
void setBoundarySideClosed(BC_SIDE side);
void setBoundarySideClosed(BC_SIDE side);
/**
* @brief Sets all elements of the specified boundary side to the boundary
* condition constant. Thereby the concentration values of the
* boundaries are set to the passed value.
*
* @param side Side to be set to constant, e.g. BC_SIDE_LEFT.
* @param value Concentration to be set for all elements of the specified page.
*/
void setBoundarySideConstant(BC_SIDE side, double value);
void setBoundarySideConstant(BC_SIDE side, double value);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition closed.
*
* @param side Side in which an element is to be defined as closed.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
*/
void setBoundaryElementClosed(BC_SIDE side, int index);
void setBoundaryElementClosed(BC_SIDE side, int index);
/**
* @brief Specifically sets the boundary element of the specified side
* defined by the index to the boundary condition constant with the
given concentration value.
*
* @param side Side in which an element is to be defined as constant.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @param value Concentration value to which the boundary element should be set.
*/
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
void setBoundaryElementConstant(BC_SIDE side, int index, double value);
/**
* @brief Returns the boundary condition of a specified side as a vector
* of BoundarsElement objects.
*
* @param side Boundary side from which the boundaryconditions are to be returned.
* @return vector<BoundaryElement> Contains the boundary conditions as BoundaryElement objects.
*/
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
vector<BoundaryElement> getBoundarySide(BC_SIDE side);
/**
* @brief Returns the boundary condition of a specified element on a given side.
*
* @param side Boundary side in which the boundary condition is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BoundaryElement Boundary condition as a BoundaryElement object.
*/
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
BoundaryElement getBoundaryElement(BC_SIDE side, int index);
/**
* @brief Returns the type of a boundary condition, i.e. either BC_TYPE_CLOSED or
BC_TYPE_CONSTANT.
*
* @param side Boundary side in which the boundary condition type is located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding side.
* @return BC_TYPE Boundary Type of the corresponding boundary condition.
*/
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
BC_TYPE getBoundaryElementType(BC_SIDE side, int index);
double getBoundaryElementValue(BC_SIDE side, int index);
/**
* @brief Returns the concentration value of a corresponding
* BoundaryElement object if it is a constant boundary condition.
*
* @param side Boundary side in which the boundary condition value is
* located.
* @param index Index of the boundary element on the corresponding
* boundary side. Must index an element of the corresponding
* side.
* @return double Concentration of the corresponding BoundaryElement object.
*/
double getBoundaryElementValue(BC_SIDE side, int index);
private:
Grid grid;

View File

@ -1,3 +1,7 @@
/**
* @file Simulation.hpp
* @brief
*/
#include "Boundary.hpp"
#include <ios>
@ -27,87 +31,118 @@ enum TIME_MEASURE {
TIME_MEASURE_VERBOSE // print time measures after each iteration
};
/**
* @brief The class forms the interface for performing the diffusion simulations
* and contains all the methods for controlling the desired parameters, such as
* time step, number of simulations, etc.
*
*/
class Simulation {
public:
/**
* @brief Set up a runnable simulation environment with the largest stable
* time step and 1000 iterations by passing the required parameters.
*
* @param grid Valid grid object
* @param bc Valid boundary condition object
* @param approach Approach to solving the problem. Either FTCS or BTCS.
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
/**
* @brief Construct a new Simulation object
*
* @param grid
* @param bc
* @param aproach
*/
Simulation(Grid &grid, Boundary &bc, APPROACH approach);
/**
* @brief Set the option to output the results to a CSV file.
*
*
* @param csv_output Valid output option. The following options can be set
* here:
* - CSV_OUTPUT_OFF: do not produce csv output
* - CSV_OUTPUT_ON: produce csv output with last
* concentration matrix
* - CSV_OUTPUT_VERBOSE: produce csv output with all
* concentration matrices
* - CSV_OUTPUT_XTREME: produce csv output with all
* concentration matrices and simulation environment
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief
*
* @param csv_output
*/
void setOutputCSV(CSV_OUTPUT csv_output);
/**
* @brief Set the options for outputting information to the console.
*
* @param console_output Valid output option. The following options can be set
* here:
* - CONSOLE_OUTPUT_OFF: do not print any output to console
* - CONSOLE_OUTPUT_ON: print before and after concentrations to console
* - CONSOLE_OUTPUT_VERBOSE: print all concentration matrices to console
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the Output Console object
*
* @param console_output
*/
void setOutputConsole(CONSOLE_OUTPUT console_output);
/**
* @brief Set the Time Measure object
*
* @param time_measure
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Set the Time Measure object
*
* @param time_measure
*/
void setTimeMeasure(TIME_MEASURE time_measure);
/**
* @brief Setting the time step for each iteration step. Time step must be
* greater than zero.
*
* @param timestep Valid timestep greater than zero.
*/
void setTimestep(double timestep);
/**
* @brief Set the Timestep object
*
* @param timetstep
*/
void setTimestep(double timetstep);
/**
* @brief Currently set time step is returned.
*
* @return double timestep
*/
double getTimestep();
/**
* @brief Get the Timestep object
*
*/
double getTimestep();
/**
* @brief Set the desired iterations to be calculated. A value greater
* than zero must be specified here.
*
* @param iterations Number of iterations to be simulated.
*/
void setIterations(int iterations);
/**
* @brief Set the Iterations object
*
* @param iterations
*/
void setIterations(int iterations);
/**
* @brief Return the currently set iterations to be calculated.
*
* @return int Number of iterations.
*/
int getIterations();
/**
* @brief Get the Iterations object
*
* @return auto
*/
int getIterations();
/**
* @brief Outputs the current concentrations of the grid on the console.
*
*/
void printConcentrationsConsole();
/**
* @brief Print the current concentrations of the grid to standard out.
*
*/
void printConcentrationsConsole();
/**
* @brief Creates a CSV file with a name containing the current simulation
* parameters. If the data name already exists, an additional counter is
* appended to the name. The name of the file is built up as follows:
* <approach> + <number rows> + <number columns> + <number of iterations>+<counter>.csv
*
* @return string Filename with given simulation parameter.
*/
string createCSVfile();
/**
* @brief
*
* @return string
*/
string createCSVfile();
/**
* @brief Writes the currently calculated concentration values of the grid
* into the CSV file with the passed filename.
*
* @param filename Name of the file to which the concentration values are
* to be written.
*/
void printConcentrationsCSV(string filename);
void printConcentrationsCSV(string filename);
/**
* @brief
*
* @return Grid
*/
void run();
/**
* @brief Method starts the simulation process with the previously set
* parameters.
*/
void run();
private:

