#ifndef BTCSDIFFUSION_H_ #define BTCSDIFFUSION_H_ #include "BoundaryCondition.hpp" #include #include #include #include #include #include #include #include #define BTCS_MAX_DEP_PER_CELL 3 namespace Diffusion { /*! * Class implementing a solution for a 1/2/3D diffusion equation using backward * euler. */ class BTCSDiffusion { public: /*! * Creates a diffusion module. * * @param dim Number of dimensions. Should not be greater than 3 and not less * than 1. */ BTCSDiffusion(unsigned int dim); /*! * Define the grid in x direction. * * @param domain_size Size of the domain in x direction. * @param n_grid_cells Number of grid cells in x direction the domain is * divided to. */ void setXDimensions(double domain_size, unsigned int n_grid_cells); /*! * Define the grid in y direction. * * Throws an error if the module wasn't initialized at least as a 2D model. * * @param domain_size Size of the domain in y direction. * @param n_grid_cells Number of grid cells in y direction the domain is * divided to. */ void setYDimensions(double domain_size, unsigned int n_grid_cells); /*! * Define the grid in z direction. * * Throws an error if the module wasn't initialized at least as a 3D model. * * @param domain_size Size of the domain in z direction. * @param n_grid_cells Number of grid cells in z direction the domain is * divided to. */ void setZDimensions(double domain_size, unsigned int n_grid_cells); /*! * Returns the number of grid cells in x direction. */ unsigned int getXGridCellsN(); /*! * Returns the number of grid cells in y direction. */ unsigned int getYGridCellsN(); /*! * Returns the number of grid cells in z direction. */ unsigned int getZGridCellsN(); /*! * Returns the domain size in x direction. */ unsigned int getXDomainSize(); /*! * Returns the domain size in y direction. */ unsigned int getYDomainSize(); /*! * Returns the domain size in z direction. */ unsigned int getZDomainSize(); /*! * With given ghost zones simulate diffusion. Only 1D allowed at this moment. * * @param c Vector describing the concentration of one solution of the grid as * continious memory (row major). * @param alpha Vector of diffusion coefficients for each grid element. */ void simulate(double *c, double *alpha, Diffusion::boundary_condition *bc); /*! * Set the timestep of the simulation * * @param time_step Time step (in seconds ???) */ void setTimestep(double time_step); private: typedef Eigen::Matrix DMatrixRowMajor; typedef Eigen::Matrix DVectorRowMajor; typedef Eigen::Matrix BCMatrixRowMajor; typedef Eigen::Matrix BCVectorRowMajor; // void simulate_base(DVectorRowMajor &c, Eigen::Map // &bc, // Eigen::Map &alpha, double dx, // double time_step, int size, DVectorRowMajor &t0_c); void simulate1D(Eigen::Map &c, Eigen::Map &alpha, Eigen::Map &bc); void simulate2D(Eigen::Map &c, Eigen::Map &alpha, Eigen::Map &bc); inline void fillMatrixFromRow(const DVectorRowMajor &alpha, const BCVectorRowMajor &bc, int size, double dx, double time_step); inline void fillVectorFromRowADI(const DVectorRowMajor &c, const DVectorRowMajor alpha, const BCVectorRowMajor &bc, const DVectorRowMajor &t0_c, int size, double dx, double time_step); void simulate3D(std::vector &c); inline void reserveMemory(int size, int max_count_per_line); inline double getBCFromFlux(Diffusion::boundary_condition bc, double nearest_value, double neighbor_alpha); void solveLES(); void updateInternals(); // std::vector bc; // Eigen::Matrix // bc; Eigen::SparseMatrix A_matrix; Eigen::VectorXd b_vector; Eigen::VectorXd x_vector; double time_step; int grid_dim; std::vector grid_cells; std::vector domain_size; std::vector deltas; }; } // namespace Diffusion #endif // BTCSDIFFUSION_H_