#include #include #include #include int main(int argc, char *argv[]) { int n[4] = {100, 500, 1000, 2000}; int threads[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; int iterations[1] = {5}; int repetition = 1; ofstream myfile; myfile.open("testLarge.csv"); for (int i = 0; i < size(n); i++){ cout << "Grid size: " << n[i] << " x " << n[i] << endl << endl; myfile << "Grid size: " << n[i] << " x " << n[i] << endl << endl; for(int j = 0; j < size(iterations); j++){ cout << "Iterations: " << iterations[j] << endl; myfile << "Iterations: " << iterations[j] << endl; for (int k = 0; k < repetition; k++){ cout << "Wiederholung: " << k << endl; Grid grid = Grid(n[i], n[i]); grid.setDomain(1, 1); MatrixXd concentrations = MatrixXd::Constant(n[i], n[i], 0); concentrations(n[i]/2,n[i]/2) = 1; grid.setConcentrations(concentrations); MatrixXd alpha = MatrixXd::Constant(n[i], n[i], 0.5); Boundary bc = Boundary(grid); Simulation sim = Simulation(grid, bc, BTCS_APPROACH); sim.setSolver(THOMAS_ALGORITHM_SOLVER); if(argc == 2){ int numThreads = atoi(argv[1]); sim.setNumberThreads(numThreads); } else{ sim.setNumberThreads(1); } sim.setTimestep(0.001); sim.setIterations(iterations[j]); sim.setOutputCSV(CSV_OUTPUT_OFF); auto begin = std::chrono::high_resolution_clock::now(); sim.run(); auto end = std::chrono::high_resolution_clock::now(); auto milliseconds = std::chrono::duration_cast(end - begin); myfile << milliseconds.count() << endl; } } cout << endl; myfile << endl; } myfile.close(); }