View File

@ -1,3 +1,4 @@
#include "TugUtils.hpp"
#include "tug/BoundaryCondition.hpp"
#include <iostream>
#include <omp.h>
@ -7,6 +8,7 @@
using namespace std;
BoundaryElement::BoundaryElement() {
this->type = BC_TYPE_CLOSED;
this->value = NAN;
}
@ -21,6 +23,14 @@ void BoundaryElement::setType(BC_TYPE type) {
}
void BoundaryElement::setValue(double value) {
if(value < 0){
throw_invalid_argument("No negative concentration allowed.");
}
if(type == BC_TYPE_CLOSED){
throw_invalid_argument(
"No constant boundary concentrations can be set for closed "
"boundaries. Please change type first.");
}
this->value = value;
}
@ -51,35 +61,76 @@ Boundary::Boundary(Grid grid) : grid(grid) {
}
void Boundary::setBoundarySideClosed(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement());
}
void Boundary::setBoundarySideConstant(BC_SIDE side, double value) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
this->boundaries[side] = vector<BoundaryElement>(grid.getRow(), BoundaryElement(value));
}
void Boundary::setBoundaryElementClosed(BC_SIDE side, int index) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CLOSED);
}
void Boundary::setBoundaryElementConstant(BC_SIDE side, int index, double value) {
// tests whether the index really points to an element of the boundary side.
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
this->boundaries[side][index].setType(BC_TYPE_CONSTANT);
this->boundaries[side][index].setValue(value);
}
vector<BoundaryElement> Boundary::getBoundarySide(BC_SIDE side) {
if(grid.getDim() == 1){
if((side == BC_SIDE_BOTTOM) || (side == BC_SIDE_TOP)){
throw_invalid_argument(
"For the one-dimensional trap, only the BC_SIDE_LEFT and "
"BC_SIDE_RIGHT borders exist.");
}
}
return this->boundaries[side];
}
BoundaryElement Boundary::getBoundaryElement(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index];
}
BC_TYPE Boundary::getBoundaryElementType(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
return this->boundaries[side][index].getType();
}
double Boundary::getBoundaryElementValue(BC_SIDE side, int index) {
if((boundaries[side].size() < index) || index < 0){
throw_invalid_argument("Index is selected either too large or too small.");
}
if(boundaries[side][index].getType() != BC_TYPE_CONSTANT){
throw_invalid_argument("A value can only be output if it is a constant boundary condition.");
}
return this->boundaries[side][index].getValue();
}

