#include "BTCSDiffusion.hpp" #include #include #include #include #include #include const int BTCSDiffusion::BC_CONSTANT = 0; const int BTCSDiffusion::BC_CLOSED = 1; const int BTCSDiffusion::BC_FLUX = 2; BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) { assert(dim <= 3); grid_cells.resize(dim, 1); domain_size.resize(dim, 1); deltas.resize(dim, 1); } void BTCSDiffusion::setXDimensions(unsigned int domain_size, unsigned int n_grid_cells) { assert(this->grid_dim > 0); this->domain_size[0] = domain_size; this->grid_cells[0] = n_grid_cells; updateInternals(); } void BTCSDiffusion::setYDimensions(unsigned int domain_size, unsigned int n_grid_cells) { assert(this->grid_dim > 1); this->domain_size[1] = domain_size; this->grid_cells[1] = n_grid_cells; updateInternals(); } void BTCSDiffusion::setZDimensions(unsigned int domain_size, unsigned int n_grid_cells) { assert(this->grid_dim > 2); this->domain_size[2] = domain_size; this->grid_cells[2] = n_grid_cells; updateInternals(); } unsigned int BTCSDiffusion::getXGridCellsN() { return this->grid_cells[0]; } unsigned int BTCSDiffusion::getYGridCellsN() { return this->grid_cells[1]; } unsigned int BTCSDiffusion::getZGridCellsN() { return this->grid_cells[2]; } unsigned int BTCSDiffusion::getXDomainSize() { return this->domain_size[0]; } unsigned int BTCSDiffusion::getYDomainSize() { return this->domain_size[1]; } unsigned int BTCSDiffusion::getZDomainSize() { return this->domain_size[2]; } void BTCSDiffusion::updateInternals() { for (int i = 0; i < grid_dim; i++) { deltas[i] = (double)domain_size[i] / grid_cells[i]; } int cells = 1; for (int i = 0; i < grid_dim; i++) { cells *= (grid_cells[i] + 2); } bc.resize(cells, {BTCSDiffusion::BC_CLOSED, 0}); } void BTCSDiffusion::simulate1D(std::vector &c, boundary_condition left, boundary_condition right, const std::vector &alpha, double dx, int size) { bool left_is_constant = (left.type == BTCSDiffusion::BC_CONSTANT); bool right_is_constant = (right.type == BTCSDiffusion::BC_CONSTANT); //The sizes for matrix and vectors of the equation system is defined by the //actual size of the input vector and if the system is (partially) closed. //Then we will need ghost nodes. So this variable will give the count of ghost //nodes. int bc_offset = !left_is_constant + !right_is_constant; ; // set sizes of private and yet allocated vectors b_vector.resize(size + bc_offset); x_vector.resize(size + bc_offset); /* * Begin to solve the equation system using LU solver of Eigen. * * But first fill the A matrix and b vector. */ // Set boundary condition for ghost nodes (for closed or flux system) or outer // inlet nodes (constant boundary condition) A_matrix.resize(size + bc_offset, size + bc_offset); A_matrix.reserve(Eigen::VectorXi::Constant(size + bc_offset, 3)); A_matrix.insert(0, 0) = 1; b_vector[0] = (left_is_constant ? left.value : getBCFromFlux(left, c[0], alpha[0])); A_matrix.insert((size + bc_offset) - 1, (size + bc_offset) - 1) = 1; b_vector[size + bc_offset - 1] = (right_is_constant ? right.value : getBCFromFlux(right, c[size - 1], alpha[size - 1])); // Start filling the A matrix // =i= is used for equation system matrix and vector indexing // and =j= for indexing of c,alpha and bc for (int i = 1, j = i + !(left_is_constant); i < size - right_is_constant; i++, j++) { // if current grid cell is considered as constant boundary conditon if (bc[j].type == BTCSDiffusion::BC_CONSTANT) { A_matrix.insert(i, i) = 1; b_vector[i] = bc[j].value; continue; } double sx = (alpha[j] * time_step) / (dx * dx); A_matrix.insert(i, i) = -1. - 2. * sx; A_matrix.insert(i, i - 1) = sx; A_matrix.insert(i, i + 1) = sx; b_vector[i] = -c[j]; } solveLES(); //fill solution back in place into =c= vector for (int i = 0, j = i + !left_is_constant; i < c.size(); i++, j++) { c[i] = x_vector[i + !left_is_constant]; } } void BTCSDiffusion::setTimestep(double time_step) { this->time_step = time_step; } void BTCSDiffusion::simulate(std::vector &c, const std::vector &alpha) { if (this->grid_dim == 1) { simulate1D(c, bc[0], bc[grid_cells[0] + 1], alpha, this->deltas[0], this->grid_cells[0]); } if (this->grid_dim == 2) { } } inline double BTCSDiffusion::getBCFromFlux(boundary_condition bc, double neighbor_c, double neighbor_alpha) { double val; if (bc.type == BTCSDiffusion::BC_CLOSED) { val = neighbor_c; } else if (bc.type == BTCSDiffusion::BC_FLUX) { // TODO // val = bc[index].value; } else { // TODO: implement error handling here. Type was set to wrong value. } return val; } void BTCSDiffusion::setBoundaryCondition(int index, bctype type, double value) { bc[index].type = type; bc[index].value = value; } inline void BTCSDiffusion::solveLES() { // start to solve Eigen::SparseLU, Eigen::COLAMDOrdering> solver; solver.analyzePattern(A_matrix); solver.factorize(A_matrix); x_vector = solver.solve(b_vector); }