View File

@ -65,6 +65,9 @@ void Simulation::setTimeMeasure(TIME_MEASURE time_measure) {
void Simulation::setTimestep(double timestep) {
//TODO check timestep in FTCS for max value
if(timestep <= 0){
throw_invalid_argument("Timestep has to be greater than zero.");
}
this->timestep = timestep;
}
@ -73,6 +76,9 @@ double Simulation::getTimestep() {
}
void Simulation::setIterations(int iterations) {
if(iterations <= 0){
throw_invalid_argument("Number of iterations must be greater than zero.");
}
this->iterations = iterations;
}

68
test/testBoundary.cpp Normal file
View File

@ -0,0 +1,68 @@
#include <stdio.h>
#include <doctest/doctest.h>
#include <tug/Boundary.hpp>
#include <string>
#include <typeinfo>
#include <iostream>
TEST_CASE("BoundaryElement"){
SUBCASE("Closed case"){
BoundaryElement boundaryElementClosed = BoundaryElement();
CHECK_NOTHROW(BoundaryElement());
CHECK_EQ(boundaryElementClosed.getType(), BC_TYPE_CLOSED);
CHECK_EQ(isnan(boundaryElementClosed.getValue()), isnan(NAN));
CHECK_THROWS(boundaryElementClosed.setValue(0.2));
}
SUBCASE("Constant case"){
BoundaryElement boundaryElementConstant = BoundaryElement(0.1);
CHECK_NOTHROW(BoundaryElement(0.1));
CHECK_EQ(boundaryElementConstant.getType(), BC_TYPE_CONSTANT);
CHECK_EQ(boundaryElementConstant.getValue(), 0.1);
CHECK_NOTHROW(boundaryElementConstant.setValue(0.2));
CHECK_EQ(boundaryElementConstant.getValue(), 0.2);
}
}
TEST_CASE("Boundary Class"){
Grid grid1D = Grid(10);
Grid grid2D = Grid(10, 12);
Boundary boundary1D = Boundary(grid1D);
Boundary boundary2D = Boundary(grid2D);
vector<BoundaryElement> boundary1DVector(1, BoundaryElement(1.0));
SUBCASE("Boundaries 1D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_LEFT).size(), 1);
CHECK_EQ(boundary1D.getBoundarySide(BC_SIDE_RIGHT).size(), 1);
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_TOP));
CHECK_THROWS(boundary1D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary1D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_THROWS(boundary1D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary1D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary1D.getBoundaryElementValue(BC_SIDE_LEFT, 2));
CHECK_EQ(boundary1D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary1D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
SUBCASE("Boundaries 2D case"){
CHECK_NOTHROW(Boundary boundary(grid1D));
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_LEFT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_RIGHT).size(), 10);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_TOP).size(), 12);
CHECK_EQ(boundary2D.getBoundarySide(BC_SIDE_BOTTOM).size(), 12);
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CLOSED);
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.getBoundarySide(BC_SIDE_BOTTOM));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_LEFT));
CHECK_NOTHROW(boundary2D.setBoundarySideClosed(BC_SIDE_TOP));
CHECK_NOTHROW(boundary2D.setBoundarySideConstant(BC_SIDE_LEFT, 1.0));
CHECK_EQ(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 0), 1.0);
CHECK_THROWS(boundary2D.getBoundaryElementValue(BC_SIDE_LEFT, 12));
CHECK_EQ(boundary2D.getBoundaryElementType(BC_SIDE_LEFT, 0), BC_TYPE_CONSTANT);
CHECK_EQ(boundary2D.getBoundaryElement(BC_SIDE_LEFT, 0).getType(), boundary1DVector[0].getType());
}
}

View File

@ -63,3 +63,41 @@ TEST_CASE("equality to reference matrix") {
Grid grid = setupSimulation();
CHECK(checkSimilarity(reference, grid.getConcentrations(), 0.1) == true);
}
TEST_CASE("Initialize environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
CHECK_NOTHROW(Simulation sim(grid, boundary, FTCS_APPROACH));
}
TEST_CASE("Simulation environment"){
int rc = 12;
Grid grid(rc, rc);
Boundary boundary(grid);
Simulation sim(grid, boundary, FTCS_APPROACH);
SUBCASE("default paremeters"){
CHECK_EQ(sim.getIterations(), 1000);
}
SUBCASE("set iterations"){
CHECK_NOTHROW(sim.setIterations(2000));
CHECK_EQ(sim.getIterations(), 2000);
CHECK_THROWS(sim.setIterations(-300));
}
SUBCASE("set timestep"){
CHECK_NOTHROW(sim.setTimestep(0.1));
CHECK_EQ(sim.getTimestep(), 0.1);
CHECK_THROWS(sim.setTimestep(-0.3));
}
SUBCASE("filename"){
string s1 = sim.createCSVfile();
string s2 = "FTCS_12_12_1000";
CHECK_EQ(s1.find(s2) != std::string::npos, true);
}
}